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Abstract: Unraveling the relationship between molecular signatures in the brain and their functional,
architectonic, and anatomic correlates is an important neuroscientific goal. It is still not well understood
whether the diversity demonstrated by histological studies in the human brain is reflected in the spatial
patterning of whole brain transcriptional profiles. Using genome-wide maps of transcriptional distribu-
tion of the human brain by the Allen Brain Institute, we test the hypothesis that gene expression profiles
are specific to anatomically described brain regions. In this work, we demonstrate that this is indeed the
case by showing that gene similarity clusters appear to respect conventional basal-cortical and caudal-
rostral gradients. To fully investigate the causes of this observed spatial clustering, we test a connection-
ist hypothesis that states that the spatial patterning of gene expression in the brain is simply reflective of
the fiber tract connectivity between brain regions. We find that although gene expression and structural
connectivity are not determined by each other, they do influence each other with a high statistical signifi-
cance. This implies that spatial diversity of gene expressions is a result of mainly location-specific fea-
tures but is influenced by neuronal connectivity, such that like cellular species preferentially connects
with like cells. Hum Brain Mapp 35:4204–4218, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

A major goal of neurological research is to understand
the nature and causes of molecular, functional [Johnson
et al., 2009] and architectonic [Swanson, 2000] diversity in
the brain. Gene expression profiling [Schena et al., 1995;
Shalon et al., 1996] is a powerful means to explore the
molecular-cellular basis of the spatial diversity of brain
cells [Lein et al., 2007] as their differential phenotypic
properties result from unique combinations of genotypes.
Mouse brain atlases of gene expression showing inter-
regional differences of structure and function point to their
molecular basis [Bohland et al., 2010; French and Pavlidis,
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2011; French et al., 2011; Grange and Mitra, n.d.; Sunkin
and Hohmann, 2007; Wolf et al., 2011; Zapala et al., 2005].
The spatial patterns of gene expression in mouse appear
to match anatomic organization but few studies have
explored these relationships in human data due to chal-
lenges in acquisition, limited number of samples and the
destructive nature of molecular assays [Hawrylycz et al.,
2012].

In this article, we interrogate the relationship between
spatial patterning of gene expression and anatomic/func-
tional boundaries in the human brain. We pose and rigor-
ously test two specific hypotheses. First, we ask whether
gene expression in the human brain is spatially clustered
in a manner reflective of brain anatomy. Our main contri-
bution is the application of a novel non-linear dimension-
ality reduction algorithm based on manifold learning to
discover spatial correlations in the genetic signature of dif-
ferent locations in the human brain, using the Allen
Human Brain Atlas (ABA) [Jones et al., 2009] produced by
the Allen Brain Institute (ABI), which provides microarray
expression profiles of almost every gene of the human
genome at hundreds of locations in the brain. We find
strong evidence for the hypothesis that gene expression
clusters are spatially segregated and reveal large-scale
organization of the human brain. Three distinct anatomic
regions cluster together, roughly conforming to cytoarchi-
tectonic groupings—a cerebellum/striatum/basal group, a
posterior/occipital/medial cortical group, and a frontal
cortical group. These findings are consistent with a recent
study by ABI [Hawrylycz et al., 2012], which shows how
transcriptional regulation varies enormously with ana-
tomic location. These results represent the human ana-
logue of caudal-rostral clustering along the neural tube
reported in animals [Bernard et al., 2012; Zapala et al.,
2005].

Next, we explore whether regions that are structurally
connected by white matter tracts have similar gene expres-
sion levels. Expression signature of C. elegans [Kaufman
et al., 2006] and mouse neurons [French and Pavlidis,
2011; French et al., 2011] appear to carry significant infor-
mation about its synaptic connectivity. Surprisingly, we
found no evidence that structural connectivity, determined
by MR diffusion tractography [Iturria-Medina et al., 2005],
determines gene similarity in the human brain. However,
this method of exploring the expression-connection ques-
tion inappropriately assumes independence among brain
regions. Instead, we set up a precise but more general
hypothesis test by considering the entire network rather
than individual connections independently. To our knowl-
edge, this formulation has not been reported before. We
find that although no inter-regional connection is deter-
mined solely by gene similarity between them, the overall
connectivity network conforms to inter-regional gene simi-
larity data in a way that cannot arise by chance. Thus,
gene expression influences rather than strictly determines
structural connectivity. Taken together, our results point to
a molecular ontology of the human brain.

MATERIALS AND METHODS

Allen Brain Atlas Data

Genome-wide ABA microarray expression data from
two postmortem brains (H0351.2001 and H0351.2002)
obtained at 946 and 896 distinct brain locations, respec-
tively, provided complete anatomic coverage of the brain.
The data was reformatted into two (brainregion 3 gene )
matrices of size 946358; 000 and 896358; 000. Gene expres-
sion profiles from all locations within each of 323 distinct
brain structures, identified using histopathological labels
provided by ABI were averaged prior to performing spa-
tial clustering.

Dimensionality Reduction

Given the extremely large number of genes involved, we
implemented two dimensionality reduction schemes: con-
ventional Singular Value Decomposition (SVD) and non-lin-
ear Generalized Discriminant Analysis (GDA) [Singh and
Silakari, 2009; Ye, 2005]. GDA is the reformulation of Linear
Discriminant Analysis (LDA) [Fisher, 1936] in high-
dimensional space, constructed using a kernel function
[Schaeffer, 2007]. Both methods transform high-dimensional
data into a meaningful representation of reduced dimen-
sionality, a common procedure in gene expression data
analysis to mitigate the curse of dimensionality and facili-
tate classification, visualization, and compression of under-
sampled but high-dimensional microarray data. Nonlinear
mappings like GDA are particularly useful when linear
mappings are unable to reveal separability in data [Krza-
nowskit, 1995]. The first five dominant singular components
were retained in the SVD analysis [Alter et al., 2000] of the
brainregion 3 gene matrix (after removing the first compo-
nent which simply captures mean expression). These five
components, representing 98% of the variance, were used
to reconstruct “reduced” matrices of size 94635 and 89635,
respectively. Five components were chosen as this was the
smallest number at which stable clusters were formed (see
below for definition of stable), after testing 2–20 compo-
nents. A similar procedure was applied using GDA [Singh
and Silakari, 2009; Ye, 2005]; a Gaussian kernel was selected
for subsequent analysis after experimentation with different
kernels (linear, polynomial, and Gaussian).

All computations and visualizations were performed
using Matlab (MATLAB 2011a). The above processes are
common to both hypotheses 1 and 2, but the subsequent
steps that vary are described below.

Specific Methods for Hypothesis 1

Obtaining gene similarity matrix

The next step was to convert the reduced brainregion 3

gene data into a brainregion 3 gene similarity matrix
(or graph), whose ði; jÞth element is given by the similarity

r Spatial Clustering of Human Brain Genes r

r 4205 r



in gene expression between regions i and j. We did this so
that we can apply graph clustering algorithms to the
resulting similarity graph and obtain clusters of regions
with similar gene expression. For this purpose, we chose
the most commonly used similarity metric—Pearson’s cor-
relation coefficient.

Graph or spectral clustering

Spectral clustering uses information obtained from the
eigenvalues and eigenvectors of adjacency matrices for
graph partitioning [Schaeffer, 2007]. It approximates the
sparsest cut of a graph through the second eigenvalue of
its Laplacian [Smola and Kondor, 2003]. Spectral clustering
methods find a cut through a connected graph such that
the nodes within each cluster are tightly connected to each
other and loosely connected to nodes in other clusters.
They are especially powerful for high-dimensional data,
which may be clustered on a nonlinear manifold (as com-
pared to a linear subspace in feature space, which would
be easy to separate by linear techniques). It has been
found that for gene expression data, multiway spectral
clustering algorithms are the most stable of all clustering
algorithms [Auffarth, 2007]. We used the algorithm by Jor-
dan and Weiss [Ng and Jordan, 2002], which relies on the
eigen-decomposition of the Laplacian of the graph
(defined as the difference of the degree matrix and the
adjacency matrix), followed by a conventional k-means
clustering algorithm [Ng and Jordan, 2002].

Repeated seeding and majority vote

k-means clustering requires an initial cluster assignment.
Because the final clusters depend on the initial guess, a
large number of trials with randomized initial guesses
(called seeding) were typically performed. Unfortunately,
randomized seeding of the k-means spectral clustering
algorithm ([Ng and Jordan, 2002] does not in general guar-
antee a unique clustering in repeated trials. If an outlier
was chosen as an initial seed, then no other vector was
assigned to it during subsequent iterations, giving a sin-
gleton cluster (a cluster with only one point). Poor initial
seeding could also result in empty clusters. To overcome
this problem, clustering was repeated 100 times and a
majority vote was taken. This majority vote generally gave
the most likely and stable clustering, i.e., the one that is
repeatedly generated in most trials).

Finding exemplar genes

After spectral clustering and choosing the best results
with three clusters, backtracking was performed to iden-
tify genes that might be responsible for spatial clustering.
The 58; 00031 gene vectors for each cluster were found
and then ranked according to ascending P values after
three paired t tests between the clusters. The top 10 genes

from each paired test were then identified as genes that
might be driving the spatial clustering.

Specific Methods for Hypothesis 2

The hypothesis testing the connection between gene
expression and connectivity required whole brain struc-
tural connectivity data. We denote the extent of white mat-
ter fiber connectivity between two regions i and j by ci;j,
and let the matrix C5fci;jji; j 2 ½1;N�g represent the whole
brain connectivity matrix. This information was obtained
from diffusion MRI scans of the brain, followed by tractog-
raphy and network extraction imposed upon a parcellated
brain atlas using previously published methods [Ivković
et al., 2012; Kuceyeski et al., 2011].

Formation of a new 219-region brain atlas

To construct a parcellated atlas faithful both to the ABI’s
gene sample locations as well as to prior tractography-
based analyses, we constructed a new atlas as follows. We
began with the 116-region Automatic Anatomic Labeling
(AAL) [Tzourio-Mazoyer et al., 2002] brain atlas, available
in standardized Montreal Neurological Institute (MNI)
space, upon which we imposed further substructure par-
cellations to obtain a new atlas whose region sizes are
roughly equal. To do this, we sliced each of the cortical
regions in the original AAL atlas along the principal axis,
taking care to not create a region that was smaller than a
certain threshold, leaving subcortical regions untouched.
This resulted in a 219-region atlas; the genetic expression
of points within the same region was averaged.

Diffusion tensor imaging, tractography, and brain

network extraction

T1-weighted structural MR and high angular resolution
diffusion imaging (HARDI) data were collected on 14
healthy adults on a 3 Tesla GE Signa EXCITE scanner (GE
Healthcare, Waukesha, WI). HARDI data were acquired
from 55 isotropically distributed diffusion-encoding direc-
tions at b 5 1,000 s mm22 and one at b 5 0 s mm22, with
72 1.8-mm-thick slices and 0:930:9 mm2 in-plane resolu-
tion. The structural scan was an axial 3D inversion recov-
ery fast spoiled gradient recalled echo (FSPGR) T1
weighted images (TE 5 1.5 ms, TR 5 6.3 ms, TI 5 400 ms,
flip angle of 15�) with 0:930:931 mm3 resolution. The
above 219-region atlas was co-registered onto each subject’s
structural MR volume using the individual brain atlases
using statistical parametric mapping (IBASPM) [Aleman-
Gomez et al., 2006] and statistical parametric mapping
(SPM5) [Friston et al., 2006] software packages in MATLAB.
The resulting image was then co-registered to the subject’s
diffusion space and the voxels at the gray/white interface
were seeded for MR diffusion probabilistic tractography by
drawing 50 seeds in each interface voxel [Iturria-Medina
et al., 2005]. Structural connectivity between any two gray
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matter structures in the 219-region atlas was taken to be its
Anatomical Connection Strength (ACS), which is a sum of
tractography-derived streamlines connecting two regions,
weighted by each streamline’s probability. The ACS is a
proxy for the cross-sectional area of connecting nerve fibers
and was claimed to represent potential information flow
between regions [Iturria-Medina et al., 2008]. The mean
ACS value over all 14 subjects was used to populate the
connectivity matrix C, after removing possibly spurious
connections identified by a conventional hypothesis test
applied separately to each connection. Entries for which the
z-scores were below the (P< 0.001) threshold across the
healthy normal ACS connectivity values were removed.
This method of removing spurious connections was intro-
duced in [Ivković et al., 2012], who also applied a statistical
threshold of P 5 0.001.

Formulating a testable brain connectivity—Gene
expression hypothesis

This hypothesis was formulated as a precise mathemati-
cal problem in the following way. First, we let gi represent
a vector containing the gene expression values for region i.
Gene filtering was used to obtain a reduced “spatial-
eigengene” vector xi. We denoted the collection of eigen-
genes from all brain regions by x5fxiji 2 ½1;N�g. We
hypothesized that the gene expression in region i was
given simply by a linear combination of gene expressions
in all regions structurally connected to it, and the influence
of regionj to region i’s expression was proportional to the
connectivity (ACS) between them, i.e. ci; j. Thus

xi5
X

j jði;jÞ2A

ci; ixj1fi;

where the random signal fi allowed each region to have a
unique gene signature not shared by any other region. For
the gene-connectivity relation to hold, this unique signal
must be independent and identically distributed (i.i.d.),
i.e., an “innovation” signal. In addition, it should have a
small norm compared to the overall gene expression data
so that majority of the expression signal is accounted for
by connectivity relationships. Expanding the above equa-
tion to all brain regions, we got

x5Cx1f

where we collected all region-wise innovation signals into
f. This gave

f5ðI2CÞx5Lx

where L5I2C is the normalized Laplacian of the connec-
tivity matrix C.

This gene-connectivity model implies that, given the
connectivity matrix and the gene expression data, the
matrix-vector product Lx must be i.i.d. with its covariance
matrix given by the identity matrix.

Statistical Test to Determine Validity of the

Hypothesis

We wish to test the condition that EðffTÞ5r2I. Let S5

EðxxTÞ represent the gene similarity matrix between each
pair of gray matter regions in the brain. We previously
defined a similarity metric in terms of the Pearson correla-
tion between gene expressions, but here we used the cosine
metric (or dot product), as it was a better fit for the defini-
tion of S above. Now EðffTÞ5LEðxxTÞLT5LSLT5r2I, and
LTL5 1

r2 S21. Because L by definition has unit 2-norm [Smola
and Kondor, 2003], we estimated r̂25jjS21jj2.

The objective was to prove that the error function
dðL; SÞ5jjr̂2LTL2S21jjF was significantly smaller for the
Laplacian of the actual connectivity matrix L0, than for
10,000 other random matrices L. We generated these matri-
ces by randomly permuting the elements of C and calcu-
lating Lk5I2permðCÞ. The elements of the null matrices Lk

were drawn exactly from the set of structural connectivity
strengths (ACS) ci; j. Each time the random matrix was nor-
malized to have unit 2-norm (i.e. largest eigenvalue 5 1).
This method of generating connectivity matrices was not
fully random, but was perhaps more relevant. Any struc-
ture present in the inter-region correlations in gene expres-
sion in the brain was unlikely to be recovered by a fully
random matrix even after a very large number of trials.

RESULTS

First Hypothesis: Gene Expression is

Anatomically Specific

A plot of the singular values from the conventional SVD
method is shown in Figure 1. Although there is no clear
and abrupt drop-off, the signal plateaus after the first 20
entries. Pearson’s correlation between the reduced gene
expression matrix was calculated, resulting in a 323 3 323
matrix on which we performed spectral clustering. It can
be seen from the results in Figure 2 that reducing the data-
set in this way gave no evidence of spatial clustering of
gene expression. This may be due to noise in the dataset
and/or other systematic errors [Brody et al., 2002; Brown
et al., 2001; Russo et al., 2003]. However, a more likely
explanation is the inherently complex manifold on which
potential clusters live that precludes a purely linear
separability.

Because linear dimensionality reduction exhibited no dis-
cernible clustering tendency, nonlinear reduction was
explored. After experimenting with various kernels, the
Gaussian kernel of width r 5 1 was found to give the most
stable clusters over repeated trials. Lower values of r made
the kernel too restricted in a higher dimensional space and
higher values smoothed the data and curbed the method’s
ability to find nontrivial patterns. The clustering results of
non-linear dimensionality reduction via GDA with a Gaus-
sian kernel of r 5 1, shown in Figure 3, demonstrate a clear
spatial segregation. Typical of clustering techniques, our
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Figure 1.

Singular Values after applying SVD on the braingene 3 gene matrix. It is observed that the singu-

lar values level off at around the 20th value. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 2.

Effect of using SVD for dimensionality reduction on spectral clus-

tering results. Clustering is done on the reduced correlation

matrix constructed after applying SVD dimensionality reduction. It

is observed that SVD fails to find distinct patterns in data, while

using GDA for dimensionality reduction results in more distinct

clusters (Figs. 3 and 4). The axial, coronal and sagittal views for

two and three clusters are shown. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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clustering results are consistent only about 80% of the time
in repeated trials. To overcome the effect of initial seeding
on the k-means clustering algorithm, we implemented the
majority vote rule. Cluster 1 (blue) represents the posterior/
occipital/medial cortical group; cluster 2 (purple) represents
the cerebellum/striatum/basal group; and cluster 3 (green)
represents a frontal cortical group. The results for the other
Microarray dataset are reproduced in Figure 4. Exploratory
analysis was performed to test the influence of the kernel
type and shape, as well as the selection of gene similarity
measure; the results were similar to those shown here.

Figure 5A shows the gene correlation matrices after
using GDA (left) and SVD (right) for dimensionality
reduction. There were obvious clusters present in the
GDA matrix that are not as apparent in the SVD matrix,
which was reflected in the clustering results in the previ-
ous section. In the GDA matrix, Cluster 1 (C1) represents
the posterior/occipital/medial cortical group, cluster 2
(C2) represents the cerebellum/striatum/basal group and
cluster 3 (C3) represents a frontal cortical group. Further
clustering within the posterior/occipital/medial cortical
group C1 shows 3 sub-clusters CC1, CC2, and CC3 as dis-
played in Figure 5B. It is interesting to note that CC2, con-

taining points in the cerebellum and the thalamus and
displayed as red points in the C1 subcluster illustration, is
also prominent in the SVD reduced correlation matrix. No
discernible sub-clusters were found for clusters 2 and 3.

To determine the genes that may be responsible for spa-
tial clustering, we took those with the most significant
gene expression level differences between pairs of groups
as measured by t tests between the three groups. Several
genes which have functions like cell differentiation and
morphogenesis appeared in the top 24 list. The gene list is
shown in Table I with a clear designation of which pair of
clusters the genes came from.

Second Hypothesis: Anatomic Connectivity is

Related to Gene Expression Similarity

First, we investigated correlations between pair-wise
structural connectivity (ACS) and similarity of gene
expression profiles. The results, shown in (Fig. 6A) pro-
vided no evidence for significance at the level of pairwise
connectivity. Next we tested whether the similarity of
gene expression was significantly (negatively) correlated

Figure 3.

Spectral clustering of the gene correlation matrix for the first

microarray expression dataset. GDA is applied to reduce the

gene expression matrix and then Pearson’s correlation is

employed as a similarity measure. The axial, coronal and sagittal

views are shown for 2 (top row) and 3 (bottom row) clusters.

Brain regions that have a higher gene similarity are clustered

together. The cluster shown in blue is consistent between

groupings of two and three. Points belonging to the purple clus-

ter in the top row split into two groups, represented by green

and purple in the bottom row.
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with the fiber distance between two regions. Fiber distance
is defined here as the average length (in mm) of all fiber
tracts going between the two regions as measured by
whole brain tractography. Figure 6B illustrates a highly
significant p-value but a relatively weak R2 likely due to
the extremely large number of connections tested. There-
fore, we concluded that again there is no evidence for this
relationship. Finally, we tested whether gene similarity
varies inversely with the geometric distance between gene
sample points—here we directly used all 946 points and
computed the distance (in mm) between them. The results,
given in Figure 6C, again demonstrated weak evidence for
this relationship.

The objective of the statistical test as described in the
Methods section was to prove that the error function
dðL; SÞ5jjr̂2LTL2S21jjF was significantly smaller for the
Laplacian of the actual connectivity matrix L0, than for
10,000 other random matrices L. From Figure 7, it is clear
that the value of the true discrepancy dðL0;SÞ is much
lower than that of a large majority of equivalent models
involving random matrices Lk. Figure 7A is the case when
no filter is applied on the set of genes and cosine similar-
ity of the gene points is used. Figure 7B,C show the histo-

gram when the gene variance and the gene low-value
filters were used, retaining the top 10 percentile (left) and
top 1-percentile (right) genes, respectively. P values, repre-
senting the probability of type I error, obtained from each
histogram are found to be significantly <0.05. Three of the
five p-values obtained from each histogram are <0.05 even
after adjusting for multiple comparisons, thereby provid-
ing strong evidence for the gene-connectivity hypothesis.

DISCUSSION

Comparison with Published Animal Data

Previously, many studies have compared gene expres-
sion atlases in the mouse brain and deduced inter-regional
differences in molecular signatures reflected by gene
expression [Bohland et al., 2010; Chen et al., 2011; French
and Pavlidis, 2011; French et al., 2011; Grange and Mitra,
2011; Lein et al., 2007; Sunkin and Hohmann, 2007; Wolf
et al., 2011; Zapala et al., 2005], the earliest being on a
nematode C. elegans [Kaufman et al., 2006]. The work in
this nematode proved that the expression signature of a
neuron carries significant information about its synaptic

Figure 4.

Spectral clustering of the gene correlation matrix for the second microarray expression dataset.

GDA is applied to reduce the gene expression matrix and then Pearson’s correlation is employed

as a similarity measure. The axial, coronal and sagittal views are shown for 2 (top row) and 3 (bot-

tom row) clusters. The high degree of similarity with the first data set (Fig. 3) is apparent. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.

Gene correlation matrices after dimensionality reduction using

GDA and SVD. (A) It can be inferred by looking at the correla-

tion matrix after GDA (left) that a spectral clustering algorithm

would give segregated clusters designated by C1, C2, and C3.

However, the correlation matrix obtained after SVD (right) has

no particular pattern except a red block in the center indicating

a very high correlation between certain points, which is also

observed in the GDA reduced correlation matrix. These gene

points were found to belong to the cerebellum and the thalamus

(B) Clustering was done considering C1, C2, and C3 individually

to find sub-clusters in the GDA reduced matrix. For C1, 3 sub-

clusters were visible designated by CC1, CC2, and CC3. The

corresponding gene points in the brain are shown on the left.

Points shown in red (CC2) belong to the cerebellum and thala-

mus which according to this clustering result, share more gene

expression compared to other gene points in the posterior/occi-

pital/medial cortical cluster C1. However, clustering failed to

segregate points within the cerebellum/striatum/basal group (C2)

and the frontal cortical group (C3). [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

wileyonlinelibrary.com


TABLE I. Gene list responsible for spatial clustering

S no.
Gene

symbol Description Function
From paired t test
between clusters

1. CBLN2 Cerebellin 2 precursor CBLN2 specific polypeptides serve as modula-
tors of the endocrine system

1 and 2, 1 and 3

2. TPPP3 Tubulin polymerization-
promoting protein family
member 3

May play a role in cell proliferation and mitosis 1 and 2

3. HGF Hepatic Growth Factor Acts as a growth factor for a broad spectrum of
cell types

1 and 2

4. BAIAP2L2 BAI1-associated protein Induces the formation of planar or gently
curved membrane structures

1 and 2

5. ADH7 Alcohol dehydrogenase 7 Could function in retinol oxidation for the syn-
thesis of retinoic acid, a hormone important
for cellular differentiation

1 and 2

6. FAM110C Family with sequence similar-
ity 110, member C

May play a role in microtubule organization 1 and 2

7. CDH12 Cadherin 12 Acts as a negative regulator of neural cell
growth

1 and 3

8. CDH13 Cadherin 13 Acts as a negative regulator of neural cell
growth

1 and 3

9. LGALS2 Lectin, galactoside-
binding,soluble 2

Binds beta-galactoside. Its physiological function
is not yet known

1 and 3

10. GPR26 G protein-coupled receptor 26 Orphan receptor. Displays a significant level of
constitutive activity

1 and 3

11. PFDN2 Prefoldin subunit 2 Binds to nascent polypepride chain and pro-
motes folding in an environment

2 and 3

12. CD63 CD63 molecule The proteins mediate signal transduction events
that play a role in the regulation of cell devel-
opment, activation, growth and motility.

1 and 2

13. PHIP Pleckstrin Homology domain
Interacting Protein

Probable regulator of the insulin and insulin-
like growth factor signaling pathways. Plays a
role in the regulation of cell morphology and
cytoskeletal organization

2 and 3

14. H1FX H1 histone family, member X Histones H1 are necessary for the condensation
of nucleosome chains into higher order
structures

2 and 3

15. SEMA4C Required for normal brain development, axon
guidance and cell migration (By similarity).
Probable signaling receptor which may play a
role in myogenic differentiation

2 and 3

16. MY018A Myosin XVIIIA May be involved in the maintenance of the stro-
mal cell architectures required for cell to cell
contact

2 and 3

17. NTS Neurotensin 1 and 2
18. ENC1 Ectodermal-Neural Cortex 1 Actin-binding protein involved in the regulation

of neuronal process formation and in differ-
entiation of neural crest cells. May be down-
regulated in neuroblastoma tumors

19. SRGAP1 SLIT-ROBO Rho GTPase acti-
vating protein 1

Together with CDC42 seems to be involved in
the pathway mediating the repulsive signal-
ing of Robo and Slit proteins in neuronal
migration

1 and 2

20. CAMK4 Calcium/Calmodulin-depend-
ent Protein Kinase IV

Phosphrylates the transcription activator CREB1
on ’Ser-133’ in hippocampal neuron nuclei
and contribute to memory consolidation and
Long Term Potentiation (LTP) in the
hippocampus.

1 and 3

21. TF Transferrin May have a role in stimulating cell proliferation 1 and 3
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connectivity. There is evidence for both conserved genetic
patterning mechanisms between rodents and humans as
well as species-specific differences [Chen et al., 2011]. In
Bohland et al. [2010], clustering of voxels according to sim-
ilarity of expression across a 3041 gene set was done to
explore the spatial structure of gene expression patterns.
In Hawrylycz et al. [2012], expression pattern clustering of
5000 prefiltered genes revealed similarity in regions like
the striatum, cortex, hippocampus and smaller nuclei like
the globus pallidus. In each of these studies, spatial loca-
tion of gene expression appears to reflect anatomy, thus
connecting knowledge at molecular level with higher-level
information about brain organization. Interestingly, similar
clustering results were found when we used the similarity
matrix based on only the human homologues of the 2000
mouse genes identified by ABI to be responsible for spatial
organization in the mouse brain.

However, it is important to note that further subdivision of
the cerebral cortex is not evident in any of these studies. Most
authors have noted that neocortical gene expression patterns
are relatively uniform across all cortical areas, although they
vary considerably between laminae, suggesting that the
canonical microcircuit is conserved across the cortex [Hawry-
lycz et al., 2012]. However, there is inconsistent evidence that
functionally specific cortical regions, e.g. the somatosensory
cortex, show enriched expression of specific genes.

Comparison with Published Human Data

Our results are consistent with a recent study by ABI
[Hawrylycz et al., 2012], which correlated functional and
genetic brain architecture, in several ways. No hemispheric
differences are found in gene expression profiles in either
study, with the neocortex displaying a relatively homoge-
nous transcriptional pattern. Another approach to explore
the spatial patterning of genetic information in the human

brain was suggested on twin studies [Chen et al., 2011,
2012], where genetic patterning of cortical surface area
revealed a bilaterally symmetric pattern of regionalization
and an anterior–posterior division. Interestingly, their
results mirror ours in the following ways: (1) the patterns
identified in the left and right hemispheres were almost
mirror images of one another, (2) they showed mixed
effects of long-distance anatomic connectivity on correla-
tion patterns, and (3) they showed evidence for a hierarch-
ical structure of genetic patterning [Chen et al., 2012]. It
must be noted however, that these previous reports did
not directly measure the spatial patterning of gene expres-
sion, what they investigated was the relationship of spa-
tially distributed phenotypes on imaging metrics like
cortical thickness and area. The observation that our
results are broadly in agreement with those obtained from
a very differently designed study provides a level of confi-
dence in our results.

Hawrylycz et al. [2012] ask the question of how tran-
scription varies across the neocortex and analyze genes
underlying the function of specific brain regions. An
online tool (WGCNA) is used to group genes with covary-
ing expression patterns into modules and imputing eigen-
genes for each module. Our approach differs in that we do
not preselect genes and we use a non-linear dimensional-
ity reduction method which, in conjunction with graph
clustering, reveals three basic clusters in the neocortex. We
also investigate genes which may be driving this cluster-
ing. Many of these genes are specifically geared for neuro-
nal growth, differentiation and axonal guidance. The
Cadherins (CDH12 and CDH13) are negative regulators of
neural cell growth, PLP1 and MBP (Myelin Basic Protein)
are specifically found in the CNS and play a role in forma-
tion and maintenance of myelin. SEMA4C is also known
to play a role in normal brain development (www.gene-
cards.org). HGF (hepatic growth factor) is responsible for

TABLE I. (continued).

S no.
Gene

symbol Description Function
From paired t test
between clusters

22. PLP1 Proteolipid Protein 1 This is the major myelin protein from the Cen-
tral Nervous System. It plays an important
role in the formation and maintenance of the
multilamellar structure of myelin

1 and 3

23. MBP Myelin Basic Protein They are the most abundant protein compo-
nents of the myelin membrane in the CNS.
They have a role in both its formation and
stabilization. The smaller isoforms might have
an important role in remyelination of
denuded axons in multiple sclerosis

1 and 3

24. FTH1 Ferritin, heavy polypeptide 1 Defects in ferritin proteins are associated with
several neurodegenerative diseases

1 and 3

A list of genes which might be responsible for spatial clustering indicating the clusters the genes came from. Cluster 1 represents the
posterior/occipital/medial cortical group; cluster 2 represents the cerebellum/striatum/basal group; and cluster 3 represents a frontal
cortical group.
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growth of various cell types and of neurons, and TPPP3
for cell proliferation and mitosis. CBLN2, GPR26, and
CAMK4 are found to be responsible for spatial clustering
in the mouse brain [Kasukawa et al., 2011].

Except for the recent findings in [Hawrylycz et al., 2012],
there is no comparable literature on gene clustering in the
human brain. Human studies are hindered by challenging
acquisition, limited tissue samples and, more importantly,
because the architectonic, structural and molecular differences
in the adult human neocortex are much more subtle than in
animals [Hawrylycz et al., 2012; Lein et al., 2007]. This relative
uniformity of expression within the neocortex has made it
very difficult to obtain spatial clustering in humans.

Our clustering results indicate three regional groupings,
largely conforming to known anatomic and functional
boundaries. Evidence for further clustering is not present
in our analysis. These results finally complete the circle
from nematode to mouse to human, providing the same
conclusion for each species. Although expression diversity
conforms to architectonic and evolutionary differences
between neocortex and older brain structures, there is now
evidence that the neocortex is itself divided into primarily
posterior/medial versus frontal structures.

Linear Versus Non-linear Dimensionality

Reduction

The linear approach (SVD) we used was successful in
some prior studies on human genome microarray data,
but only after manually selecting a very small subset of
genes with known neurological relevance imputed from
mouse data [Hawrylycz et al., 2012]. Given the differences
between animal and human genomes and the possibility
of biasing the analysis, we chose not to adopt this linear
method; instead relying on our non-linear dimensionality
reduction method to uncover patterns buried in the entire
genome. There is substantial evidence from machine learn-
ing literature [Fodor, 2002] that linear reduction is inad-
equate for large dimensions and complex interactions,
where clusters may not be linearly separable. Usually these
clusters lie on a manifold in feature space, and their sepa-
ration becomes obvious only after “unrolling” the mani-
fold. This is exactly what the presented non-linear GDA
method does. Besides avoiding manual intervention and
providing a novel approach, using the non-linear GDA
method has the additional advantage of finding hitherto
unknown genes that might be responsible for driving

Figure 6.

Scatter plots showing correlation coefficient and p-values between

gene similarity matrix and structural connectivity, fiber distance and

Euclidean distance between gene points. (A) No correlation is found

between the structural connectivity matrix obtained from tractogra-

phy and the gene correlation matrix. (B) A negative correlation

coefficient of 0.0722 with a significant p-values 5 0.001 <0.05 is

found between the square matrix of fiber distances and the gene

correlation matrix. (C) When the actual Euclidean distance between

the gene points in 3D space is taken, a negative correlation of

0.0987 is found with the gene similarity matrix. However, small p-val-

ues are probably occurring because of the large number of points in

the comparison and hence these results may not indicate a true

underlying relationship. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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clustering. Our GDA results could propel new investiga-
tions of genomic data using this approach.

Comparison with Evolutionary/Embryological

Evidence

The clustering groups that we found conform to previ-
ous animal studies, making our results the human ana-
logue of reported caudal-rostral clustering along the

neural tube in animals. A recent study [Zapala et al., 2005]
suggests that the adult mouse brain bears a transcriptional
“imprint” reflecting embryological and evolutionary rela-
tionships between brain regions. Embryonic cellular posi-
tion along the anterior–posterior axis of the neural tube
was shown to be closely associated with gene expression
patterns of adult brain structures. Gene expression cluster-
ing analysis revealed a hierarchical organization whereby
the telencephalon, the diencephalon and the mesencepha-
lon form gene-expression based clusters. Furthermore,

Figure 7.

True matrix discrepancy d(L0, S) denoted with an arrow along with a histogram of the randomly

generated matrix discrepancy d(L, S). (A) No gene filtering. (B) Only the top 10 percentile and

top 1 percentile genes with the highest variance are retained. (C) The top 10 percent and 1 per-

cent genes with the highest absolute expression values are retained. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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weak clustering of telencephalon into evolutionarily pro-
gressive regions (archicortex, paleocortex, and neocortex)
was also found. Interestingly, the result shown here in
human brains is similar to this observation on mouse
brains. The three main spatial clusters we found are also
organized along the caudal-rostral neural axis, and repre-
sent the classic hindbrain-midbrain-forebrain evolutionary
paradigm. We found some structures cluster more with
their embryological/evolutionary groupings rather than by
proximity or function. For instance, the Globus Pallidus
and Substantia Nigra are grouped into different clusters,
in keeping with their evolutionary origins—telencephalon
versus mesencephelon, respectively—even though they are
close both anatomically and functionally [Kasukawa et al.,
2011]. This concordance with animal studies represents the
most likely source of molecular diversity seen in the brain
of any mammalian species: architectonic diversity arising
from embryogenic and evolutionarily-guided cell differen-
tiation and specialization.

The Gene–Connectivity Relationship

The analysis presented in Figures 5 and 6 addresses a
connectionist hypothesis, which posits that observed diver-
sity of genetic expression in the brain might simply be a
result or cause of structural connectivity between like spe-
cies [Brodmann, 1909]. How can such connectivity come
about? There exists a direct and well-known correspon-
dence between cytoarchitecturally defined brain regions
and the inherent connectivity within them [Zilles and
Amunts, 2010]. The visual, sensorimotor and limbic sys-
tems, for example, display expression heterogeneity from
other regions in that they are connected in a manner differ-
ent from the rest of the cortex. The so-called default mode
network possessed different cytoarchitectural attributes
from other cortices [Greicius et al., 2003; Harrison et al.,
2008]. The action of neurotransmitters is regionally depend-
ent [Johnson et al., 2009] and the effect of neurotrophic fac-
tors ensures that connections between certain matched
neurotrophin/receptor pairs survive in preference to non-
matched pairs [Ebendal, 1992; Heerssen and Segal, 2002;
Skaper, 2012; Wetmore and Olson, 1995]. BDNF pairs specif-
ically with trkB, and NGF with trkA [Skaper, 2012]. The
totality of these observations suggests that there should be
some molecular-cellular correlate of structural connectivity,
that is, connectivity between “like” or matched regions with
similar population of cell types should enervate each other
more often than non-matched or unlike regions.

A small number of animal studies have considered this
problem. In [French et al., 2011], the authors identify spa-
tial correlations between gene expression and connectivity
using the expression energy to rank genes according to
Spearman correlation coefficient using only pairs with the
strongest correlation for further analysis. Two new pat-
terns of mouse brain gene expression were identified
which reflect regional differences in cellular populations.
In [French and Pavlidis, 2011], 17,530 genes in a 142 ana-

tomical region atlas were used to show that gene expres-
sion signatures have a statistically significant relationship
with connectivity between neurons. A similar analysis on
selected neurotrophins and their receptors in [Lohof et al.,
1993; Scott and Luo, 2001] suggests a correlation between
connectivity and molecular similarity.

Although these studies have satisfactorily shown correla-
tion, they are unable to determine whether observed
molecular signatures are purely, mainly or partially a
determinant of connectivity. This presents an important
but overlooked issue: does the observed gene expression
diversity arise from regional predilections resulting from
embryogenic or evolutionary progression, or is it a simple
consequence of the brain’s “connectomics”? If both effects
are present, which one dominates? Can the spatially dis-
tinct clustering of gene expression data we found be
explained solely as an effect of networking between like-
species neurons? Human twin studies [Rimol et al., 2010]
found high genetic correlations between homologous areas
in opposite hemispheres, which cannot generally be
explained by direct connections. Yet another twin study
found evidence of long-range genetic correlations mediated
by anatomic connectivity [Chen et al., 2011]; for instance
fronto-temporal correlations were thought to be mediated
by the Uncinate Fasciculus.

Likewise, the evidence from our results (Figs. 5 and 6) is
mixed. Taken together, our results indicate that neither con-
nectivity nor geometric distance determines gene diversity,
and vice versa. We found no evidence that structural con-
nectivity determines gene similarity. Although previous
reports described above have demonstrated correlations in
isolated region pairs, we concluded that it is not optimal to
consider pairwise relationships because the brain connectiv-
ity network is a large-scale, complex network. Even if a sig-
nificant relationship existed between connectivity and gene
expression, it is unlikely to be revealed by considering
regions pairs separately. Instead, we need to consider the
effect of the entire pattern of gene expression on whole
brain connectivity. Because we found no published
accounts of how to do this, we designed a novel whole
brain connectivity formulation for testing this hypothesis.
This latter, somewhat unconventional, analysis in which we
assume a direct relationship between connectivity and gene
similarity, was successful. On the basis of the statistical test
we set up for our hypothesis, we concluded that although
no inter-regional connection is determined solely by gene
similarity between them, the overall connectivity network
conforms to inter-regional gene similarity data in a way
that cannot arise by chance. Thus, gene expression influen-
ces rather than determines structural connectivity.

Limitations and Future Work

Although our clustering and connectivity results appear
robust and insensitive to parameter choice, they exhibit
some sensitivity to the choice of anatomic atlas used for
combining neighboring sample points. This may be due to
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the difference in methods used for regional dissections
[Johnson et al., 2009]. A related limitation is our use of dif-
ferent brain parcellations for addressing the two hypothe-
ses. The first hypothesis needed the sampled gene points
to be combined by tissue type, into 323 regions according
to the histopathological labels provided by the ABI. The
second hypothesis required structural connectivity infor-
mation, and for this we chose to begin with the MNI brain
atlas parcellations used and tested in our previous connec-
tivity work [Kuceyeski et al., 2011]. This atlas was subdi-
vided into roughly equal anatomically and functionally
cohesive regions, which by virtue of being grandfathered
by an existing and widely used parcellation, would pro-
vide comparable connectomes. Because the ABA gene
sample locations were not chosen with connectivity in
mind, the ABA-derived atlas used in Hypothesis 1 would
not be well suited for Hypothesis 2. For example, the den-
sity of sampling in ABA is highly variable across the
brain; taking extremely small regions as nodes is unreli-
able due to noise and problems in tractography [Ivković
et al., 2012; Kuceyeski et al., 2011].

Another disadvantage of our work is the availability of
only two subjects’ gene expression profiles from the ABI at
the time of writing. Although we have demonstrated high
consistency between the two brains available from ABI, the
absence of multiple subjects precludes filtering out outliers,
inconsistent or divergent expression levels, and random
and systematic noise arising from microarray analysis
[Brody et al., 2002; Brown et al., 2001]. Microarray data has
limited spatial resolution and accuracy compared to histo-
pathological measurements. Another source of error could
be in the connectivity matrix C used for hypothesis 2. This
matrix is obtained using probabilistic tractography [Kuceye-
ski et al., 2011] which suffers from the inability to resolve
long-range fibers.

A possibility we did not investigate in this work is that
gene expression similarity could be revealed by “chemical”
connectivity via the distinct domains of various neurotrans-
mitters and neurotrophic factors. Already we can see this in
our clustering results: dopaminergic circuits in the brainstem
and basal ganglia appear to be clustered together, and initial
investigations into genes coding for neurotrophic factors also
showed stereotyped spatial patterns. This is a very impor-
tant and large new question, which will require careful and
detailed work, currently underway in our laboratory.
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