
Fast and Exact Continuous Collision Detection with Bernstein
Sign Classification

Min Tang1,*, Ruofeng Tong1, Zhendong Wang1, and Dinesh Manocha2,†

1State Key Lab of CAD&CG, Zhejiang University

2University of North Carolina at Chapel Hill

Abstract

We present fast algorithms to perform accurate CCD queries between triangulated models. Our

formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to

evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the

exact geometric computation paradigm to perform reliable Boolean collision queries. Our

algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its

performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits.

Keywords

Continuous collision detection; Bernstein sign classification; Exact geometric computation;
Physically based simulation

1 Introduction

The problem of fast and reliable collision detection arises in physically-based simulation,

geometric computing, and robotics. Many applications require accurate algorithms that do

not miss a single collision and maintain intersection-free meshes throughout the simulation.

Some of the widely-used algorithms for contact computation are based on continuous

collision detection (CCD). Given two discrete instances or configurations of rigid or

deformable models, CCD algorithms model the motion of each object or a mesh element

using a continuous trajectory between the configurations and check for collisions along the

trajectory. These algorithms are widely used for cloth simulation [Provot 1997; Bridson et

al. 2002; Harmon et al. 2008; Brochu et al. 2012], rigid-body simulation [Redon et al. 2002],

hair simulation [Selle et al. 2008], FEM simulation [Tang et al. 2011], robot motion

planning [LaValle 2006; Tang et al. 2010a], dynamic solvers [Stam 2009], etc.

The simplest algorithms for triangular meshes linearly interpolate the trajectories of the

vertices. In this case, contact computation reduces to performing a series of elementary tests

between the vertices, edges, and faces using cubic polynomial root solvers [Provot 1997;

*tang_m@zju.edu.cn, trf@zju.edu.cn, westernseawolf@zju.edu.cn
†dm@cs.unc.edu

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically based modeling

NIH Public Access
Author Manuscript
ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

Published in final edited form as:
ACM Trans Graph. 2014 November ; 33(6): . doi:10.1145/2661229.2661237.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bridson et al. 2002]. Many high-level culling techniques have also been proposed to reduce

the number of elementary tests performed between the meshes of complex models.

The elementary tests are typically implemented using finite-precision or floating-point

arithmetic and use error tolerances. The numerical errors in arithmetic operations along with

the tolerances can impact these elementary tests’ accuracy (Fig. 1). There are two types of

problems: false negatives, when the CCD algorithm may miss a collision; and false

positives, when the CCD algorithm, acting conservatively, flags a non-colliding

configuration as a collision. In order to overcome these problems, Brochu et al. [2012]

proposed algorithms for exact CCD computation that can perform reliable collision queries.

However, their approach can be relatively expensive due to use of large number of exact

arithmetic operations. Moreover, its portability may be limited as efficient implementations

of exact computation libraries are not easily available on all processors (e.g. GPUs).

Main Results

We present fast and accurate algorithms to perform reliable CCD queries. Our approach is

based on using coplanarity and inside tests and reduces the computation to finding roots of

algebraic equations and inequalities (i.e. a semi-algebraic set). We represent these functions

using the Bernstein basis and exploit geometric properties of Bézier curves to design an

efficient and reliable Bernstein sign classification (BSC) approach for CCD. The overall

collision query is reduced to performing a series of sign evaluations of algebraic expressions

and involves simple arithmetic operations. We also present a conservative elementary

culling algorithm to improve the algorithm’s performance. We use BSC to design two

algorithms:

1. BSC-exact: This is an exact algorithm to perform CCD queries based on the exact

geometric computation paradigm [Yap 2004] and is not susceptible to false

positives or false negatives. We use extended precision arithmetic operations and

accelerate the performance using floating-point filters. As compared to prior exact

CCD algorithm [Brochu et al. 2012], we observe 10 – 25X speedup on a single

CPU core.

2. BSC-float: This is a finite-precision variant and is implemented using floating-

point arithmetic operations. We have evaluated its performance on CPUs and GPUs

and observe considerable speedups over prior floating-point CCD algorithms.

Furthermore, we observe significant improvement in accuracy, i.e. significant

reduction in the number of false positives and false negatives using our algorithm.

The overall algorithms are simple to implement, using only addition, subtraction, and

multiplication operations. The use of the Bernstein basis and simple arithmetic operations

results in reduced errors and improved efficiency. We highlight the benefits of algorithms

using cloth and FEM simulation benchmarks.

2 Related Work

In this section, we give a brief overview of prior work on CCD algorithms, high-level

collision culling, and the computation of the roots of polynomials.

Tang et al. Page 2

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Many techniques have been proposed for CCD between rigid models [Redon et al. 2002;

Kim and Rossignac 2003], articulated models [Zhang et al. 2007], and deformable models

[Volino and Thalmann 1994; Govindaraju et al. 2005; Hutter and Fuhrmann 2007; Tang et

al. 2011]. At the lowest level, these algorithms perform elementary tests between triangle

pairs. The elementary tests are typically performed by computing roots of cubic

polynomials. Other CCD algorithms are based on conservative local advancement [Tang et

al. 2009b]. All these methods are prone to floating-point errors and numerical tolerances.

Therefore, they can result in false negatives and false positives. Wang [2014] has performed

forward error analysis for elementary tests and used that analysis to derive tight error bounds

for floating-point computation. This is used to reduce the number of false positive. In

contrast, our BSC-exact algorithm and the approach described in [Brochu et al. 2012] are

reliable. The tight error bounds in [Wang 2014] can be used to derive tighter error bounds

for BSC-float.

High-level Culling

Many high-level techniques have been proposed to accelerate CCD computations by

reducing the number of elementary tests between the triangle pairs, such as removing

redundant elementary tests [Curtis et al. 2008; Tang et al. 2009a; Wong and Baciu 2006].

The simplest culling algorithms use BVHs (bounding volume hierarchies) based on k-DOPs

or AABBs. Other methods use bounds on surface normals and curvature [Volino and

Thalmann 1994; Provot 1997; Mezger et al. 2003] or perform self-collision culling

[Schvartzman et al. 2010; Pabst et al. 2010; Zheng and James 2012]. Many of these

algorithms are implemented using floating-point arithmetic operations and are prone to

numerical errors.

Polynomial Root Evaluation

Many numerical iterative methods have been proposed to compute roots of polynomial

equations. They tend to use tolerances and can result in false positives or false negatives for

CCD computations. In computer graphics and geometric modeling, polynomials are

represented using the spline basis, and their roots can be computed using the geometric

subdivision methods, such as de Casteljau’s algorithm [Farin 2002] or Bézier clipping

[Sederberg and Nishita 1990]. These subdivision methods are implemented using finite-

precision arithmetic and are also prone to roundoff errors. There is extensive literature in

symbolic computation and computational geometry on reliably computing the roots of

polynomials using exact arithmetic [Yap 2004; Mourrain et al. 2005].

3 CCD and Algebraic Formulation

In this section, we formulate CCD queries in terms of algebraic equations and inequalities.

We assume that the vertices of the mesh move with a constant velocity during the time

interval and that the CCD query reduces to performing two types of Boolean queries or

elementary tests [Provot 1997; Bridson et al. 2002; Brochu et al. 2012]. These include the

VF query, which checks whether a moving vertex intersects with a moving triangle, and the

EE query, which checks whether a moving edge intersects with another moving edge. All

these queries assume that the time interval is t ∈ [0, 1] and that the initial configuration at t =

Tang et al. Page 3

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

0 is intersection-free. If the Boolean query returns a positive answer, we can use techniques

based on interval arithmetic to compute the intersection points or first time of contact to a

desired precision. In many applications, only the parity of the number of collisions is needed

for robust simulation [Brochu et al. 2012]. As a result, we focus on reliably computing a

yes/no answer to the Boolean queries. The exact root and the first time of contact can be

computed using root isolation and interval arithmetic techniques.

We first introduce the notations used in the rest of the paper. Next, we present some

properties of Bernstein basis functions and Bézier curves that are used by our CCD

algorithm.

3.1 Notations

We use following notations in the rest of the paper: Lower case letters in normal fonts (e.g.

a, b, ai,) represent scalar variables. Upper case letters (e.g., L, J(t))) represent scalar

functions. Lower case letters in bold face fonts (e.g. a, bt) represent vector quantities. Upper

case letters in bold face fonts (e.g., L, J(t)) represent vector-valued functions. F′(t) and F″(t)

are the 1st and 2nd order of derivatives of a scalar function F(t), respectively. The operators

‘*’, ‘·’, and ‘×’ denote the usual scalar multiplication, dot product, and cross product,

respectively. Operator Sign() returns the sign of a scalar variable. All the proofs of the

lemmas, theorems and corollaries are in the supplementary material.

3.2 Bézier Curves and Bernstein Basis

We use the symbol to represent the ith basis function of the Bernstein polynomials of

degree n, i.e. , where t ∈ [0, 1] and 0 ≤ i ≤ n. The Bernstein

polynomial basis is widely used in geometric modeling for curve and surface representation

as well as in numerical analysis and computer algebra for root computations [Mourrain et al.

2005]. It is well-known that the polynomials expressed in the Bernstein basis have better

numerical stability under perturbation of their coefficients than do those in the power basis

[Farouki and Rajan 1987]. As a result, we represent the semi-algebraic set used for CCD

queries in Bernstein basis.

Given a cubic polynomial Y(t), it can be expressed using the Bernstein basis, i.e.

(1)

It corresponds to a cubic Bézier curve F(t) in a plane, where:

(2)

Tang et al. Page 4

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

We exploit some geometric properties of cubic Bézier curves in order to characterize

inflection points and extreme points. An inflection point occurs where the curvature vanishes

or changes its bending direction. The extreme points correspond to local minima or maxima.

Every cubic Bézier curve can be classified into three categories (as shown in Fig. 2),

depending on whether it has any inflection point or extreme point over its domain (t ∈ [0,

1]) [Farin 2002]:

• Case (a): The curve has an inflection point.

• Case (b): The curve has no inflection point, but an extreme point.

• Case (c): The curve has neither an inflection point nor an extreme point.

The existence of an inflection point or an extreme point can be checked based on the

lemmas in the supplementary material.

A cubic Bernstein polynomial can be decomposed into lower-degree polynomials based on

the following theorem:

Polynomial Decomposition Theorem—Let G(t) and H(t) be a cubic polynomial and a

quadratic polynomial, respectively:

(3)

G(t) can be decomposed as:

(4)

where L(t) and K(t) are two linear polynomials:

(5)

where u[0,1] and υ[0,1] can be calculated from i[0…3] and j[0…2].

3.3 CCD Queries

The CCD test between a triangle pair reduces to performing 6 VF queries and 9 EE queries.

Each of these queries can be further decomposed into two parts [Provot 1997; Bridson et al.

2002]:

• Coplanarity test: The VF and EE queries involve the use of four deforming

vertices. In order for a collision to occur, it is necessary that those four vertices be

coplanar.

• Inside test: In addition to satisfy the coplanarity condition, we need to check

whether the moving vertex is inside the triangle (VF), or the two edges intersect

with each other at an interior point (EE).

The coplanarity test for a VF pair can be expressed as:

Tang et al. Page 5

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

(6)

where pt corresponds to the moving vertex, at, bt, ct are the vertices of the deforming

triangle, and nt is the normal vector of the triangle (i.e. nt = (bt − at) × (ct − at)).

In order to perform an inside test for a VF pair, we need to perform three one-sided tests, i.e.

pt needs to be inside the triangle. This can be expressed based on the following inequalities:

(7)

(8)

(9)

The coplanarity and inside tests can be combined to find a common root of the following

system of algebraic equation and inequalities (i.e. a semi-algebraic set). The VF query

reduces to checking whether this semi-algebraic set has a real solution for t ∈ [0, 1].

(10)

3.4 Coplanarity Tests using Bernstein Polynomials

In order to check the coplanarity of a vertex pt and a triangle (defined by at, bt, and ct), we

need to calculate the projected distance between them along the direction of nt. If this

distance becomes zero at any time in the interval, the four vertices are classified as coplanar

based on following theorem.

Coplanarity Test Theorem for a VF Pair—For a deforming triangle, whose initial and

final positions are given as (a0, b0, c0) and (a1, b1, c1) and a vertex with initial and final

positions as p0 and p1, the coplanarity test can be formulated in terms of the following

equation:

(11)

where k[0…3] are scalars can be calculated from (a0, b0, c0, p0) and (a1, b1, c1, p1).

The coplanarity test reduces to checking whether the 2D cubic Bézier curve F(t) (Equation

(2)) defined in the (X, Y) plane intersects with the X-axis.

3.5 Inside Tests using Bernstein Polynomials

We can also formulate the inside tests using Bernstein polynomials.

Tang et al. Page 6

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Inside Test Theorem for a VF Pair—Given the triangle and the vertex defined by start

and end positions over the interval [0, 1], the inside test can be formulated in terms of the

following inequality:

(12)

where l[0…4] are scalars that can be calculated from (a0, b0, c0, p0) and (a1, b1, c1, p1).

Simplified Inside Test Theorem for a VF pair—Based on combining Inequality (12)

with Equation (11) and algebraic elimination, this inside test can be reduced to the following

degree-two formulation:

(13)

where p[0…2] are scalars, which can be calculated based on k[0…3] and l[0…4], as shown in

the supplementary material.

3.6 CCD Tests using Bernstein Polynomials

The formulations for coplanarity and inside tests can be combined into the following system

of equations and inequalities in terms of Bernstein polynomials:

where k[0…3] and p[0…2] are scalars defined above, q[0…2] and r[0…2] are the coefficients

corresponding to 2 other inside tests.

4 CCD Query Using Sign Evaluations

In this section, we use the formulation of CCD computation in terms of Bernstein

polynomials and present accurate algorithms to perform CCD queries. Our formulation

consists of two stages:

• Geometric Coplanarity Test: By deducing the signs of the polynomials at its

extreme points and comparing with the signs of its end points in the interval [0, 1],

we can check for the existence of roots for coplanarity equations.

• Geometric Inside Tests: During this stage, we evaluate the signs of the

inequalities at the roots that have passed coplanarity tests to check whether these

roots also satisfy the inside tests.

4.1 Geometric Coplanarity Test

Our goal is to compute the roots of a cubic polynomial Y(t) (defined by Equation (11) in

domain [0, 1]). We use the characterization of Bézier curves into three different cases

Tang et al. Page 7

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

presented in Section 3.2. For the Case (a) in Section 3.2, we subdivide the curve at its

inflection point, i.e. , using de Casteljau’s algorithm. The two

subdivided curves either correspond to Case (b) or Case (c) in Section 3.2. We discuss both

these cases:

• Case (b): If k0 and k3 have different signs, there is only one root in the domain.

Otherwise, we use the following Root-Finding Lemma to determine whether there

are zero roots or two roots in the domain.

• Case (c): If k0 and k3 have the same sign, there is no root; otherwise there is one

root in its domain.

Root-Finding Lemma—For a cubic polynomial Y(t) (defined by Equation (11)) with an

extreme point in its domain, its 1st derivative Y′(t) is:

We decompose Y(t) = Y′(t) * S(t) + T(t), where S(t) and T(t) are two linear polynomials and

can be calculated with the Polynomial Decomposition Theorem in Section 3.2. We use the

classification in Fig. 3 to compute the number of roots of Y(t).

Based on this formulation, we can compute the number of roots for Case (b) and Case (c),

and consequently for Case (a).

4.2 Geometric Inside Tests

In order to perform a specific inside test, along with the coplanarity test, we need to test the

following system:

(14)

Here Y(t) and P(t) are defined by Equation (11) and Equation (13), respectively. We

compute a similar system for the other two inside tests.

Based on the Polynomial Decomposition Theorem in Section 3.2, we can express:

(15)

where L(t) and K(t) are linear polynomials.

Let be a root of Y(t) in the domain [0, 1], i.e. , . From Equation (15), we

obtain . Therefore, the problem of computing the sign of reduces to

computing the signs of and .

We use following theorems to compute the signs of and :

Tang et al. Page 8

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Sign Determination Theorem I—Let L(t) be a linear polynomial and Y(t) be a cubic

polynomial which corresponds to the Bézier curve of Case (b) in the domain [0, 1] (Fig.

4(a)). Let:

• L(t′) = 0, and t′ ∈ [0, 1],

• , and .

We can use the rules in Fig. 5(a) to evaluate the sign of).

Sign Determination Theorem II—Let L(t) be a linear polynomial and Y(t) be a cubic

polynomial that corresponds to the Bézier curve of Case (c) in the domain [0, 1] (Fig. 4(b)

and Fig. 4(c)). Let:

• L(t′) = 0, and t′ ∈ [0, 1],

• and , and , , ,

• Y′(t″) = 0, and t″∈ [0, 1]. Y′(t) is the 1st order of derivative of Y(t).

We can use the rules in Fig. 5(b) to determine the sign of) and).

Based on Sign Determination Theorem I and Sign Determination Theorem II, we can

determine the sign of .

Sign of —The algorithm used to compute the sign of can be directly used to

compute the sign of .

Based on the signs of and , we can compute the sign of and consequently

check whether the equality and inequality in Equation (14) are satisfied or not. This is

repeated for the other two inequalities as well. If all of them are satisfied, then the answer to

the CCD query is positive.

4.3 Conservative Culling Test

Many times there is no collision, and we use a simple culling scheme to accelerate the

algorithm. This is similar to using the non-penetration filter [Tang et al. 2010b] or plane-

culling [Brochu et al. 2012]. Our goal is to eliminate many VF pairs that do not satisfy the

coplanarity condition (see Equation (11)). One sufficient condition is when all the

coefficients k[0…3] are either greater than zero or less than zero. Instead of computing k[0…3]

exactly, we use floating-point filters [Burnikel et al. 2001] to perform conservative culling.

In other words, we compute k[0…3] using floating-point arithmetic. Instead of comparing

them with zeros, we check whether they are all greater than , or all less than , where is

a conservative error bound. The detailed method for computing is in the supplementary

material.

Algorithm 1 VF-Test: CCD test for a VF pair.

Input: Positions at t = 0 and t = 1 for a deforming triangle (a0, a1, b0, b1, c0, c1) and a moving vertex (p0, p1).

Output: True or False for has a collision or no collision in [0, 1].

Tang et al. Page 9

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

 1: GetCoefficients() // Get coefficients of Y(t)).

 2: // Perform conservative culling test.

 3: if ConservativeFilter() then

 4: Return False.

 5: end if

 6: ctype ← BezierType() // Get type of the Bézier curve.

 7: // For case (a), subdivide and check on interval [0, t′] and [t′, 1].

 8: // Here t′ is corresponding to the inflection point.

 9: if ctype = Case A then

10: Subdivide into two intervals [0, t′] and [t′, 1].

11: Return VF-Test([0, t′]) OR VF-Test([t′, 1]).

12: end if

13: // For case (b) and case (c), continue checking.

14: // Perform Coplanarity Test (Section 4.1).

15: if !CoplanarityTest() then

16: Return False.

17: end if

18: // Perform Inside Test (Section 4.2).

19: if !InsideTest() then

20: Return False.

21: end if

22: Return True. // A valid collision has been detected.

4.4 Overall VF Query Algorithm

Our overall algorithm for VF query is described in Algorithm 1. We first compute the

coefficients of Y(t), i.e. k[0…3] (Line 1), and perform the conservative culling test (Line 3–5).

If the culling test fails, we classify the type of Bézier curves (Line 6). For case (a), we

subdivide the interval [0, 1] into two sub-intervals [0, t′] and [t′, 1], and recursively perform

CCD tests on these sub-intervals (Line 9–12). For case (b) and (c), we perform the

coplanarity test (Line 15–17) and inside tests (Line 19–21). If all these tests are positive, the

response to VF collision query is positive (Line 22).

We use a similar algorithm for EE tests. The details of its derivation are given in the

supplementary material. The main difference with respect to the VF test is in terms of the

inequalities used for the inside tests.

BSC-exact: Exact VF Computation—In order to perform reliable collision queries, we

use the well-known paradigm of Exact Geometric Computation [Yap 2004], which is widely

used for geometric computations and has also been used to perform exact Boolean answers

for CCD [Brochu et al. 2012]. The underlying philosophy is that we compute the correct

answer to these Boolean queries assuming that we use exact arithmetic and there are no

errors due to use of fixed precision or floating-point arithmetic or user specified tolerances.

Our exact algorithm, BSC-exact, uses a combination of extended precision arithmetic

operations and floating point filters. Our conservative-culling test only uses floating point

filters and does not perform exact arithmetic operations. The rest of the computations

Tang et al. Page 10

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

include many expressions and evaluating signs of polynomials. All these computations can

be accelerated using floating point filters.

BSC-float: Floating-point Algorithm—In some cases, optimized libraries for extended

precision-arithmetic operations are not available on certain processors (e.g. GPUs). In this

case, all the steps of Algorithm 1 are implemented using floating-point arithmetic and are

prone to numerical errors. Our resulting algorithm, BSC-float, is based on the IEEE floating-

point standard.

5 Implementation and Performance

In this section, we describe our implementation and highlight the performance of our

algorithm on several benchmarks.

5.1 Implementation

We have implemented our algorithms on a standard PC (Intel i7-3770K CPU @3.5GHz,

4GB RAM, 64-bits Window 7 OS, NVIDIA Tesla K40c GPU). This includes a CPU-based

C++ implementation of BSC-exact that uses a single core and uses an exact computation

library based on interval arithmetic [Brochu et al. 2012]. We have also implemented BSC-

float on a CPU (with C++) and a GPU (using CUDA 5.5) using hardware-supported

floating-point operations.

We compare the performance of our algorithms with the following algorithms:

1. El-Topo-exact: This is the implementation of the exact algorithm of [Brochu et al.

2012], made available by the authors. It also uses plane-based culling to accelerate

the computation, along with interval arithmetic-based filters and exact expansions

for exact arithmetic operations. In order to compare the performance with BSC-

exact, we use the same implementation of exact arithmetic operations.

2. El-Topo-float: This is a floating-point-based cubic root solver CCD

implementation, available as part of El-Topo surface-tracking library [Brochu and

Bridson 2009]. We measured its performance using a single thread on the CPU.

3. BSC-float-GPU and El-Topo-float-GPU: We also ported BSC-float and El-Topo-

float algorithms to GPUs and tested their performance with multiple threads,

referred to as BSC-float-GPU and El-Topo-float-GPU, respectively.

5.2 Benchmarks

In order to test the performance of our algorithms, we used five different benchmarks arising

from different simulation scenarios that use CCD queries.

• Dancer: A dancer wearing a simple skirt with 5K – 10K triangles, the number of

triangles change during the simulation due to adaptive computations. This

benchmark has a high number of self-collisions (Figure 6(d)).

• Twisting: A cloth with 2K – 50K triangles twists severely as the underlying ball is

rotating. This benchmark has a high number of self-collisions (Figure 6(a)).

Tang et al. Page 11

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

• Flamenco: A fiery Flamenco dancer wearing a colorful skirt with ruffles. This

benchmark (49K triangles) has many inter-and intra-object collisions (Figure 6(c)).

• Funnel: A cloth with 2K – 42K triangles falls into a funnel and folds to fit into the

funnel with many self-collisions (Figure 6(b)).

• Crashing: A Ford Explorer with 1.1M triangles crashes against a rigid wall and the

deformation is simulated using finite-element meshing (Figure 6(e)).

The first three benchmarks (Dancer, Twisting, and Funnel) are generated by integrating our

CCD algorithm into a cloth simulation system, ArcSim [Narain et al. 2012]. The input for

the Flamenco and the Crashing benchmarks is given as discrete keyframes. We use linear

interpolation between key-frames and check for inter-object and self-collisions. We also use

BVH-based hierarchical culling (using AABBs) to reduce the number of elementary tests.

Worst-Case Query Performance—If there is no collision, our culling algorithm is able

to discard many of those instances. The query time is higher when there is an actual contact.

The worst-case query times for our algorithm vs. prior algorithms are:

• BSC-exact: The worst-case time for EE and VF queries are about 876 ns. In

contrast, the worst-case query times for El-Topo-exact are 15 ms and 11μs for EE

and VE queries, respectively.

• BSC-float: The worst-case time for EE and VF queries are about 105 ns. In

contrast, the worst-case query times for El-Topo-float are about 953 ns for both

queries on a CPU core. Moreover, we observe fewer incorrect query results using

BSC-float.

5.3 Relative Performance on a CPU

Figure 7 highlights the performance of our algorithms, BSC-exact and BSC-float, and

compares them with two prior CCD algorithms, El-Topo-exact and El-Topo-float, on a

single CPU core. For all these benchmarks, the performance of BSC-exact is about 10–25X

faster than El-Topo-exact, and offers similar reliability. Furthermore, we observe up to an

order of magnitude speedup in the floating point implementations. Our approach, BSC-float,

involves fewer arithmetic operations, as compared to El-Topo-float. The combination of

fewer operations and improved numerical stability properties of Bernstein polynomials also

improves the accuracy of BSC-float, i.e. fewer incorrect results to the collision queries in

terms of false-negatives or false-positives.

5.4 Relative Performance on a GPU

We have also evaluated the performance on the NVIDIA Tesla K40c GPU. We are not

aware of any widely optimized extended precision libraries on GPUs, so we only evaluated

the relative performance of BSC-float-GPU and El-Topo-float-GPU on various benchmarks.

We compared the accuracy of query results with those computed by exact CPU-based

implementations. In this case, BSC-float-GPU results in much fewer inaccurate collision

queries as compared to El-Topo-float-GPU. The internal registers used in GPUs may have

different precision from CPUs, so we may observe considerable differences in the accuracy

results of BSC-float-GPU and El-Topo-float-GPU, as compared to their CPU counterparts.

Tang et al. Page 12

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

For example, many Intel processors use 80-bit internal registers for floating-point

operations, and this may result in higher accuracy for CPU-based implementations. We have

also integrated BSC-float and El-Topo-float into a GPU-based cloth simulation system

[Tang et al. 2013] and compared the runtime query performance of both CCD algorithms

within that system. Figure 7 highlights the performance of BSC-float-GPU and El-Topo-

float-GPU. Due to parallelism, the relative performance improvement of BSC-float-GPU

over El-Topo-float-GPU is less than those on the CPUs.

5.5 Analysis

The computational costs of our exact CCD algorithm (BSC-exact) varies with respect to

different cases described in Section 3.2:

• Case (c): No operation cost for the coplanarity test; involves 3 polynomial

decompositions and 3 polynomial evaluations (of degree 3) for inside tests.

• Case (b): Its operation cost includes 1 polynomial decomposition and 1 polynomial

evaluation (of degree 2) for the coplanarity test; 3 polynomial decompositions and

6 polynomial evaluations (three of degree 2 and three of degree 3) for the inside

test.

• Case (a): Its total operation cost is the sum of (c) and (b).

The overall operation count of our algorithm is much lower than Eltopo-exact and this

results in considerable speedups, as shown in Fig. 7. Furthermore, we only perform simple

arithmetic operations such as additions, subtractions, and multiplications (see details in the

appendix). In terms of extended precision computations, the division operations are more

expensive than these three operations and we avoid those expensive operations in our

algorithm.

The first time of contact can be easily computed using root isolation We perform mid-point

subdivision (using Bernstein formulation) recursively, after Algorithm 1 returns true. The

subdivision terminates when the size of the interval containing the root is less than a user-

threshold. The mid-point of the interval is used to compute the intersection points. This

takes about 30 – 40 ns/query.

We also compared the performance of our solver with the Jenkins-Traub solver1. It is more

accurate than Newton-interval solver (e.g. used in El Topo-float), but about 3X slower. All

such numeric solvers are prone to floating-point errors and can result in false-positives and

false-negatives. In contrast, our BSC-exact algorithm is reliable and faster than most of these

numeric solvers.

6 Limitations, Conclusions and Future Work

We have presented novel algorithms to perform accurate CCD queries between triangular

meshes. We exploit properties of Bernstein functions and Bézier curves, reducing the CCD

queries to evaluating signs of Bernstein polynomials and algebraic expressions. We present

1http://www.codeproject.com/Articles/552678/Polynomial-Equation-Solver

Tang et al. Page 13

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.codeproject.com/Articles/552678/Polynomial-Equation-Solver

two versions of the algorithm based on exact geometric computation and IEEE floating-

point implementations. We have implemented these algorithms on CPUs and GPUs. Our

exact algorithm is more than an order of magnitude faster than prior exact algorithms.

Furthermore, our floating-point variant is faster and more accurate than prior solvers for

elementary tests.

Our approach has some limitations. Our current formulation assumes that the vertices move

with a constant velocity. Our reliable algorithm assumes exact representation of vertices,

edges, and faces and does not take into account any errors in the input. Our floating-point

variant (BSC-float) is faster and more accurate than prior methods, but it does not guarantee

a safe and reliable solution. We perform only Boolean collision queries; and additional

computations based on root isolation would be needed to compute the first-time-of-contact.

There are many avenues for future work. Besides overcoming these limitations, it may be

useful to derive a tight error bound on our floating-point variant and the exact number of bits

needed for extended precision. This would help explain its high accuracy in our benchmarks.

It would be useful to use our reliable CCD algorithm for other applications including hair

simulation and dynamic solvers [Zhao et al. 2012]. Finally, we would like to develop

reliable algorithms for high-level CCD culling and collision-response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research is supported in part by NSFC (61170140), the National Basic Research Program of China
(2011CB302205), the National Key Technology R&D Program of China (2012BAD35B01), the Doctoral Fund of
Ministry of Education of China (20130101110133). Dinesh Manocha is supported in part by ARO Contract
W911NF-10-1-0506, Intel and the Office Of The Director, National Institutes Of Health under Award Number
R44OD018334, and the National Thousand Talents Program of China. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Institutes of Health. Ruofeng Tong
is partly supported by NSFC (61170141), the National High-Tech Research and Development Program (No.
2013AA013903) of China. We gratefully acknowledge the support of NVIDIA Corporation with the donation of
the Tesla K40c GPU used for this research.

References

Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth
animation. ACM Trans Graph. 2002 Jul; 21(3):594–603.

Brochu T, Bridson R. Robust topological operations for dynamic explicit surfaces. SIAM J Sci
Comput. 2009 Jun; 31(4):2472–2493.

Brochu T, Edwards E, Bridson R. Efficient geometrically exact continuous collision detection. ACM
Trans Graph. 2012 Jul; 31(4):96:1–96:7.

Burnikel C, Funke S, Seel M. Exact geometric computation using cascading. International J Comp
Geometry and Applications. 2001; 11(3):245–266. Special Issue.

Curtis S, Tamstorf R, Manocha D. Fast collision detection for deformable models using representative-
triangles. SI3D ’08: Proceedings of the 2008 Symposium on Interactive 3D graphics and games.
2008:61–69.

Farin, G. Curves and surfaces for CAGD: a practical guide. 5. Morgan Kaufmann Publishers Inc; San
Francisco, CA, USA: 2002.

Tang et al. Page 14

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Farouki RT, Rajan VT. On the numerical condition of polynomials in berstein form. Comput Aided
Geom Des. 1987 Nov; 4(3):191–216.

Govindaraju N, Knott D, Jain N, Kabul I, Tamstorf R, Gayle R, Lin M, Manocha D. Interactive
collision detection between deformable models using chromatic decomposition. ACM Trans on
Graphics (Proc of ACM SIGGRAPH). 2005; 24(3):991–999.

Harmon D, Vouga E, Tamstorf R, Grinspun E. Robust treatment of simultaneous collisions.
SIGGRAPH (ACM Transactions on Graphics). 2008; 27(3):1–4.

Hutter M, Fuhrmann A. Optimized continuous collision detection for deformable triangle meshes. Proc
WSCG ’07. 2007:25–32.

Kim B, Rossignac J. Collision prediction for polyhedra under screw motions. Proceedings of the
eighth ACM symposium on Solid modeling and applications, SM ’03. 2003:4–10.

LaValle, SM. Planning Algorithms. Cambridge University Press; 2006.

Mezger J, Kimmerle S, Etzmuβ O. Hierarchical techniques in cloth detection for cloth animation.
Journal of WSCG. 2003; 11(1):322–329.

Mourrain, B.; Rouillier, F.; Roy, M-F. Combinatorial and Computational Geometry. MSRI
Publications; 2005. The Bernstein basis and real root isolation; p. 459-478.

Narain R, Samii A, O’Brien JF. Adaptive anisotropic remeshing for cloth simulation. ACM Trans
Graph. 2012 Nov; 31(6):152:1–152:10.

Pabst S, Koch A, Strasser W. Fast and scalable CPU/GPU collision detection for rigid and deformable
surfaces. Computer Graphics Forum. 2010; 29(5):1605–1612.

Provot X. Collision and self-collision handling in cloth model dedicated to design garments. Graphics
Interface. 1997:177–189.

Redon S, Kheddar A, Coquillart S. Fast continuous collision detection between rigid bodies. Proc of
Eurographics (Computer Graphics Forum). 2002; 21(3):279–288.

Schvartzman SC, Pérez AG, Otaduy MA. Star-contours for efficient hierarchical self-collision
detection. ACM Trans Graph. 2010 Jul; 29(4):80:1–80:8.

SEDERBERG TW, NISHITA T. Curve intersection using Bézier clipping. Comput Aided Des. 1990;
22(9):538–549.

Selle A, Lentine M, Fedkiw R. A mass spring model for hair simulation. ACM Trans Graph. 2008
Aug; 27(3):64:1–64:11.

Stam J. Nucleus: Towards a unified dynamics solver for computer graphics. Proceedings of IEEE
International Conference on Computer-Aided Design and Computer Graphics. 2009:1–11.

Tang M, Curtis S, Yoon S-E, Manocha D. ICCD: interactive continuous collision detection between
deformable models using connectivity-based culling. IEEE Transactions on Visualization and
Computer Graphics. 2009; 15:544–557. [PubMed: 19423880]

Tang M, Kim YJ, Manocha D. C2A: Controlled conservative advancement for continuous collision
detection of polygonal models. Proceedings of International Conference on Robotics and
Automation. 2009:356–361.

Tang M, Kim YJ, Manocha D. CCQ: Efficient local planning using connection collision query.
WAFR. 2010:229–247.

Tang, M.; Manocha, D.; Tong, R. Proceedings of ACM Symposium on Interactive 3D Graphics and
Games. ACM; New York, NY, USA: 2010. Fast continuous collision detection using deforming
non-penetration filters; p. 7-13.

Tang M, Manocha D, Yoon S-E, Du P, Heo J-P, Tong R. VolCCD: Fast continuous collision culling
between deforming volume meshes. ACM Trans Graph. 2011 May.30:111:1–111:15.

Tang M, Tong R, Narain R, Meng C, Manocha D. A GPU-based streaming algorithm for high-
resolution cloth simulation. Computer Graphics Forum. 2013; 32(7):21–30.

Volino P, Thalmann NM. Efficient self-collision detection on smoothly discretized surface animations
using geometrical shape regularity. Computer Graphics Forum. 1994; 13(3):155–166.

Wang H. Defending continuous collision detection against errors. ACM Trans Graph. 2014 Jul; 33(4):
122:1–122:10.

Wong WS-K, Baciu G. A randomized marking scheme for continuous collision detection in simulation
of deformable surfaces. Proc of ACM VRCIA. 2006:181–188.

Tang et al. Page 15

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Yap, C. Robust geometric computation. In: Goodman, JE.; O’Rourke, J., editors. Handbook of
Discrete and Computational Geometry. 2. Chapmen & Hall/CRC; Boca Raton, FL: 2004. p.
927-952.ch. 41

Zhang X, Redon S, Lee M, Kim YJ. Continuous collision detection for articulated models using Taylor
models and temporal culling. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007).
2007; 26(3):15.

Zhao J, Tang M, Tong R. Connectivity-based segmentation for GPU-accelerated mesh decompression.
J Comput Sci Technol. 2012; 27(6):1110–1118.

Zheng C, James DL. Energy-based self-collision culling for arbitrary mesh deformations. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2012). 2012 Aug; 31(4):98:1–98:12.

Tang et al. Page 16

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 1. Benefits of Reliable CCD Queries
We highlight the benefits of our exact CCD algorithm on cloth simulation. Our algorithm

can be used to generate a plausible simulation (a). If parameters are not properly tuned,

floating-point-based CCD algorithms (b) can result in penetrations and artifacts.

Tang et al. Page 17

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 2. Bézier Classifications
We classify the cubic Bézier curve into three categories (a)–(c), depending on whether it has

an inflection point or an extreme point.

Tang et al. Page 18

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 3. Computing the Number of Roots of Y(t)
We can compute them based on sign evaluations.

Tang et al. Page 19

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 4. Evaluate the Sign of
Based on Sign Determination Theorem I and Sign Determination Theorem II, we can

evaluate the sign of .

Tang et al. Page 20

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 5. Rules for Evaluating the Sign of , , and
We use the rules in (a) and (b) for Sign Determination Theorem I and Sign
Determination Theorem II, respectively.

Tang et al. Page 21

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 6. Benchmarks
We use five different benchmarks arising from cloth and FEM simulations.

Tang et al. Page 22

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 7. Performance and Comparison
We highlight the performance of various CPU and GPU-based algorithms on different

benchmarks. We observe significant speedups using our algorithms based on BSC vs. prior

algorithms implemented as part of El Topo [Provot 1997; Bridson et al. 2002; Brochu and

Bridson 2009; Brochu et al. 2012]. Even though BSC-float is not guaranteed to be reliable,

we observe very high accuracy in our benchmarks, i.e. very few incorrect answers to the

queries.

Tang et al. Page 23

ACM Trans Graph. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

