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Abstract

Aldosterone exerts its best known sodium homeostasis actions by controlling sodium excretion at 

the level of the distal tubules via activation of the apical epithelial sodium channel (ENaC) and the 

basolateral Na+/K+ ATPase pump. Recently, this mineralocorticoid hormone has been 

demonstrated to act on the heart and blood vessels. Excess release of aldosterone in relation to the 

salt status induces both genomic and non-genomic effects that by promoting endothelial 

dysfunction, and vascular and cardio-renal adverse remodeling, contribute to the target organ 

damage found in hypertension, heart failure, myocardial infarction and chronic renal failure. 

Mineralocorticoid receptor blockers have been shown to be highly effective in resistant 

hypertension and to slow down heart failure progression, and in experimental animals, the 

development of atherosclerosis. Blockade of the action of aldosterone and potentially other 

mineralocorticoid steroids has been increasingly demonstrated to be an extremely beneficial 

therapy in different forms of cardiovascular disease. This review provides a summary of the 

knowledge that exists regarding aldosterone actions in the cardiovascular system and, in providing 

the translational impact of this knowledge to the clinical arena, illustrates how much more needs 

to be achieved in exploring the use of mineralocorticoid receptor blockers in less advanced stages 

of heart, renal, and vascular disease.
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INTRODUCTION

The renin-angiotensin-aldosterone (RAAS) system is a powerful hormone regulatory 

mechanism serving multiple functions as a key determinant of tissue perfusion pressure and 

cellular homeostasis. Since the original demonstration of renin in renal extracts 

characterization of the biochemical physiology and mechanisms of action of this system has 

become one of the major accomplishments of the biomedical research enterprise. It is also a 

fruitful example of translational medicine, with major impact on the therapy of 

cardiovascular disease as a consequence of the development of drugs that inhibit the 

pathological actions of angiotensin II (Ang II) and its interplay with the adrenocortical 

steroid aldosterone.

The knowledge of how the RAAS functions has taken diverse routes that entail exploring 

the pathways by which Ang II is produced in blood and tissues, the functions and signaling 

mechanisms for the action of the hormone, and its link to the processes by which 

aldosterone is formed and acts through its interplay with Ang II and the neuro-hormonal 

mechanisms regulating salt and water intake. The translational lessons derived from the 

original reports of Ang II and aldosterone biosynthesis embodies an extensive medical 

literature, the highlights of which resulted in the development of angiotensin converting 

enzyme (ACE) inhibitors, Ang II receptor antagonists (ARBs), direct renin inhibitors (DRI), 

and mineralocorticoid receptor (MR) antagonists. It would be a futile effort to detail 

accurately the complete history of these accomplishments, as they constitute a body of 

literature of several hundred papers and more than one hundred years of exemplary 

discoveries. This review provides a succinct summary of the translational therapeutic 

outcomes for aldosterone and Ang II given their key interplay in cardiovascular regulation 

through a narrative synthesis of accomplishments and the inclusion of the timeline of 

discoveries documented in Table 1.

Aldosterone Biosynthesis and Functions

The isolation of aldosterone can be traced back to the early 1930s when researchers 

succeeded in obtaining biologically active extracts free of contaminating compounds from 

the adrenal medulla. As narrated by Tai et al. 1, this work was accomplished by several 

teams of investigators working at Columbia University 2, the Mayo Clinic 3 and the Ciba 

group in Basel 4. Aldosterone crystals were obtained first from human urine collected from 

two patients with congestive heart failure (HF) 5. Table 1 documents the evolution of the 

research leading to the final synthesis of aldosterone by the Ciba group of investigators in 

1955. Whereas the clinical role of aldosterone in disease processes continues to expand, the 

classification provided by Genest, Kuchel, and Nowacynski (1973) (Table 2) summarizes 

the involvement of this adrenal hormone in human hypertension 6.

Normal adrenal steroidogenesis leads to the production of glucocorticoids, 

mineralocorticoids, and sex hormones. While glucocorticoid secretion is regulated primarily 

by pituitary ACTH, Ang II acts as the primary stimulus for aldosterone secretion 7. The 

mechanisms by which aldosterone interplays with the regulation of blood pressure and the 

control of renal salt excretion (Figure 1) are mediated by the MR, a ligand-activated 

transcription factor that is a member of the nuclear receptor superfamily 8. The relatively 
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slow genomic aldosterone actions influence renal gene expression of proteins that regulate 

Na+/K+ ATPase activity and the renal epithelial sodium and outer medullary potassium 

channels 9. Of importance, aldosterone has a significant influence in the activation of genes 

participating in the genesis of adverse cardiac and vascular remodeling. Aldosterone can 

exert direct vasoconstrictor actions 10, 11 and in normal healthy volunteers the effects of 

aldosterone in forearm blood flow were dose-dependent 12. In vascular smooth muscle cells 

(VSMCs), aldosterone induces a proliferative response through increased expression of p53 

binding protein 13. Wehling and colleagues 14–16 and Rautureau et al. 8 provide a 

comprehensive discussion of aldosterone non-genomic effects, which are in the order of 

minutes rather than hours 17, 18. In addition, aldosterone can upregulate vascular angiotensin 

receptors 19, a finding that is critically important in understanding vasoconstrictor and 

inflammatory mechanisms of the interplay among Ang II, aldosterone, and salt intake. 

Collagen deposition in the vasculature leading to vascular stiffness was prevented in 

VSMCs from mice with conditional inactivation of the MR 20. The authors concluded that 

the MR influences vascular elasticity by modulation of cell-matrix attachment proteins 

independent of major vascular structural changes 20.

The interactions between MRs and angiotensin receptors appear to explain many of the 

effects found when blocking either of these receptors 21. These signaling pathways are 

important in explaining the mechanisms by which MRs induce cardiac and vascular collagen 

deposition, activation of pro-inflammatory cytokines, and increases in oxidative 

stress 8, 22–27. Recently, evidence has been produced of a role of placental growth factor in 

the mediation of aldosterone action 28. Furthermore, aldosterone proatherogenic effects may 

in part be mediated by stimulation of placental growth factor 29. The effects on 

atherosclerosis are mediated via MRs as demonstrated in mice with deletion of smooth 

muscle MRs 20 or administration of MR antagonists 30. Furthermore, the aldosterone 

contribution to atherosclerosis progression may include facilitation of aortic aneurysm 

formation 31.

Atherogenic effects of aldosterone may relate to its role in inflammation, stimulation of 

oxidative stress, endothelial dysfunction, and prothrombotic activity 26, 32, 33. Aldosterone, 

in association with inflammatory mediators such as interferon-γ (IFN-γ) and tumour 

necrosis factor α (TNF-α), stimulate growth and proliferation of VSMCs, leading to adverse 

vascular remodeling 34. Moreover, new fascinating data shows prevention of vascular and 

renal inflammatory responses following administration of T-regulatory lymphocytes both to 

Ang II-infused 35 and to aldosterone-infused mice 23, 34. The finding that Ang II functions as 

an obligatory mediator pathway for the formation of aortic fatty streaks in the presence of 

hypercholesterolemia and no changes in arterial pressure was first demonstrated in 

monkeys 36. These findings led to the hypothesis that the RAAS is a critical contributor to 

the pathogenesis of atherosclerosis through stimulation of oxidative stress, inflammatory 

cytokines, and recruitment of monocytes into the subendothelial vascular spaces 36–39. 

Proatherogenic aldosterone mechanism occurs via induction of oxidative stress, endothelial 

dysfunction, activation of adhesion molecules, and up-regulation of ACE and AT1 receptors 

(see 27 for review). Atherogenic actions of aldosterone can be prevented by eplerenone 

administration 40–42. In primary aldosteronism, plasma osteopontin (OPN) levels are higher 

than those in essential hypertensive subjects, and in OPN-knockout mice reduced renal 
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interstitial fibrosis is induced by aldosterone infusions 43, 44. An intriguing study showed 

that aldosterone can stimulate the release of Willebrand factor and IL-8 via exocytosis of 

Weibel–Palade bodies 45. This non-genomic effect is a potentially powerful mechanism for 

the activation of proinflammatory factors. Prothrombotic aldosterone actions include 

stimulation of plasminogen activator inhibitor-1 (PAI-1), a finding that may contribute to 

extracellular collagen deposition as PAI-1 inhibits the production of plasmin from 

plasminogen 46. The opportunity to advance the use of MR antagonists in prevention or 

management of coronary heart disease is a tantalizing proposition as mortality due to 

myocardial infarction worsens in the presence of hyperaldosteronism 47–50.

Adrenal glands contain the genes and proteins for local tissue production of bioactive 

angiotensins 51. Cells in the zona glomerulosa contain the highest levels of renin activity and 

Ang II. The independence of this tissue system from that of the circulation or the kidney is 

based on the demonstration that renin activity is not suppressed in anephric rats, while 

increases in adrenal renin and aldosterone are independent of plasma or kidney renin 

concentrations 52–54. The role of this adrenal RAAS remains to be elucidated. Nevertheless, 

the interdependent nature of the interplay between aldosterone and Ang II in the regulation 

of cardiovascular function entails both a stimulatory action of the peptide in the systemic 

release of aldosterone and the ability of aldosterone to increase the expression of angiotensin 

receptors in vascular smooth muscle cells 55. In VSMCs intracellular mobilization of 

calcium (Ca2+) by Ang II is augmented in the presence of aldosterone via increased 

expression of extracellular-signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase 

(JNK) pathways 15, 56. Moreover, eplerenone blocked mitogen-activated protein kinase 

(MAPK) activation, radical oxygen species (ROS) generation, and epidermal growth factor 

receptor (EGFR) transactivation 57. The aldosterone-induced activation of ERK1/2, JNK and 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has been reported to 

be dependent on the transactivation of AT1a but not AT1b receptors 8, 21. This interpretation 

agrees with two published studies showing that: a)- eplerenone inhibits aldosterone 

vasoconstrictor actions and non-genomic effects on the sodium-proton exchanger (NHE1) 

activity or intracellular Ca2+ responses of rat mesenteric vessels 58; and b)- aldosterone-

mediated mesenteric artery vasoconstriction are blunted in AT1a knockout mouse 8, 21, 59.

Mice in which a VSMC-specific deletion of MR (VSMC-MR) has been induced have lower 

blood pressure as they age 60. This occurs despite the absence of changes in sodium 

excretion, indicating that the kidney effects of aldosterone do not participate in these effects. 

There is also absence of vascular remodeling. Interestingly, the aged VSMC-MR mice 

exhibited a reduction in vascular myogenic tone and Ang II-dependent contraction, and this 

was associated with reduced expression and activity of L-type Ca2+ channels. Changes in 

myogenic tone appeared to be related to reduce density of the L-type Ca2+ channel Cav1.2. 

Thus, VSMC-MR seems to contribute to Ang II–induced vascular oxidative stress, 

contraction, and elevated blood pressure, and vascular MR-mediated vascular tone may 

participate in control of blood pressure as well as vascular aging 60.

Salt excess appears to be important for aldosterone to exert its hypertensive action in 

rodents, especially in rats 61, 62, whereas in mice even in the presence of salt, and despite 

powerful pro-inflammatory actions, aldosterone exerts little effect on blood pressure 23. The 
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reason for this difference is unclear. However, the effect of salt on aldosterone effects may 

explain that in essential hypertensive patients with stage 1 hypertension, blockade of MR 

has a mild antihypertensive action, whereas in uncontrolled or in resistant hypertension, 

often associated with excess consumption of salt, the effects of MR blockade are much more 

powerful. Salt consumption by hypertensive and HF patients probably is a confounder of the 

efficacy of MR blockade in clinical trials.

Translational Correlates

Dysregulation of MR participates in the pathogenesis of cardiovascular disease either via 

amplification of the proliferative, pro-inflammatory and prothrombotic effects of excess Ang 

II levels or excess secretion of aldosterone. Knowledge of the direct effects of 

hyperaldosteronism on cardiovascular function resulted from Conn’s report of the 

association of high blood pressure and hypokalemia in a woman with a diagnosis of primary 

aldosteronism 63, 64. However, as early as 1937, Steigler and Reichstein 65 had reported a 

syndrome of hypokalemia and hypertension associated with the administration of 

synthetized deoxycorticosterone. A syndrome resembling primary aldosteronism without 

elevated aldosterone levels is associated with inhibition of 11-β-hydroxysteroid 

dehydrogenase enzyme (11-β-OHSD) 66–68. This apparent mineralocorticoid excess process 

results from increased binding of cortisol to MR since the 11-β-OHSD accounts for the 

conversion of cortisol to cortisone. Nevertheless, the contribution of aldosterone to 

cardiovascular pathology remained elusive until the publication of a sensitive 

radioimmunoassay 69 and a more comprehensive understanding of its role in the control of 

electrolyte homeostasis 70. Availability of a measure of aldosterone activity provided a tool 

to seek the contribution of this hormone to the pathophysiology of essential hypertension, an 

effort that led to identification of subsets of hypertensive subjects where aldosterone was 

associated with sodium retention and hypertension. Williams and Hollenberg 71, 72 

characterized a subset of essential hypertensive patients that they have named as “non-

modulators”. These individuals are now recognized to associate hypertension with salt-

sensitivity, insulin resistance, and RAAS gene polymorphisms 73–75. A state of 

hyperaldosteronism is also found in diseases associated with important alterations in body 

fluid volumes, particularly HF, cirrhosis accompanied by ascites, and the nephrotic 

syndrome 51.

Although most studies in hypertensive subjects have not demonstrated elevations of plasma 

aldosterone except in few patients 76, quartiles of plasma levels of aldosterone in the 

Framingham study were directly associated with blood pressure levels 77. Moreover, 

treatment with MR blockers lowers blood pressure in patients with hypertension 78, and 

particularly in resistant hypertension 79. The MR blocker spironolactone prevented vascular 

fibrosis independently of blood pressure reduction in spontaneously hypertensive rats 80–82. 

The more selective but less potent MR blocker eplerenone also reduces small artery fibrosis 

and stiffness in stage 1 essential hypertension, possibly contributing to the antihypertensive 

actions of MR antagonism as well as improvement of tissue perfusion 78. Spironolactone has 

also been shown to block some of the effects of Ang II 82, indicating that aldosterone 

mediates some actions often attributed to direct effects of the peptide. The effects with MR 
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blockers are mimicked by aldosterone synthase inhibitors, indicating that spironolactone and 

eplerenone effects are probably mediated by blockade of aldosterone actions 83.

The important role of aldosterone in the regulation of sodium and potassium balance led to 

the exploration of the potential clinical benefits that could be derived from blocking the MR. 

The synthesis of the first MR antagonist (spironolactone) by the chemists at Searle 

laboratories lagged for almost 30 years behind the identification of aldosterone 84–87. As 

commented by Delyani, 88, 89 the drug was initially labelled as a potassium-sparing diuretic 

given that at that time the known aldosterone actions were limited to epithelial ion transport. 

Spironolactone (7-acetate of the γ-lactone of 17-hydroxy-7-mercapto-3-oxo-17-α-pregn-4-

ene-21-carboxylic acid) acts as a competitive antagonist of the MR (but also other steroid 

receptors such as the androgen receptor, leading to both its adverse side effects and also 

some additional therapeutic indications as a consequence of its antiandrogenic effects). The 

drug is rapidly cleared from the circulation (T1/2 10 minutes) to two principal metabolites 

(canrenoate and canrenone) 86, 87, 89.

The most compelling results for the participation of aldosterone in the pathogenesis of 

cardiovascular disease derived from the use of MR antagonists in HF. The rationale for the 

exploration of blocking MRs in HF was based on the observation that ACE inhibitors had 

only a transient Ang II suppression action and that the same could be demonstrated for 

plasma aldosterone 89. It was therefore reasoned that addition of spironolactone on top of 

background ACE therapy could have a greater impact on the progression of HF. The 

Randomized ALdactone Evaluation Study (RALES) trial established the benefits of 

aldosterone antagonists in the evolution of severe HF (NYHA class III/IV) 90. In this trial, 

1,663 subjects with a diagnosis of severe heart failure (ejection fraction < 35%) were 

randomized to conventional therapy (ACE inhibitor, loop diuretic and digoxin in most 

subjects) plus placebo or the combined use of conventional therapy plus spironolactone (25 

mg/day). The trial was interrupted after a mean follow-up period of 24 months because an 

interim analysis showed a significant 35% reduction in all causes of death in the 

spironolactone-treated group compared to the placebo medicated subjects 90. The beneficial 

effects of spironolactone were associated in this trial with significant reductions in the 

frequency of hospitalization for worsening HF and HF symptomatology. Since the greatest 

benefits were observed in subjects in whom spironolactone was administered on top of 

background ACE inhibitor therapy, it is clear that combined suppression of Ang II formation 

and aldosterone production was enhanced through blockade of the MR.

The pleotropic actions of aldosterone on the cardiovascular system, particularly the 

aldosterone-mediated collagen synthesis that contributes to adverse left ventricular 

remodeling, prompted an examination of the action of MR antagonists in subjects’ post-

myocardial infarction. The trial was in part based on finding that adrenalectomy or 

eplerenone attenuated the adverse cardiac remodeling in an Ang II model of experimental 

hypertension 62. The Eplerenone Post-myocardial infarction Heart failure Efficacy and 

Survival Study (EPHESUS) determined the effect of the MR antagonist eplerenone on 

morbidity and mortality among patients with acute myocardial infarction 91. Eplerenone 

(pregn-4-ene-7,21-dicarboxylic acid, 9,11-epoxy-17-hydroxy-3-oxo, γ-lactone, methyl ester) 

is a selective MR antagonist devoid of the progestational and anti-androgenic side effects of 
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spironolactone and shows minimal activity on P450 enzymes. During a mean 16-month 

follow-up, patients with acute myocardial infarction complicated by left ventricular 

dysfunction and HF assigned to eplerenone and associated optimal medical therapy 

demonstrated significantly reduced morbidity and mortality 91. The beneficial effect of 

aldosterone blockade in the evolution of HF can be shown even in those subjects with milder 

forms of the syndrome. This was found in another trial that recruited NYHA class II systolic 

HF subjects. Patients enrolled in the Eplerenone in Mild Patients Hospitalization and 

Survival Study in Heart Failure (EMPHASIS-HF) study showed a reduced rate of 

hospitalization and death when treated with eplerenone 92, 93.

The landmark studies using MR antagonists in HF have in part overshadowed the potential 

use of these agents in a broader patient population, such as individuals with cardiac 

arrhythmias, myocardial ischemia secondary to cardiac fibrosis, and diastolic dysfunction 94. 

Spironolactone can prevent cardiac collagen deposition in two experimental rat models of 

hypertension independent of the drug effect on blood pressure and cardiac 

hypertrophy 94, 95. Translational outcomes of these experimental studies are contained in a 

study where spironolactone improved echocardiographic measurements of myocardial 

relaxation in patients with exertional dyspnea and abnormal left ventricular filling 

patterns 96. These important findings need further confirmation as diastolic dysfunction 

associated with heart failure and preserved ejection fraction (HFpEF) has no known 

effective treatment 97, 98. The Trial of Aldosterone Antagonist Therapy in Adults with 

Preserved Ejection Fraction Congestive Heart (TOPCAT) has addressed the potential benefit 

of spironolactone on 3,445 patients with symptomatic heart failure and HFpEF 99, 100. 

However, results have been disappointing, since only hospitalization for heart failure was 

reduced by MR antagonism, whereas other endpoints such as the primary composite 

outcome of death from cardiovascular causes, aborted cardiac arrest, or hospitalization for 

the management of HF did not differ statistically with placebo 101.

Other areas where additional research is needed relate to the observation that spironolactone 

suppresses QT-dispersion 102 and sudden death in subjects that were enrolled in the RALES 

and EPHESUS trials. It is not known whether these antiarrhythmic actions of aldosterone 

antagonism are related to conservation of total body potassium and magnesium or reversal 

of cardiac fibrosis. An attractive alternative hypothesis for the antiarrhythmic effects of MR 

antagonists has been provided by studies using mice with conditional cardiac-specific 

overexpression of the human MR 103. In this experimental model, prolongation of 

ventricular repolarization and presence of severe ventricular arrhythmias due to 

overexpression of the human MR were prevented by spironolactone administration 103. 

Additionally, aldosterone arrhythmogenic actions may relate to myocyte gap junction 

remodeling through its dual effects on the expression of connexin 43 (Cx43) 42, 104. This is 

clearly an area of potential fruitful research.

Summary

Aldosterone’s main physiological function maintains sodium homeostasis through its direct 

action on controlling sodium excretion at the level of the distal tubules via activation of the 

apical epithelial sodium channel (ENaC) and the basolateral Na+/K+ ATPase pump 105. An 
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excess production/release of aldosterone in relation to the salt status induces a genomic and 

non-genomic effect that in experimental animals leads to vascular remodeling, endothelial 

dysfunction and cardio-renal adverse remodeling including the structural and functional 

consequences of increased collagen deposition. In humans, the non-genomic actions of 

aldosterone through MR are somewhat more varied as vasoconstriction, vasodilatation or no 

effects have been observed 106. Amphibaric actions of aldosterone in humans may be related 

to doses employed, the baseline plasma aldosterone levels 107, as well as salt status. The 

more chronic effects of aldosterone play a critical role in contributing to target organ 

damage associated with hypertension, HF, myocardial infarction and chronic renal 

failure 105. MR antagonists are powerful treatment agents having a marked beneficial effect 

in HF progression and resistant hypertension, and in experimental animals, in 

atherosclerosis. The pleotropic actions of this mineralocorticoid hormone in human primary 

essential hypertension and the cardiometabolic syndrome await further investigation as 

emerging evidence demonstrates that the use of MR antagonists may be associated with 

potentially impressive outcomes 22,25.
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Abbreviations

11-β-OHSD 11-β-hydroxysteroid dehydrogenase enzyme

ACE angiotensin converting enzyme

Ang II angiotensin II

ARBs angiotensin II receptor blockers

Ca2+ calcium ion

Cx43 connexin 43

DRI direct renin inhibitors

EGFR epidermal growth factor receptor

ENaC epithelial sodium channel

ERK extracellular signal-regulated kinase

FMD flow-mediated vasodilation

HF heart failure

HFpEF heart failure and preserved ejection fraction
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IFN-γ interferon γ

JNK c-Jun N-terminal kinase

MAPK mitogen-activated protein kinase

MR mineralocorticoid receptor

NHE-1 sodium/hydrogen exchanger 1

NT nitrotyrosine

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

Na+/K+ ATPase sodium-potassium adenosine triphosphatase pump

OPN osteopontin

RAAS renin angiotensin aldosterone system

TNF-α tumor necrosis factor α

VSMC vascular smooth muscle cell
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Figure 1. 
Pleotropic aldosterone actions contributing to the pathogenesis of cardiovascular disease.
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Table 1

Year Discovery or Major Basic Research Accomplishment

1563 Bartolomeo Eustacchio description of the adrenal gland (glandulae Renibus incumentes). 108

1855 Addison’s first identification of the lethal association of pathological changes in the suprarenal capsules (adrenal glands) with 
anemia. 109

1935 Development of biologically active extracts free of contaminating compounds from the adrenal medulla.

1939 Kuizinga and Cartland 110 show potent mineralocorticoid activity in the amorphus fraction of adrenocortical preparations.

1952–1955 Simpson and Tait 111–115 critical studies of adrenal mineralocorticoid activity culminate with the isolation of electrocortin, later 
rename as aldosterone. 116

1954 Aldosterone structure identified as 11_-21-dihydroxy-18-oxo-pregn-4-ene-3,20-dione 113, 116

1956 Luetscher et al. 5 obtain aldosterone crystals from human urine.

1955–1956 Aldosterone is synthetized by the Ciba group in Basel117, 118.

1956 Giroud et al. 119, 120 in Montreal, demonstrated that the zona glomerulosa of the rat exclusively produced aldosterone.

Clinical Translational Research

1955 First description of the primary aldosteronism syndrome 63.

1999 The Randomized ALdactone Evaluation Study (RALES) trial demonstrates the role for aldosterone antagonists in chronic severe 
(NYHA class III/IV) systolic HF 90.

2003 The Eplerenone Post-myocardial infarction Heart failure Efficacy and Survival Study (EPHESUS) documents the benefit of 
aldosterone receptor antagonists in patients with an EF <40% after MI 91.

2014 TOPCAT shows moderate effects of spironolactone in heart failure with preserved ejection fraction (HFpEF) since only 
hospitalization for heart failure benefited in this population from MR antagonism 101.
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Table 2

Adrenal Steroids in Hypertension

1. Hypertension caused by overproduction of mineralocorticoid hormones

 Primary Aldosteronism (Conn’s syndrome)

 17-alpha-hydroxylase deficiency (Biglieri’s syndrome)

 Virilizing adrenal hyperplasia due to 11-beta hydroxylase deficiency

 Cushing’s syndrome

 Non-endocrine ACTH producing tumors

 Adrenocortical carcinoma

 Iatrogenic (i.e., anovulatory pills, licorice, glucocorticoids, excess salt intake)

2. Hypertension associated with overproduction of mineralocorticoids

 Malignant hypertension

 Hypertension in terminal renal failure

 True renovascular hypertension

 Essential hypertension

 Liddle’s syndrome

3. Congenital enzymatic defects associated with hypertension

 17-alpha hydroxylase deficiency

 11-beta hydroxylase deficiency

Adapted from reference 6.
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