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Abstract

We present fast algorithms to perform accurate CCD queries between triangulated models. Our 

formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to 

evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the 

exact geometric computation paradigm to perform reliable Boolean collision queries. Our 

algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its 

performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits.
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1 Introduction

The problem of fast and reliable collision detection arises in physically-based simulation, 

geometric computing, and robotics. Many applications require accurate algorithms that do 

not miss a single collision and maintain intersection-free meshes throughout the simulation. 

Some of the widely-used algorithms for contact computation are based on continuous 

collision detection (CCD). Given two discrete instances or configurations of rigid or 

deformable models, CCD algorithms model the motion of each object or a mesh element 

using a continuous trajectory between the configurations and check for collisions along the 

trajectory. These algorithms are widely used for cloth simulation [Provot 1997; Bridson et 

al. 2002; Harmon et al. 2008; Brochu et al. 2012], rigid-body simulation [Redon et al. 2002], 

hair simulation [Selle et al. 2008], FEM simulation [Tang et al. 2011], robot motion 

planning [LaValle 2006; Tang et al. 2010a], dynamic solvers [Stam 2009], etc.

The simplest algorithms for triangular meshes linearly interpolate the trajectories of the 

vertices. In this case, contact computation reduces to performing a series of elementary tests 

between the vertices, edges, and faces using cubic polynomial root solvers [Provot 1997; 
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Bridson et al. 2002]. Many high-level culling techniques have also been proposed to reduce 

the number of elementary tests performed between the meshes of complex models.

The elementary tests are typically implemented using finite-precision or floating-point 

arithmetic and use error tolerances. The numerical errors in arithmetic operations along with 

the tolerances can impact these elementary tests’ accuracy (Fig. 1). There are two types of 

problems: false negatives, when the CCD algorithm may miss a collision; and false 

positives, when the CCD algorithm, acting conservatively, flags a non-colliding 

configuration as a collision. In order to overcome these problems, Brochu et al. [2012] 

proposed algorithms for exact CCD computation that can perform reliable collision queries. 

However, their approach can be relatively expensive due to use of large number of exact 

arithmetic operations. Moreover, its portability may be limited as efficient implementations 

of exact computation libraries are not easily available on all processors (e.g. GPUs).

Main Results

We present fast and accurate algorithms to perform reliable CCD queries. Our approach is 

based on using coplanarity and inside tests and reduces the computation to finding roots of 

algebraic equations and inequalities (i.e. a semi-algebraic set). We represent these functions 

using the Bernstein basis and exploit geometric properties of Bézier curves to design an 

efficient and reliable Bernstein sign classification (BSC) approach for CCD. The overall 

collision query is reduced to performing a series of sign evaluations of algebraic expressions 

and involves simple arithmetic operations. We also present a conservative elementary 

culling algorithm to improve the algorithm’s performance. We use BSC to design two 

algorithms:

1. BSC-exact: This is an exact algorithm to perform CCD queries based on the exact 

geometric computation paradigm [Yap 2004] and is not susceptible to false 

positives or false negatives. We use extended precision arithmetic operations and 

accelerate the performance using floating-point filters. As compared to prior exact 

CCD algorithm [Brochu et al. 2012], we observe 10 – 25X speedup on a single 

CPU core.

2. BSC-float: This is a finite-precision variant and is implemented using floating-

point arithmetic operations. We have evaluated its performance on CPUs and GPUs 

and observe considerable speedups over prior floating-point CCD algorithms. 

Furthermore, we observe significant improvement in accuracy, i.e. significant 

reduction in the number of false positives and false negatives using our algorithm.

The overall algorithms are simple to implement, using only addition, subtraction, and 

multiplication operations. The use of the Bernstein basis and simple arithmetic operations 

results in reduced errors and improved efficiency. We highlight the benefits of algorithms 

using cloth and FEM simulation benchmarks.

2 Related Work

In this section, we give a brief overview of prior work on CCD algorithms, high-level 

collision culling, and the computation of the roots of polynomials.
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Many techniques have been proposed for CCD between rigid models [Redon et al. 2002; 

Kim and Rossignac 2003], articulated models [Zhang et al. 2007], and deformable models 

[Volino and Thalmann 1994; Govindaraju et al. 2005; Hutter and Fuhrmann 2007; Tang et 

al. 2011]. At the lowest level, these algorithms perform elementary tests between triangle 

pairs. The elementary tests are typically performed by computing roots of cubic 

polynomials. Other CCD algorithms are based on conservative local advancement [Tang et 

al. 2009b]. All these methods are prone to floating-point errors and numerical tolerances. 

Therefore, they can result in false negatives and false positives. Wang [2014] has performed 

forward error analysis for elementary tests and used that analysis to derive tight error bounds 

for floating-point computation. This is used to reduce the number of false positive. In 

contrast, our BSC-exact algorithm and the approach described in [Brochu et al. 2012] are 

reliable. The tight error bounds in [Wang 2014] can be used to derive tighter error bounds 

for BSC-float.

High-level Culling

Many high-level techniques have been proposed to accelerate CCD computations by 

reducing the number of elementary tests between the triangle pairs, such as removing 

redundant elementary tests [Curtis et al. 2008; Tang et al. 2009a; Wong and Baciu 2006]. 

The simplest culling algorithms use BVHs (bounding volume hierarchies) based on k-DOPs 

or AABBs. Other methods use bounds on surface normals and curvature [Volino and 

Thalmann 1994; Provot 1997; Mezger et al. 2003] or perform self-collision culling 

[Schvartzman et al. 2010; Pabst et al. 2010; Zheng and James 2012]. Many of these 

algorithms are implemented using floating-point arithmetic operations and are prone to 

numerical errors.

Polynomial Root Evaluation

Many numerical iterative methods have been proposed to compute roots of polynomial 

equations. They tend to use tolerances and can result in false positives or false negatives for 

CCD computations. In computer graphics and geometric modeling, polynomials are 

represented using the spline basis, and their roots can be computed using the geometric 

subdivision methods, such as de Casteljau’s algorithm [Farin 2002] or Bézier clipping 

[Sederberg and Nishita 1990]. These subdivision methods are implemented using finite-

precision arithmetic and are also prone to roundoff errors. There is extensive literature in 

symbolic computation and computational geometry on reliably computing the roots of 

polynomials using exact arithmetic [Yap 2004; Mourrain et al. 2005].

3 CCD and Algebraic Formulation

In this section, we formulate CCD queries in terms of algebraic equations and inequalities. 

We assume that the vertices of the mesh move with a constant velocity during the time 

interval and that the CCD query reduces to performing two types of Boolean queries or 

elementary tests [Provot 1997; Bridson et al. 2002; Brochu et al. 2012]. These include the 

VF query, which checks whether a moving vertex intersects with a moving triangle, and the 

EE query, which checks whether a moving edge intersects with another moving edge. All 

these queries assume that the time interval is t ∈ [0, 1] and that the initial configuration at t = 
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0 is intersection-free. If the Boolean query returns a positive answer, we can use techniques 

based on interval arithmetic to compute the intersection points or first time of contact to a 

desired precision. In many applications, only the parity of the number of collisions is needed 

for robust simulation [Brochu et al. 2012]. As a result, we focus on reliably computing a 

yes/no answer to the Boolean queries. The exact root and the first time of contact can be 

computed using root isolation and interval arithmetic techniques.

We first introduce the notations used in the rest of the paper. Next, we present some 

properties of Bernstein basis functions and Bézier curves that are used by our CCD 

algorithm.

3.1 Notations

We use following notations in the rest of the paper: Lower case letters in normal fonts (e.g. 

a, b, ai,) represent scalar variables. Upper case letters (e.g., L, J(t))) represent scalar 

functions. Lower case letters in bold face fonts (e.g. a, bt) represent vector quantities. Upper 

case letters in bold face fonts (e.g., L, J(t)) represent vector-valued functions. F′(t) and F″(t) 

are the 1st and 2nd order of derivatives of a scalar function F(t), respectively. The operators 

‘*’, ‘·’, and ‘×’ denote the usual scalar multiplication, dot product, and cross product, 

respectively. Operator Sign() returns the sign of a scalar variable. All the proofs of the 

lemmas, theorems and corollaries are in the supplementary material.

3.2 Bézier Curves and Bernstein Basis

We use the symbol  to represent the ith basis function of the Bernstein polynomials of 

degree n, i.e. , where t ∈ [0, 1] and 0 ≤ i ≤ n. The Bernstein 

polynomial basis is widely used in geometric modeling for curve and surface representation 

as well as in numerical analysis and computer algebra for root computations [Mourrain et al. 

2005]. It is well-known that the polynomials expressed in the Bernstein basis have better 

numerical stability under perturbation of their coefficients than do those in the power basis 

[Farouki and Rajan 1987]. As a result, we represent the semi-algebraic set used for CCD 

queries in Bernstein basis.

Given a cubic polynomial Y(t), it can be expressed using the Bernstein basis, i.e.

(1)

It corresponds to a cubic Bézier curve F(t) in a plane, where:

(2)
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We exploit some geometric properties of cubic Bézier curves in order to characterize 

inflection points and extreme points. An inflection point occurs where the curvature vanishes 

or changes its bending direction. The extreme points correspond to local minima or maxima. 

Every cubic Bézier curve can be classified into three categories (as shown in Fig. 2), 

depending on whether it has any inflection point or extreme point over its domain (t ∈ [0, 

1]) [Farin 2002]:

• Case (a): The curve has an inflection point.

• Case (b): The curve has no inflection point, but an extreme point.

• Case (c): The curve has neither an inflection point nor an extreme point.

The existence of an inflection point or an extreme point can be checked based on the 

lemmas in the supplementary material.

A cubic Bernstein polynomial can be decomposed into lower-degree polynomials based on 

the following theorem:

Polynomial Decomposition Theorem—Let G(t) and H(t) be a cubic polynomial and a 

quadratic polynomial, respectively:

(3)

G(t) can be decomposed as:

(4)

where L(t) and K(t) are two linear polynomials:

(5)

where u[0,1] and υ[0,1] can be calculated from i[0…3] and j[0…2].

3.3 CCD Queries

The CCD test between a triangle pair reduces to performing 6 VF queries and 9 EE queries. 

Each of these queries can be further decomposed into two parts [Provot 1997; Bridson et al. 

2002]:

• Coplanarity test: The VF and EE queries involve the use of four deforming 

vertices. In order for a collision to occur, it is necessary that those four vertices be 

coplanar.

• Inside test: In addition to satisfy the coplanarity condition, we need to check 

whether the moving vertex is inside the triangle (VF), or the two edges intersect 

with each other at an interior point (EE).

The coplanarity test for a VF pair can be expressed as:
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(6)

where pt corresponds to the moving vertex, at, bt, ct are the vertices of the deforming 

triangle, and nt is the normal vector of the triangle (i.e. nt = (bt − at) × (ct − at)).

In order to perform an inside test for a VF pair, we need to perform three one-sided tests, i.e. 

pt needs to be inside the triangle. This can be expressed based on the following inequalities:

(7)

(8)

(9)

The coplanarity and inside tests can be combined to find a common root of the following 

system of algebraic equation and inequalities (i.e. a semi-algebraic set). The VF query 

reduces to checking whether this semi-algebraic set has a real solution for t ∈ [0, 1].

(10)

3.4 Coplanarity Tests using Bernstein Polynomials

In order to check the coplanarity of a vertex pt and a triangle (defined by at, bt, and ct), we 

need to calculate the projected distance between them along the direction of nt. If this 

distance becomes zero at any time in the interval, the four vertices are classified as coplanar 

based on following theorem.

Coplanarity Test Theorem for a VF Pair—For a deforming triangle, whose initial and 

final positions are given as (a0, b0, c0) and (a1, b1, c1) and a vertex with initial and final 

positions as p0 and p1, the coplanarity test can be formulated in terms of the following 

equation:

(11)

where k[0…3] are scalars can be calculated from (a0, b0, c0, p0) and (a1, b1, c1, p1).

The coplanarity test reduces to checking whether the 2D cubic Bézier curve F(t) (Equation 

(2)) defined in the (X, Y) plane intersects with the X-axis.

3.5 Inside Tests using Bernstein Polynomials

We can also formulate the inside tests using Bernstein polynomials.
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Inside Test Theorem for a VF Pair—Given the triangle and the vertex defined by start 

and end positions over the interval [0, 1], the inside test can be formulated in terms of the 

following inequality:

(12)

where l[0…4] are scalars that can be calculated from (a0, b0, c0, p0) and (a1, b1, c1, p1).

Simplified Inside Test Theorem for a VF pair—Based on combining Inequality (12) 

with Equation (11) and algebraic elimination, this inside test can be reduced to the following 

degree-two formulation:

(13)

where p[0…2] are scalars, which can be calculated based on k[0…3] and l[0…4], as shown in 

the supplementary material.

3.6 CCD Tests using Bernstein Polynomials

The formulations for coplanarity and inside tests can be combined into the following system 

of equations and inequalities in terms of Bernstein polynomials:

where k[0…3] and p[0…2] are scalars defined above, q[0…2] and r[0…2] are the coefficients 

corresponding to 2 other inside tests.

4 CCD Query Using Sign Evaluations

In this section, we use the formulation of CCD computation in terms of Bernstein 

polynomials and present accurate algorithms to perform CCD queries. Our formulation 

consists of two stages:

• Geometric Coplanarity Test: By deducing the signs of the polynomials at its 

extreme points and comparing with the signs of its end points in the interval [0, 1], 

we can check for the existence of roots for coplanarity equations.

• Geometric Inside Tests: During this stage, we evaluate the signs of the 

inequalities at the roots that have passed coplanarity tests to check whether these 

roots also satisfy the inside tests.

4.1 Geometric Coplanarity Test

Our goal is to compute the roots of a cubic polynomial Y(t) (defined by Equation (11) in 

domain [0, 1]). We use the characterization of Bézier curves into three different cases 
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presented in Section 3.2. For the Case (a) in Section 3.2, we subdivide the curve at its 

inflection point, i.e. , using de Casteljau’s algorithm. The two 

subdivided curves either correspond to Case (b) or Case (c) in Section 3.2. We discuss both 

these cases:

• Case (b): If k0 and k3 have different signs, there is only one root in the domain. 

Otherwise, we use the following Root-Finding Lemma to determine whether there 

are zero roots or two roots in the domain.

• Case (c): If k0 and k3 have the same sign, there is no root; otherwise there is one 

root in its domain.

Root-Finding Lemma—For a cubic polynomial Y(t) (defined by Equation (11)) with an 

extreme point in its domain, its 1st derivative Y′(t) is:

We decompose Y(t) = Y′(t) * S(t) + T(t), where S(t) and T(t) are two linear polynomials and 

can be calculated with the Polynomial Decomposition Theorem in Section 3.2. We use the 

classification in Fig. 3 to compute the number of roots of Y(t).

Based on this formulation, we can compute the number of roots for Case (b) and Case (c), 

and consequently for Case (a).

4.2 Geometric Inside Tests

In order to perform a specific inside test, along with the coplanarity test, we need to test the 

following system:

(14)

Here Y(t) and P(t) are defined by Equation (11) and Equation (13), respectively. We 

compute a similar system for the other two inside tests.

Based on the Polynomial Decomposition Theorem in Section 3.2, we can express:

(15)

where L(t) and K(t) are linear polynomials.

Let  be a root of Y(t) in the domain [0, 1], i.e. , . From Equation (15), we 

obtain . Therefore, the problem of computing the sign of  reduces to 

computing the signs of  and .

We use following theorems to compute the signs of  and :
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Sign Determination Theorem I—Let L(t) be a linear polynomial and Y(t) be a cubic 

polynomial which corresponds to the Bézier curve of Case (b) in the domain [0, 1] (Fig. 

4(a)). Let:

• L(t′) = 0, and t′ ∈ [0, 1],

• , and .

We can use the rules in Fig. 5(a) to evaluate the sign of ).

Sign Determination Theorem II—Let L(t) be a linear polynomial and Y(t) be a cubic 

polynomial that corresponds to the Bézier curve of Case (c) in the domain [0, 1] (Fig. 4(b) 

and Fig. 4(c)). Let:

• L(t′) = 0, and t′ ∈ [0, 1],

•  and , and , , ,

• Y′(t″) = 0, and t″∈ [0, 1]. Y′(t) is the 1st order of derivative of Y(t).

We can use the rules in Fig. 5(b) to determine the sign of ) and ).

Based on Sign Determination Theorem I and Sign Determination Theorem II, we can 

determine the sign of .

Sign of —The algorithm used to compute the sign of  can be directly used to 

compute the sign of .

Based on the signs of  and , we can compute the sign of  and consequently 

check whether the equality and inequality in Equation (14) are satisfied or not. This is 

repeated for the other two inequalities as well. If all of them are satisfied, then the answer to 

the CCD query is positive.

4.3 Conservative Culling Test

Many times there is no collision, and we use a simple culling scheme to accelerate the 

algorithm. This is similar to using the non-penetration filter [Tang et al. 2010b] or plane-

culling [Brochu et al. 2012]. Our goal is to eliminate many VF pairs that do not satisfy the 

coplanarity condition (see Equation (11)). One sufficient condition is when all the 

coefficients k[0…3] are either greater than zero or less than zero. Instead of computing k[0…3] 

exactly, we use floating-point filters [Burnikel et al. 2001] to perform conservative culling. 

In other words, we compute k[0…3] using floating-point arithmetic. Instead of comparing 

them with zeros, we check whether they are all greater than , or all less than , where  is 

a conservative error bound. The detailed method for computing  is in the supplementary 

material.

Algorithm 1 VF-Test: CCD test for a VF pair.

Input: Positions at t = 0 and t = 1 for a deforming triangle (a0, a1, b0, b1, c0, c1) and a moving vertex (p0, p1).

Output: True or False for has a collision or no collision in [0, 1].
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  1: GetCoefficients() // Get coefficients of Y(t)).

  2: // Perform conservative culling test.

  3: if ConservativeFilter() then

  4:  Return False.

  5: end if

  6: ctype ← BezierType() // Get type of the Bézier curve.

  7: // For case (a), subdivide and check on interval [0, t′] and [t′, 1].

  8: // Here t′ is corresponding to the inflection point.

  9: if ctype = Case A then

10:  Subdivide into two intervals [0, t′] and [t′, 1].

11:  Return VF-Test([0, t′]) OR VF-Test([t′, 1]).

12: end if

13: // For case (b) and case (c), continue checking.

14: // Perform Coplanarity Test (Section 4.1).

15: if !CoplanarityTest() then

16:  Return False.

17: end if

18: // Perform Inside Test (Section 4.2).

19: if !InsideTest() then

20:  Return False.

21: end if

22: Return True. // A valid collision has been detected.

4.4 Overall VF Query Algorithm

Our overall algorithm for VF query is described in Algorithm 1. We first compute the 

coefficients of Y(t), i.e. k[0…3] (Line 1), and perform the conservative culling test (Line 3–5). 

If the culling test fails, we classify the type of Bézier curves (Line 6). For case (a), we 

subdivide the interval [0, 1] into two sub-intervals [0, t′] and [t′, 1], and recursively perform 

CCD tests on these sub-intervals (Line 9–12). For case (b) and (c), we perform the 

coplanarity test (Line 15–17) and inside tests (Line 19–21). If all these tests are positive, the 

response to VF collision query is positive (Line 22).

We use a similar algorithm for EE tests. The details of its derivation are given in the 

supplementary material. The main difference with respect to the VF test is in terms of the 

inequalities used for the inside tests.

BSC-exact: Exact VF Computation—In order to perform reliable collision queries, we 

use the well-known paradigm of Exact Geometric Computation [Yap 2004], which is widely 

used for geometric computations and has also been used to perform exact Boolean answers 

for CCD [Brochu et al. 2012]. The underlying philosophy is that we compute the correct 

answer to these Boolean queries assuming that we use exact arithmetic and there are no 

errors due to use of fixed precision or floating-point arithmetic or user specified tolerances. 

Our exact algorithm, BSC-exact, uses a combination of extended precision arithmetic 

operations and floating point filters. Our conservative-culling test only uses floating point 

filters and does not perform exact arithmetic operations. The rest of the computations 
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include many expressions and evaluating signs of polynomials. All these computations can 

be accelerated using floating point filters.

BSC-float: Floating-point Algorithm—In some cases, optimized libraries for extended 

precision-arithmetic operations are not available on certain processors (e.g. GPUs). In this 

case, all the steps of Algorithm 1 are implemented using floating-point arithmetic and are 

prone to numerical errors. Our resulting algorithm, BSC-float, is based on the IEEE floating-

point standard.

5 Implementation and Performance

In this section, we describe our implementation and highlight the performance of our 

algorithm on several benchmarks.

5.1 Implementation

We have implemented our algorithms on a standard PC (Intel i7-3770K CPU @3.5GHz, 

4GB RAM, 64-bits Window 7 OS, NVIDIA Tesla K40c GPU). This includes a CPU-based 

C++ implementation of BSC-exact that uses a single core and uses an exact computation 

library based on interval arithmetic [Brochu et al. 2012]. We have also implemented BSC-

float on a CPU (with C++) and a GPU (using CUDA 5.5) using hardware-supported 

floating-point operations.

We compare the performance of our algorithms with the following algorithms:

1. El-Topo-exact: This is the implementation of the exact algorithm of [Brochu et al. 

2012], made available by the authors. It also uses plane-based culling to accelerate 

the computation, along with interval arithmetic-based filters and exact expansions 

for exact arithmetic operations. In order to compare the performance with BSC-

exact, we use the same implementation of exact arithmetic operations.

2. El-Topo-float: This is a floating-point-based cubic root solver CCD 

implementation, available as part of El-Topo surface-tracking library [Brochu and 

Bridson 2009]. We measured its performance using a single thread on the CPU.

3. BSC-float-GPU and El-Topo-float-GPU: We also ported BSC-float and El-Topo-

float algorithms to GPUs and tested their performance with multiple threads, 

referred to as BSC-float-GPU and El-Topo-float-GPU, respectively.

5.2 Benchmarks

In order to test the performance of our algorithms, we used five different benchmarks arising 

from different simulation scenarios that use CCD queries.

• Dancer: A dancer wearing a simple skirt with 5K – 10K triangles, the number of 

triangles change during the simulation due to adaptive computations. This 

benchmark has a high number of self-collisions (Figure 6(d)).

• Twisting: A cloth with 2K – 50K triangles twists severely as the underlying ball is 

rotating. This benchmark has a high number of self-collisions (Figure 6(a)).
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• Flamenco: A fiery Flamenco dancer wearing a colorful skirt with ruffles. This 

benchmark (49K triangles) has many inter-and intra-object collisions (Figure 6(c)).

• Funnel: A cloth with 2K – 42K triangles falls into a funnel and folds to fit into the 

funnel with many self-collisions (Figure 6(b)).

• Crashing: A Ford Explorer with 1.1M triangles crashes against a rigid wall and the 

deformation is simulated using finite-element meshing (Figure 6(e)).

The first three benchmarks (Dancer, Twisting, and Funnel) are generated by integrating our 

CCD algorithm into a cloth simulation system, ArcSim [Narain et al. 2012]. The input for 

the Flamenco and the Crashing benchmarks is given as discrete keyframes. We use linear 

interpolation between key-frames and check for inter-object and self-collisions. We also use 

BVH-based hierarchical culling (using AABBs) to reduce the number of elementary tests.

Worst-Case Query Performance—If there is no collision, our culling algorithm is able 

to discard many of those instances. The query time is higher when there is an actual contact. 

The worst-case query times for our algorithm vs. prior algorithms are:

• BSC-exact: The worst-case time for EE and VF queries are about 876 ns. In 

contrast, the worst-case query times for El-Topo-exact are 15 ms and 11μs for EE 

and VE queries, respectively.

• BSC-float: The worst-case time for EE and VF queries are about 105 ns. In 

contrast, the worst-case query times for El-Topo-float are about 953 ns for both 

queries on a CPU core. Moreover, we observe fewer incorrect query results using 

BSC-float.

5.3 Relative Performance on a CPU

Figure 7 highlights the performance of our algorithms, BSC-exact and BSC-float, and 

compares them with two prior CCD algorithms, El-Topo-exact and El-Topo-float, on a 

single CPU core. For all these benchmarks, the performance of BSC-exact is about 10–25X 

faster than El-Topo-exact, and offers similar reliability. Furthermore, we observe up to an 

order of magnitude speedup in the floating point implementations. Our approach, BSC-float, 

involves fewer arithmetic operations, as compared to El-Topo-float. The combination of 

fewer operations and improved numerical stability properties of Bernstein polynomials also 

improves the accuracy of BSC-float, i.e. fewer incorrect results to the collision queries in 

terms of false-negatives or false-positives.

5.4 Relative Performance on a GPU

We have also evaluated the performance on the NVIDIA Tesla K40c GPU. We are not 

aware of any widely optimized extended precision libraries on GPUs, so we only evaluated 

the relative performance of BSC-float-GPU and El-Topo-float-GPU on various benchmarks. 

We compared the accuracy of query results with those computed by exact CPU-based 

implementations. In this case, BSC-float-GPU results in much fewer inaccurate collision 

queries as compared to El-Topo-float-GPU. The internal registers used in GPUs may have 

different precision from CPUs, so we may observe considerable differences in the accuracy 

results of BSC-float-GPU and El-Topo-float-GPU, as compared to their CPU counterparts. 
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For example, many Intel processors use 80-bit internal registers for floating-point 

operations, and this may result in higher accuracy for CPU-based implementations. We have 

also integrated BSC-float and El-Topo-float into a GPU-based cloth simulation system 

[Tang et al. 2013] and compared the runtime query performance of both CCD algorithms 

within that system. Figure 7 highlights the performance of BSC-float-GPU and El-Topo-

float-GPU. Due to parallelism, the relative performance improvement of BSC-float-GPU 

over El-Topo-float-GPU is less than those on the CPUs.

5.5 Analysis

The computational costs of our exact CCD algorithm (BSC-exact) varies with respect to 

different cases described in Section 3.2:

• Case (c): No operation cost for the coplanarity test; involves 3 polynomial 

decompositions and 3 polynomial evaluations (of degree 3) for inside tests.

• Case (b): Its operation cost includes 1 polynomial decomposition and 1 polynomial 

evaluation (of degree 2) for the coplanarity test; 3 polynomial decompositions and 

6 polynomial evaluations (three of degree 2 and three of degree 3) for the inside 

test.

• Case (a): Its total operation cost is the sum of (c) and (b).

The overall operation count of our algorithm is much lower than Eltopo-exact and this 

results in considerable speedups, as shown in Fig. 7. Furthermore, we only perform simple 

arithmetic operations such as additions, subtractions, and multiplications (see details in the 

appendix). In terms of extended precision computations, the division operations are more 

expensive than these three operations and we avoid those expensive operations in our 

algorithm.

The first time of contact can be easily computed using root isolation We perform mid-point 

subdivision (using Bernstein formulation) recursively, after Algorithm 1 returns true. The 

subdivision terminates when the size of the interval containing the root is less than a user-

threshold. The mid-point of the interval is used to compute the intersection points. This 

takes about 30 – 40 ns/query.

We also compared the performance of our solver with the Jenkins-Traub solver1. It is more 

accurate than Newton-interval solver (e.g. used in El Topo-float), but about 3X slower. All 

such numeric solvers are prone to floating-point errors and can result in false-positives and 

false-negatives. In contrast, our BSC-exact algorithm is reliable and faster than most of these 

numeric solvers.

6 Limitations, Conclusions and Future Work

We have presented novel algorithms to perform accurate CCD queries between triangular 

meshes. We exploit properties of Bernstein functions and Bézier curves, reducing the CCD 

queries to evaluating signs of Bernstein polynomials and algebraic expressions. We present 

1http://www.codeproject.com/Articles/552678/Polynomial-Equation-Solver
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two versions of the algorithm based on exact geometric computation and IEEE floating-

point implementations. We have implemented these algorithms on CPUs and GPUs. Our 

exact algorithm is more than an order of magnitude faster than prior exact algorithms. 

Furthermore, our floating-point variant is faster and more accurate than prior solvers for 

elementary tests.

Our approach has some limitations. Our current formulation assumes that the vertices move 

with a constant velocity. Our reliable algorithm assumes exact representation of vertices, 

edges, and faces and does not take into account any errors in the input. Our floating-point 

variant (BSC-float) is faster and more accurate than prior methods, but it does not guarantee 

a safe and reliable solution. We perform only Boolean collision queries; and additional 

computations based on root isolation would be needed to compute the first-time-of-contact.

There are many avenues for future work. Besides overcoming these limitations, it may be 

useful to derive a tight error bound on our floating-point variant and the exact number of bits 

needed for extended precision. This would help explain its high accuracy in our benchmarks. 

It would be useful to use our reliable CCD algorithm for other applications including hair 

simulation and dynamic solvers [Zhao et al. 2012]. Finally, we would like to develop 

reliable algorithms for high-level CCD culling and collision-response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Benefits of Reliable CCD Queries
We highlight the benefits of our exact CCD algorithm on cloth simulation. Our algorithm 

can be used to generate a plausible simulation (a). If parameters are not properly tuned, 

floating-point-based CCD algorithms (b) can result in penetrations and artifacts.
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Figure 2. Bézier Classifications
We classify the cubic Bézier curve into three categories (a)–(c), depending on whether it has 

an inflection point or an extreme point.
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Figure 3. Computing the Number of Roots of Y(t)
We can compute them based on sign evaluations.
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Figure 4. Evaluate the Sign of 
Based on Sign Determination Theorem I and Sign Determination Theorem II, we can 

evaluate the sign of .
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Figure 5. Rules for Evaluating the Sign of , , and 
We use the rules in (a) and (b) for Sign Determination Theorem I and Sign 
Determination Theorem II, respectively.
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Figure 6. Benchmarks
We use five different benchmarks arising from cloth and FEM simulations.
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Figure 7. Performance and Comparison
We highlight the performance of various CPU and GPU-based algorithms on different 

benchmarks. We observe significant speedups using our algorithms based on BSC vs. prior 

algorithms implemented as part of El Topo [Provot 1997; Bridson et al. 2002; Brochu and 

Bridson 2009; Brochu et al. 2012]. Even though BSC-float is not guaranteed to be reliable, 

we observe very high accuracy in our benchmarks, i.e. very few incorrect answers to the 

queries.
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