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Abstract

Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed 

disease. In the absence of standard therapy for this population, there is currently an urgent unmet 

need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) 

represents a new therapeutic intervention that has been successful for the treatment of multiple 

tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has 

been great interest in generating selective small molecule inhibitors targeting critical pathways of 

proliferation and survival in AML. This review highlights a selective group of intriguing 

therapeutic agents and their presumed targets in both preclinical models and in early human 

clinical trials.
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Introduction

Anthracyclin and cytosine arabinoside-based chemotherapy achieves complete remission 

(CR) in the majority of patients with acute myeloid leukemia (AML).1 Despite this fact, 

approximately 50% of patients will relapse within 1 to 2 years. The 5-year survival rate for 

patients who are less than 60 years old remains less than 50%.1–3 In a recent analysis by 

Wingard et al, residual and recurrent disease was the leading causes of death (43%–47%) in 

the first nine years following allogeneic bone marrow transplantation.4 The natural course of 

AML in patients who are greater than 60 years old is dismal with complete remission rates 

(CRR) of 40% to 65%, relapse rates of 60%–85% within 2–3 years of diagnosis, median 

overall survival (OS) of less than 6 months, and a 5-year overall survival (OS) of only 3%–

8%.2,3 The poor prognosis for this older population is thought to arise from a higher rate of 

drug resistance, co-morbidities, poor tolerance to chemotherapy, overexpression of the 
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multidrug resistance genes (MRD1 and other ATP Binding Cassette/ABC genes), 

unfavorable cytogenetics, and a high treatment-related mortality rate (≥25%).2,5–9 

Accumulating data relating to the biology and initiating events of cancer have resulted in the 

identification of prognostic markers in AML and the development of novel targeted 

therapies in the hope of discovering a more efficient and less toxic alternative to 

conventional chemotherapy. The two small molecular inhibitors (SMIs), imatinib mesylate, 

a tyrosine kinase inhibitor that represses the function of BCR-ABL kinase (as well as other 

related tyrosine kinases), which has resulted in an 80% complete cytogenetic response rate 

in patients with chronic phase CML, and all-trans retinoic acid (ATRA), which can induce 

compete responses in patients with the APL (acute promyelocytic leukemia; M3 AML), 

have spawned great interest in the development of SMIs for the treatment of AML.10–12 

However, unlike in CML and APL, the identification of potential targets in AML has been 

limited by the heterogeneous clonal architecture of non-M3 AML and by the contribution of 

numerous driver mutations in its onset and progression. In this article, we will review SMIs 

for a number of biologically relevant targets in AML that are currently in clinical 

development, with a refrence to the ongoing clinical trials (Table.1), and the possible 

mechanisms of action and resistance to these reagents in AML.

Nucleophosmin (NPM1)

NPM1, which encodes a nucleolar phosphoprotein, is mapped to the long arm of 

chromosome 5. Three isoforms of NPM1 are generated by alternative splicing. It has been 

implicated in genomic stability and cell cycle progression by acting as a histone chaperone 

and a nucleus-cytoplasmic shuttle. It participates in chromatin remodeling, ribosomal 

biogenesis, centrosome duplication, ribosomal RNA cleavage, DNA synthesis, RNA 

transcription, and DNA repair.1314 Accumulation of NPM1 protein has been observed in 

cancerous cells, likely reflecting increased DNA replication.15,16 Approximately, 35% of 

AML patients harbor NPM1 mutations, most of which are structurally defined by an 

insertion in exon 12 with the duplication of a TCTG sequence at positions 956–959, leading 

to changes in the amino acid sequence of the C-terminal domain and loss of trp288 and 

trp290, thereby resulting in unfolding of the C-terminal region in the NPM1 protein and 

reduced nucleolar binding. A new nuclear export signal motif is also formed that increases 

NPM1-CRM1 heterodimerization and export to the cytoplasm.17–19 NPM1 

haploinsufficiency predisposes mice to tumor formation.20 This is thought to be related to 

the cytoplasmic dislocation of p19ARF (p14ARF ortholog) thus inhibiting its tumor 

suppressor effect by allowing mouse double minute 2 homolog (Mdm2) binding and 

inactivation of TP53, or by eliciting the post-translational sumoyl modification of the NPM1 

protein in a TP53-independent mechanism.21–23 Of note, the nuclear factor-κβ (NF-κβ) has 

an important role in the promotion of metastasis, angiogenesis, and the survival of cancer 

cells, and it is hyperactivated in the majority of AML patients.24–26 The favorable outcome 

of NPM1-mutated AML has been attributed to NF-κβ binding to the mutated form of NPM1 

(NPM1c) resulting in cytoplasmic sequestration and inactivation of NF-κβ, leading directly 

and indirectly to leukemic cell chemosensitization.17,27,28

Different strategies of NPM1c targeting have been proposed. Conceptually, transporting 

NPM1c from the cytoplasm back to the nucleus is an interesting approach, but it remains 
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challenging. Leptomycin B is an Exportin-1/CRM1 inhibitor that exhibits in vitro 

tumoricidal activity by stabilizing TP53 through disrupting its CRM1-mediated nuclear 

export.29–31 However, a phase 1 trial with Leptomycin B was discouraging, without 

objective responses and with significant toxicity manifesting as marked fatigue and 

anorexia.32 New, less toxic CRM1 inhibitors, such as CBS9106 and KPT 330, have been 

developed.33–37 Additive effects of CRM1 inhibitors with cytarabine, FLT3 inhibitors, and 

histone deacetylase inhibitors in AML have been reported in recent preclinical studies.38,39

Inhibiting the interaction of NPM1 with other proteins has also been investigated. 

Cytoplasmic relocalization of HEXIM1 can be mediated by NPM1c, resulting in HEXIM1 

inactivation and stimulation of the positive transcription elongation factor (P-TEFb), a 

cyclin-dependent kinase that regulates mRNA synthesis. A P-TEFb inhibitor, seliciclib was 

evaluated in a phase 1 trial by Bensen et al.40,41 Seliciclib was given for 7 days on a 3-week 

cycle, but tumor responses were not observed. Disease stabilization was observed in 8 out of 

21 evaluable patients for up to 18 weeks, with dose-limiting toxicities (DLTs) of fatigue, 

hypokalemia, and urticarial rash. The investigators linked the lack of clinical responses to 

the significantly lower plasma concentrations in the study participants compared to the 

levels achieving tumor regression in human xenograft models.41 Given the heterozygosity of 

NPM1 mutations, it is conceivable that leukemic cells possess low nuclear levels of wild 

type NPM1, contributing to the cell growth. Wild type NPM1 levels are also expected to be 

lower in heterozygous mutant cells compared to normal cells because of dimerization with 

the NPM1c.42 Therefore, targeting the wild type NPM1 might also be an effective 

therapeutic approach via indirectly inhibiting the NPM1c-mutant and/or signaling 

pathways.23.13

MDM2

TP53 is a tumor suppressor that responds to stress signals and regulates cell cycle arrest, 

senescence, and apoptosis to maintain genomic stability.43 TP53 mutations are found in 

~50% of tumors, leading to partial or complete loss of the TP53 function and consequently, 

to oncogenic transformation.44–46 TP53 levels and activity are also downregulated by the 

oncoprotein MDM2 in an autoregulatory circuit, which was proposed as an alternative 

mechanism of TP53 inactivation in AML rather than TP53 mutation.47,48 Binding of the N-

terminal domain of MDM2 with the N-terminus of the TP53 transactivation domain results 

in TP53 suppression, nuclear export, and ubiquitination followed by proteasomal 

degradation.49,50 This interaction explains the correlation of MDM2 overexpression with 

chemoresistance and poor outcomes in many tumors and provides a basis for the 

development of SMI against MDM2 in an attempt to enhance TP53 activity.51–55 Nutlin-3 is 

an MDM2 antagonist that binds the TP53 pocket of MDM2. It increases TP53 levels and 

induces TP53-dependent apoptosis of AML blasts in vitro and an additive/synergistic anti-

AML effect when combined with chemotherapy such as doxorubicin and cytosine 

arabinoside.56 Furthermore, Nutlin-3 induces a TP53-independent apoptotic effect by 

interfering with MDM2’s interaction with other proteins (e.g., p73, E2F-1, HIF-1α) that 

share the binding site of TP53.57–59 Anti-angiogenic properties of Nutlin-3 were also 

observed in preclinical studies and were attributed to TP53 activation in endothelial cells, 

leading to the induction of anti-angiogenic proteins, such as TSP-1 and BAL1 and to 
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downregulation of pro-angiogenic proteins such as VEGF, bFGF, FGF-BP, and COX-2.60,61 

The initial results of a phase 1 trial conducted by Andreeff et al in patients with AML using 

RG7112, a new oral MDM2 antagonist, were promising. Of 31 evaluable patients, CR was 

reported in 5 after 1 cycle, with signs of hematological improvement in 12 other patients.62 

RG7112 was further studied by Yee and colleagues in combination with cytarabine using 2 

schedules. The DLT were diarrhea, rash and thrombocytopenia. The ORR was 52%. Of 

interest, CR was seen in an elderly patient with disease refractory to previous cytarabine 

therapy and that all patients with CR had TP53 wild type status. Bridging to transplant was 

also possible in 3 patients with relapsed/refractory disease.63

An analysis of 109 AML specimens after in vitro exposure to the MDM2 inhibitor MI-219 

revealed resistance in all samples harboring TP53 mutations and in 30% of those with wild 

type TP53, with an enhanced response in association with high MDM2 expression.64 Drug 

resistance despite the presence of a wild type TP53 phenotype was assumed to be related to 

a post-translational modification of TP53 that reduces TP53 activity or to impaired TP53 

pathways. Of interest, 84% of the FLT3-mutant (ITD) responded well to MI-219 (IC50 < 5 

µM), suggesting a therapeutic potential of MDM2 inhibitors in FLT3-mutated AML. 

Various compounds that block MDM2–TP53 binding are currently being studied in clinical 

trials in both hematological and solid tumors. Initial studies, although limited, suggest 

reasonable safety and efficacy.65,66

Aurora kinases

Aurora kinases A, B, and C (AKA, AKB, and AKC) are serine/threonine kinases that 

regulate mitosis and cytokinesis and have been implicated in both tumor formation and 

progression.67–71 The AKA gene maps to chromosome 20q13.2.72 In RNA interference 

studies, AKA inhibition disrupts spindle assembly, centrosome maturation and segregation, 

thereby leading to G2/M arrest and cell death.73,74 AKA is also a negative regulator of TP53 

activity: the phosphorylation of TP53 at Ser315 by AKA induces MDM2-TP53 interaction, 

thereby causing TP53 inactivation.75,76 Thus, AKA inhibition increases TP53 levels and 

activity resulting in G2/M arrest followed by apoptosis. In addition, AKA overexpression in 

cancer has been linked to chromosomal instability and shortened survival.77–80 Of note, 

CD34+/CD38− leukemic stem cells exhibit higher expression of AKA as compared with 

normal CD34+ progenitors, with a selective and potent anti-proliferative and apoptotic 

response to AKA inhibition.81

AKB is a chromosomal passenger protein encoded on chromosome 17p13.1.69 Inhibition of 

AKB’s function is associated with cytokinesis defects, polyploidy, and apoptosis.82 Its 

upregulation in patients with non–small-cell lung cancer, ovarian cancer, oral and laryngeal 

squamous cell carcinoma, and hepatocellular carcinoma correlates with the increased 

likelihood of metastasis, chemoresistance and poor survival.83–87 Recent data suggests a 

supportive role of AKC to AKB function and that AKC overexpression can promote 

malignant transformation.88,89 Preclinical data support the antitumor activity of several of 

the aurora kinase inhibitors (AKIs). A phase 1 trial of patients with advanced hematological 

malignancies treated with AT9283, a small molecule inhibitor of AKA, AKB, JAK2/3, and 

ABL1, resulted in only a transient blast reduction of 30% in patients with AML despite 
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reduced levels of the phosphorylated histone H3, a downstream target of AKB. Significant 

DLTs were reported, including pneumonia, myocardial infarction, and tumor lysis 

syndrome.90 Of note, cardiac toxicity manifesting as QTc prolongation was also reported 

with another AKI (MK-0457) and was attributed to hERG channel suppression.91

In contrast to patients with solid tumors, AML patients demonstrated a better response to the 

selective AKB inhibitor barasertib (AZD1152).92,93 Barasertib was given as a 7-day 

infusion on a 21-day cycle, with an overall hematological response of 25%. The majority of 

the patients enrolled in this study had relapsed AML. Recently, a randomized phase 2 study 

from MD Anderson Cancer Center reported higher CRR and CRp (CR with incomplete 

platelet recovery) in older patients with AML in response to a 7-day infusion of barasertib at 

a dose of 1200 mg/day as compared with those receiving a low dose of cytarabine of 20 

mg/day subcutaneously for 10 days every 28 days (35% vs. 12%). The median duration of 

remission ranged from 28 to 321 days in the barasertib group and from 30 to 85 days in the 

cytarabine group.94 Responses were observed mostly after two cycles and included patients 

from all cytogenetic risk subsets in the barasertib-only arm while being limited to patients 

with good and intermediate risk cytogenetic profiles in the cytarabine arm. Treatment-

related mortality was comparable between the two cohorts 30 days after the start of 

treatment, but it was lower in the barasertib arm at 90 days. However, this study was 

hampered by the small number and uneven distribution of patients in terms of age and 

performance status. Interestingly, some reports with AT9283 suggested TP53 mutation as a 

predictor of sensitivity.95 Alternatively, increased pHH3 marks a tumor response to the 

selective AKA inhibitor MLN8054.96 Because AKA stimulates the mTOR/Akt pathway and 

is implicated in taxane and carboplatin resistance, AKIs have been combined with taxane 

and carboplatin to overcome drug resistance, with encouraging results.97–99 One 

interpretation of the limited clinical response to AKIs is the fact that they target the mitotic 

process, which might limit their activity to the proliferating cells.70 Several AKIs are in 

early development with promising results (e.g., TLK60404, CHR-3520 and Aki-100).70

Farnesyl transferase

RAS proteins regulate intracellular signal transduction and several critical pathways 

involved in cell growth, adhesion, migration, invasion, and apoptosis.100 Approximately 

12% to 27% of patients with AML harbor activating mutations in the RAS proto-oncogene 

family predominantly at codon 12 of N-RAS and K-RAS.101–108 RAS upregulation without 

an activating mutation has also been reported with AML.109 One mechanism of RAS 

inhibition is via the inhibition of farnesyl transferase, an essential enzyme for the post-

translational modification of RAS. Farnesyl transferase adds a farnesyl moiety to the 

cysteine residue of the C-terminal CAAX motif, thereby allowing RAS to anchor itself to 

the inner leaflet of the plasma membrane. Data support the ability of farnesyl transferase 

inhibitors to induce apoptosis in multiple cancer cell lines (including AML lines), most 

likely by inhibiting the activity of the pro-survival proteins (e.g., AKT, mTOR, MAP 

kinases) and by activating pro-apoptotic proteins (e.g., Bax, PUMA, BAK).110–116

A phase 1 trial of a farnesyl transferase inhibitor, lonafarnib, demonstrated limited clinical 

activity in patients with myelodysplastic syndrome (MDS) and secondary AML. Excessive 
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toxicity was noted in the majority of participants, many of whom required dose reductions 

after the first treatment cycle or cessation of therapy.117 Tipifarnib is another farnesyl 

transferase inhibitor with a more favorable toxicity profile. The initial results of the CEP-20 

trial demonstrated that tipifarnib induced CRR/CRp in 14% of poor-risk older AML patients 

(>70 years old) with a median survival of 18 months in responders irrespective of RAS 

mutational status. The dose used in this study was 600 mg twice a day for 3 weeks during 

every 4-week cycle.118 Of note, a larger trial comparing this regimen with best supportive 

care failed to replicate these results (CRR was only 8%, with no difference in survival).119 

The AML16 trial that combined tipifarnib with low-dose cytarabine also failed to 

demonstrate significant differences in CRR and 12-month OS rates, leading to the premature 

closure of the study.120 Jabbour and colleagues reported similar negative results in a phase 

1/2 trial of the addition of tipifarnib to idarubicin and cytarabine in patients with AML and 

poor-risk patients with myelodysplastic syndrome (MDS).121 However, subanalysis revealed 

a higher CRR among patients with unfavorable cytogenetic abnormalities involving 

chromosomes 5 and 7 as compared with historical controls receiving chemotherapy alone 

(58% vs. 19%). This observation was consistent with similar analysis performed for another 

study by Brenwin and colleagues, which suggested heightened sensitivity to tipifarnib-based 

therapy in the high-risk population.122

Geranylgeranylation of K-RAS and N-RAS is proposed as another way to circumvent 

farnesyl transferase inhibition and to restore RAS activation.123,124 In support of this is the 

fact that the mutation of H-RAS, which does not undergo geranylgeranylation, renders 

tumors more sensitive to farnesyl transferase inhibitors as compared with those tumors 

carrying N-RAS and K-RAS mutations.125,126 Dual targeting of the farnesyl and 

geranylgeranyl transferases effectively produced an anti-tumor response in vivo, but a high 

level of toxicity was initially encountered.127,128 L-778,123 is a dual inhibitor that was 

investigated in patients after being well tolerated in vivo.129 Despite successful inhibition of 

geranylgeranylation, L-778,123 did not suppress K-Ras prenylation in patient samples. 

Appels et al evaluated AZD3409, another dual inhibitor, in patients with solid tumor 

malignancies (n=29).130 The MTD was 750 mg twice a day, with DLTs of diarrhea and 

nausea. There were no objective responses. Interestingly, the pharmakodynamic data 

indicated two important points: 1) the maximal inhibition of farnesyl transferase activity was 

only 49% of pretreatment levels; 2) the maximal farnesyl transferase inhibition occurred at 

plasma levels considerably lower than those associated with drug-induced toxicity.

Histone deacetylase

Histones are alkaline proteins that associate with DNA to form small packaging units called 

nucleosomes. Histone deacetylases (HDACs) are involved in the post-translational 

modification of histones via removing ε-N-acetyl lysine residue, resulting in increased 

coiled DNA winding around the histone core, thereby reducing the accessibility of 

transcription factors and rendering functional genes inactive. Non-histone substrates to 

HDACs have also been identified, including TP53, heat shock protein 90 (HSP90), and 

PTEN.131–133 The theoretical role of HDAC inhibitors (HDACIs) as anticancer agents is 

thought to be through the re-expression of epigenetically silenced tumor genes and tumor 
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suppressor genes resulting in tumor regression. Trials of HDACIs in cutaneous T-cell 

lymphoma led to the approval of two HDACIs (vorinostat and romidepsin).134,135

The HDAC inhibitory activity of valproic acid (VPA) was tested in a phase 2 study of 

patients with MDS (n = 43) and AML (n = 32), which resulted in overall response rate 

(ORR) of 30% and 16%, respectively. The addition of ATRA did not increase VPA 

responses.136 Enhanced responses (52%) were noted in the MDS subgroup of patients with 

normal blast counts. By contrast, further studies with VPA, both as a single agent and with 

ATRA in high-risk patients with MDS and AML, demonstrated lower response, thereby 

suggesting that VPA may be more effective for low-risk patients with MDS.137,138 

Treatment of 11 AML patients (70 years or older), unfit for chemotherapy with VPA, 

ATRA, and theophylline resulted in one CR, 2 CRi, and stable disease for 4–6 months in 3 

patients.139 This combination was also evaluated in 20 AML patients with one CR, 2 PR and 

eradication of peripheral blood blasts (but not the bone marrow) in one patient.140 Fredly et 

al studied the addition of either hydroxyurea, 6-mercaptopurine or both to a combination of 

ATRA, VPA and theophylline in five patients with advanced AML. This was found to be an 

effective palliative strategy in reducing blast counts.141 Another study was conducted by 

Fredly et al in 36 AML patients unfit for intensive chemotherapy. The patients were treated 

with continuous VPA, and low-dose cytarabine (10mg/m2 for 10 days), and intermittent 

ATRA (for 14 days) on every 12-week cycle. Either hydroxyurea or 6-mercaptopurine was 

used to control non-responding hyperleukocytosis to low-dose cytarabine. Nine patients 

demonstrated hematological improvement, with a CRR of 6%, which is lower than the CRR 

of another study (18%) that used a higher dose of cytarabine (20mg/m2 twice daily for 10 

days every 4–6 weeks).142,143 On the other hand, the CRR of Fredly et al study is similar to 

another trial (7.4%) that used cytarabine alone at 20 mg/m2 once a day for 10 days on 

monthly basis.144,145

Depsipeptide is another HDACI that demonstrated preclinical anti-leukemic activity with 

evidence of c-Myc downregulation. However, its clinical development was halted as a result 

of limited clinical responses and significant side effects, including profound fatigue and 

gastrointestinal toxicity.146 MGCD0103 (mocetinostat) is an HDACI with a prolonged half-

life and selectivity to the HDAC isotypes 1, 2, 3, and 11. MGCD0103 was administered 

three times a week (20 to 80 mg/m2) to patients with refractory or relapsed AML (n = 22), 

CML (n = 1), ALL (n = 1), and MDS (n = 5). The MTD was 60 mg/m2. Three of the 23 

evaluable patients achieved a CR after one to three cycles at higher dose levels of 60 to 

80mg/m2. Two of these patients had refractory AML.147

Garcia-Manero and colleagues studied vorinostat in patients with hematological 

malignancies (31 of 41 had AML). The drug was given two to three times daily according to 

a 2-weeks-on/1-week-off schedule.137 The ORR was 17% (two patients had CR, two had 

CRp, and three had a >50% reduction in blasts), which continued for up to 53 weeks. All 

responders had AML, and bone marrow transplantation was successfully performed after 

treatment response in three patients. DNA hypermethylation and histone deacetylation could 

mutually reinforce epigenetic silencing of tumor suppressors in AML.148,149 The modest 

single-agent activity of HDACI and the evidence of a synergistic interaction with cytotoxic 

and DNA hypomethylating agents in preclinical work have prompted several combination 
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clinical trials. E1905 study is a phase 2 randomized study that compared the 

hyopmethylating agent, azacitidine (AZA) alone (50 mg/m2 for 10 days) with the 

combination of AZA and etinostat (a class I HDACI, with a prolonged half-life of 4.5 days) 

in patients with AML (n=52) and MDS (n=97). Of interest, the median OS was 

unexpectedly worse in the combination group (13 months) compared to the AZA alone 

group (18 months), as well as the rate of infections and thrombocytopenia. Correlative 

studies showed less global hypomethylation in the combination arm which was attributed to 

etinostat-mediated inhibition of AZA-induced cell cycle arrest. It has therefore been 

suggested to administer the two reagents sequentially rather than simultaneously to mimic 

the successful in vitro model.150 On the basis of preclinical work indicating enhanced 

ATRA activity in association with VPA and 5-azacytidine (5-AZA), a total of 53 patients 

with AML and poor-risk patients with MDS were treated with VPA at escalating doses in 

combination with 5-AZA (75 mg/m2) and ATRA (45 mg/m2, started on day 3) during a 7-

day course.151 Hematological responses of 42% including a CRR of 22% were observed. 

The CRR in this study is similar to another study using the same combination despite a 

prolonged exposure to ATRA (21 days).152 The combination of decitabine (20 mg/m2 for 10 

days), another hypomethylating agent, with escalating doses of VPA (days 5 through 21) 

was also investigated, but the ORR (44%) of this small study did not differ from that of 

decitabine alone.153 In another study, neurotoxicity was encountered at higher doses of VPA 

(35 to 50 mg/m2) when it was used with decitabine (15 mg/m2 for 10 days). An ORR of 

22% (50% among untreated elderly patients) was obtained.154 But, in contrast to the 

previous study, the response was not linked to plasma VPA levels, despite the significant 

increase in histone acetylation with higher VPA doses.

Idarubicin (12 mg/m2) and vorinostat were administered to 41 patients with refractory or 

relapsed AML. CR was noted in 17% of the evaluable patients. Garcia-Manero and 

colleagues administered vorinostat at a dose of 500 mg three times daily for 3 days followed 

by cytarabine and idarubicin infusion followed by consolidation therapy for those AML 

patients in remission.155 Vorinostat was continued as a maintenance therapy for up to 1 year 

in 17% of the participants. Vorinostat dose was reduced in 66% of the patients due to bone 

marrow suppression or grade 3 or 4 gastrointestinal toxicity. The ORR of 85% (100% in the 

presence of FLT3-ITD) was considered promising given the patients’ poor risk profile. 

Gogo and colleagues treated advanced and high-risk AML patients (n = 21) with vorinostat 

at escalating doses for 7 days followed by etoposide (100 mg/m2) and cytarabine (1 to 2 

g/m2) on days 11 to 14.156 They documented an ORR of 33% and a median remission time 

of 7 months. The CR was achieved in 46% of those patients treated with the MTD of 200 

mg twice daily.

Panobinostat (LBH589) is a hydroxamic acid analogue and a pan-HDACI that produced 

only transient reduction in AML blasts in a phase 1 study by Giles et al.157 In a phase 1b/2 

trial conducted by Tan and colleagues, the administration of Azacytidine (75mg/m2 for 5 

days) with escalating doses of panobinostat (3 times a week for 7 doses) on monthly basis in 

AML (n=29) and high risk MDS (n=10) patients resulted in ORR of 31% in AML and 50% 

in MDS patients. Fatigue was reported as the main DLT.158 The phase 2 trial of 

Panobinostat in relapsed/refractory acute lymphoblastic leukemia (ALL) and AML was 

recently completed, but the results have not yet been reported (NCT00723203).
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Most recently, pracinostat gained Orphan Drug status by the FDA in 2014 for the future 

development in AML. It was shown to induce prolonged CRR of 14% in a phase 1 trial of 

older AML patients, lasting for 206 and 362 days (unpublished data). An ongoing phase II 

trial is currently evaluating pracinostat in combination with azacitidine in newly diagnosed 

AML (NCT01912274). Alternatively, the combination of pracinostat with the JAK2/FLT3 

inhibitor pacritinib had significant synergetic anti-proliferative effects in vitro and in vivo, 

particularly in AML cell lines carrying JAK2V617F and activating FLT3 mutations.159 This 

synergistic effect is presumably due to the ability of this combination to counteract the rise 

in FLT3 and pSTAT5 (observed when using pacritinib alone), or to the suppression of 

stroma-mediated release of growth factors and cytokines.159 Of note, McCormack et al has 

also shown that combining the pan-HDACI, VPA with Nultin-3 (MDM2 antagonist) in vitro 

increases p53, acetylated p53, and p21 expression, and enhances the apoptotic response of 

AML cells, predominantly of those with higher CD34 expression.160

The exact mechanism by which HDACIs act as anti-neoplastic agents is not yet clear. 

Increased reactive oxygen species levels (ROS) and antioxidant gene expression following 

HDACI exposure were observed in vitro.133 Further, a correlation was found between 

antioxidant gene expression and vorinostat resistance, suggesting ROS-mediated apoptosis 

in HDACI-treated cells.137 Consistent with this hypothesis, the anti-leukemic activity of 

vorinostat was enhanced by resveratrol likely through inducing ROS production. Two 

additional pathways were proposed: 1) Sirt1 activation leading to the abrogation of HDACI-

mediated p65 acetylation leading to NF-κβ inactivation and 2) S-phase cycle arrest, 

sensitizing cells to vorinostat-induced apoptosis.161

In addition, accumulating evidence suggests that HDACIs induce autophagy, presumably by 

increasing the expression of LC3B (a modulator of autophagy) or via the hyperacetylation 

and inhibition of HSP90 and subsequent degradation of AKT (a client protein of HSP90 and 

a negative regulator of autophagy).162–166 This is supported by Wei and colleagues’ findings 

of increased autophagy and apoptosis when HDACIs are combined with GX15-070 (a BH3 

mimetic) and the reversal of this effect by chloroquine (an autophagy inhibitor).167 The 

inhibition of Akt/mTOR pathway by HDACIs was shown in prostate and mantle cell 

lymphoma cell lines.168,169 Also, HDACI-mediated apoptosis and differentiation of AML 

cells was significantly increased by the addition of an mTOR inhibitor.170 Sandilya et al 

reported CR in two older AML patients, with high-risk features when treated with VPA (500 

mg three times a day) and sirolimus, an mTOR inhibitor (1 mg per day). Of interest is that 

one of the patients failed 7+3 induction prior to enrollment in the study and that the 

responses lasted for over 9 months.171 A detailed review of the activity and toxicity of 

HDACIs was published by Bruserud and colleagues.172

Proteasome inhibitors

Proteasomes are intracellular organelles responsible for polyubiquitinated protein 

degradation including oxidized, damaged, and misfolded proteins through trypsin-like, 

chemotrypsin-like, or peptidyl-glutamyl peptide hydrolyzing activities.173,174 In addition, 

proteasomes regulate the levels of proteins involved in the cell cycle (e.g., TP53, cyclins, 

p27), apoptosis, and intracellular signaling pathways.175–177 Proteasome inhibitors have 
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successfully induced the in vitro killing of multiple cancers, including hematological 

malignancies. 178,179178,179178,179178,179178,179178,179178,179178,179178,179178,179

Bortezomib is a reversible inhibitor of chemotrypsin-like activity in the proteasome that has 

been approved for the treatment of multiple myeloma and mantle cell lymphoma.180,181 

Guzman and colleagues demonstrated that bortezomib induced an apoptotic response of 

leukemic stem cells by suppressing the degradation of (and thus increasing the levels of 

Iκβ), a negative regulator of NF-κβ.182 Bortezomib also improves the response of 

myelomonocytic leukemic cells to tumor necrosis factor–related apoptosis-inducing ligand 

(TRAIL) in vitro, which is also related to bortezomib-mediated abrogation of NF-κβ 

activation, downregulation of the anti-apoptotic proteins C-FLIP and XIAP and expression 

of the TRAIL receptors DR4 and DR5.183,184

Another proposed mechanism of bortezomib is the induction of G2/M cell cycle arrest via 

the stabilization of cyclin and the cyclin-dependent kinase inhibitors p21 and p27.182,185 In a 

study by Cortes et al, bortezomib was administered to 15 patients with relapsed/refractory 

AML at escalating doses (0.75 to 1.5 mg/m2) twice weekly for 4 weeks every 6 weeks. Only 

a transient response was observed in five of the six patients who received the MTD dose of 

1.25 mg/m2, with DLTs at 1.5 mg/m2 including postural hypotension, fluid retention, 

nausea, and diarrhea. Four patients experienced a greater than 50% reduction in peripheral 

or bone marrow blast count, and one demonstrated an increasing neutrophil count.186

Sarlo and colleagues treated 14 high-risk older patients with previously untreated and 

refractory or relapsed AML with bortezomib at a dose of 1.5 mg/m2 twice weekly for 2 

weeks of a 3-week cycle. Treatment response was limited to reduced blast counts in 

peripheral blood and bone marrow in 61% of the participants. Neurological toxicity 

developed in 54% of patients, resulting in bortezomib discontinuation in 30% of cases.187 

Alternative more limited bortezomib exposure was well tolerated in 31 patients with newly 

diagnosed AML and older patients with relapsed AML, with higher doses of up to 1.5 

mg/m2 used in combination with cytarabine and idarubicin as induction therapy. The CR 

achieved among patients with relapsed AML (67%) exceeded the previously reported CR in 

literature (20–40%), with median disease-free survival of 15.3 months among responders.188 

A similar response was achieved in a phase 2 CALGB study.189

Blum and colleagues treated 19 high-risk and refractory patients with decitabine and 

escalating doses of bortezomib (up to 1.3 mg/m2), with an ORR of 37%.190 This response 

was similar to a previous study of decitabine alone. Correlative studies suggested that 

bortezomib could potentiate decitabine cytotoxicity by increasing the expression of 

miR-293, thereby leading to the inhibition of the SP1/NF-κβ complex and ultimately to 

FLT3 downregulation. Therefore, an alternative sequential therapy of bortezomib followed 

by decitabine was proposed to increase the clinical benefit. Extrapolating evidence from 

multiple myeloma studies, the authors proposed subcutaneous and once-weekly dosing to 

minimize bortezomib-related neurotoxicity while maintaining its therapeutic efficacy.191,192 

A synergistic anti-leukemic interaction was found between bortezomib and the HDACI 

belinostat in vitro.193,194 This combination was investigated in a phase I trial conducted in 

hematological malignancies, including AML (n=19). Results suggest safety of this regimen, 
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without DLT. One CR (despite prior resistance to 7+3 regimen) and 2 PR were observed in 

AML patients which allowed these patients to proceed to allotransplantation.195

SDF1/CXCR4

The chemokine receptor CXCR4 (CD184) is an adhesion molecule widely expressed on 

many cell types. The interaction of CXCR4 with its ligand SDF1 (CXCL12) is implicated in 

the migration, homing, and quiescence of hematopoietic and leukemic stem cells in the bone 

marrow.196–199 The heterodimerization of SDF1 with CXCR4 also activates the intracellular 

signaling of several survival pathways (e.g., PI3K/AKT, MAPK, PKC, JAK/STAT).200 In 

AML, CXCR4 overexpression has been linked to poor clinical outcomes.201,202 Plerixafor 

(AMD3100) is a bicyclam SMI that blocks SDF1 binding to CXCR4 and it was approved as 

a peripheral stem cell mobilizer for the treatment of multiple myeloma and non-Hodgkin’s 

disease. Plerixafor has been used successfully in preclinical mouse models of AML to 

sensitize AML to chemotherapy in vivo presumably by “mobilizing” leukemic stem cells 

and detaching them from the anti-apoptotic effects of the hematopoietic niche.203

Uy and colleagues published the results of 46 patients with refractory or relapsed AML who 

were treated with plerixafor (0.24 mg/kg/day) and a regimen of mitoxantrone, etoposide, and 

cytarabine.204 The authors described a twofold increase in circulating leukemic blasts, 

which peaked at 6 to 12 hours after plerixafor administration. The CRR/CRp was 46% 

representing modest improvements as compared to chemotherapy alone in previous reports. 

Additional preclinical data from MD Anderson demonstrated anti-leukemic synergy 

between CXCR4 blockers and FLT3 inhibitors.205 A preliminary report on the response to 

plerixafor, granulocyte colony-stimulating factor (GCSF), and sorafenib in relapsed/

refractory FLT3-ITD+ AML demonstrated a CRR/CRp of 77%. This was associated with 

increased peripheral blood counts of blasts by 41-fold and of leukemic stem cells by 148-

fold (NCT00943943).206 The degree of leukemic stem cell mobilization was noted to be 

related to baseline blast counts and VLA-4 expression. Of note is that a response was 

observed in three patients for whom prior treatment with FLT3 inhibitors was not effective.

HSP90

HSP90 belongs to the heat shock protein family and is comprised of two main isoforms: the 

inducible HSP90α and the constitutively expressed HSP90β.207 It is a pleotropic chaperone 

that is upregulated in response to cellular stress and is required for folding, transport, 

stabilization, and proteasomal degradation of proteins involved in the cell cycle, apoptosis, 

steroid receptor function, and signal transduction.208–212 The engagement of a client protein 

with the HSP70/HSP40/HSP90 complex and p60HOP forms the HSP90 multichaperone 

complex, in which functional conformation and activation of the client protein require the 

binding of ATP to the N-terminal domain of HSP90.208,212–214 Several oncogenic proteins 

are regulated by HSP90, including c-kit, HER-2, FLT3, BCR-ABL, ZAP-70, Akt, NPM-

ALK, Raf-1, and mutated TP53.209,215–222 High HSP90 levels were identified in many solid 

tumors.223 HSP90 is also highly expressed in patients with AML, and it confers 

chemoresistance and poor survival.224–226 Furthermore, HSP90 exists predominantly in its 

active multiprotein complex state in cancerous cells as compared with normal tissues, which 
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suggests that there is malignant cell dependence on this protein.227 Reikvam et al reported 

increased HSP protein content (including HSP90) in FLT3-ITD+ AML, and that the 

apoptotic response to HSP90 inhibition is more prominent in FLT3-ITD+ AML samples 

than in wild-type AML.228

HSP90 inhibitors act mostly by blocking HSP90 ATP binding, presumably leading to the 

trapping of the client oncogenic protein in a misfolded form, which is then followed by 

proteasomal degradation. The in vitro exposure of AML cells to the HSP90 inhibitor 17-N-

allylamino-17-demethoxygeldanamycin (17-AAG) produced the downregulation of Akt, 

Raf-1, N-RAS, K-RAS, and mutant p53; increased p21 levels; the activation of apoptotic 

protein Bax; and G2/M arrest.229,230 17-AAG is a potent and tumor-specific agent as a result 

of its high affinity for the HSP90 heterocomplex.227 The preclinical activity of 17-AAG 

positively correlated with the percentage of leukemic cells expressing HSP90, which may 

define a subset of potentially 17-AAG sensitive AML patients.226 Eleven patients with 

refractory or relapsed AML were treated with 17-AAG followed by bortezomib. 

Hepatotoxicity related to the benzoquinone moiety of 17-AAG was noted as the primary 

DLT, without hematological response apart from a transient reduction in blast count from 

79% to 9% in one patient.231 QTc prolongation was also reported, and it was attributed to 

previous anthracyclin therapy and the 17-AAG formulation since it was not encountered in 

two other studies of multiple myeloma despite higher doses of 17-AAG.232,233

Alvespimycin (17-DMAG) is a 17-AAG analog with more potent effects and a longer-half 

life.234 It was given intravenously to 24 patients with refractory AML at escalating doses (8 

to 32 mg/m2) twice a week for 2 out of 3 weeks, with a CRR of 17% and blast reduction of 

more than 50% in one patient. However, there were no further plans for clinical 

development as a result of the significant toxicity associated with this drug, including 

neurotopenia, diarrhea, fatigue, and myocardial ischemia.235 Patients who were co-treated 

with cytarabine exhibited synergetic anti-myeloid effects.236,237 HDACIs were also able to 

synergistically enhance 17-AAG activity against leukemic cells, including those expressing 

FLT3 mutation.238,239 The mechanisms of resistance to HSP90 inhibition were extensively 

reviewed by Piper and colleagues.240 One of the proposed mecahinsms is upregulation of 

another molecular chaperone HSP70. Combining 17-DMAG with the HSP70 inhibitor 

VER-155008 has shown a synergestic activity against primary AML cells in vitro.241 In 

addition to CXC4, studies are ongoing to explore the therapeuti potential of other prtective 

factors in the tumor niche.(table.2).

Kinase Inhibitors

FLT3

The FMS-like tyrosine kinase-3 (FLT3) is a class III tyrosine kinase receptor that is 

predominantly expressed in hematopoietic progenitors. FLT3 homodimerizes with itself 

upon binding to its ligand (FLT3L), thereby leading to the activation of the cytoplasmic 

kinase domain and the trans-phosphorylation of the intracytoplasmic tyrosine residues, 

which trigger the phosphorylation of critical signal transduction proteins that drive cell 

differentiation, proliferation, and survival (e.g., STAT5, ERK1/2).242,243 FLT3 mutations 

that result in constitutively activated signaling have been described in AML, the most 
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notable one being the internal tandem duplication (ITD) that results from a frameshift 

mutation involving insertions in the juxtamembrane domain of FLT3. FLT3-ITD is 

recognized as the most frequent mutation among individuals with AML. It is found in 24% 

of adult patients, and it represents a poor prognostic feature of AML with normal 

cytogenetics.244 The adverse effect of FLT3-ITD also overrides the favorable prognosis of 

NPM1 mutation, especially with high allelic burden.245 The size of FLT3-ITD (>70bp) was 

investigated as a prognostic indicator of survival, with conflicting reports.246,247 Point 

mutations in the activation loop of the tyrosine kinase domain (FLT3-TKD) were also 

identified in 7% of patients with AML; these were most commonly a missense mutation of 

(D835Y) that changes tyrosine to aspartate.248–250

Semaxinibis (SU5416) is a SMI against FLT3, c-kit, and VEGFR (1–2). It was tested in a 

phase II trial of 43 patients with c-kit positive AML (>30%) who had refractory disease or 

who were deemed unfit for induction chemotherapy.251 The twice-weekly administration of 

145 mg/m2 was associated with a partial response of more than 50% blast reduction in 7 

patients, but this effect lasted only 1 to 5 months, whereas CRp was achieved in only 1 

patient, who relapsed after 2 months. The main adverse events were nausea, headache, and 

severe bone pain. Both high VEGF expression and low c-kit expression were favorable 

predictors of response. FLT3 phosphorylation was minimally inhibited by SU5416 among 

the patients who were examined; however, a reduction in bone marrow vessel density was 

noted in all responders (100%) as compared with 72% of the non-responders. Thus, it was 

postulated that the clinical benefit of SU5416 is mainly the result of its anti-angiogenic 

properties and that an additional anti-leukemic effect could be established by targeting c-kit–

mediated and FLT3-mediated proliferation.

Sorafenib is an oral multikinase inhibitor approved for the use in patients with renal cell 

carcinoma, with activity against serine/ threonine kinase Raf-1, c-Kit, FLT-3, PDGFR and 

VEGFR. A recent German randomized, placebo controlled trial in older AML patients 

(n=201) revealed that the use of sorafenib (400 mg twice a day) in between induction 

(cytarabine and daunorubicin) and consolidation chemotherapy followed by maintenance 

duration after CR for 1 year from the beginning of therapy was associated with higher 

toxicity and mortality (17 vs. 7%), lower CRR (46 vs. 60%) and ORR (57 vs.64%) after 

induction, and lack of improvement in event free-survival (EFS) (7 vs. 5 months) and OS 

(15 vs. 13 months), including those patients with FLT3-ITD.252 In the SORAML trial, 

younger AML patients (n=276) received either sorafeninb (800mg a day) or placebo 

concomitantly with induction and consolidation therapy and for 1 year as maintenance 

therapy following consolidation. Preliminary results were suggestive of improvement in 

EFS, but not in the 2-year OS in the sorafenib arm, particularly in patients carrying FLT3-

ITD. There was no significant difference in CRR between the placebo and sorafenib arms 

(56% and 60%, respectively). In a retrospective analysis of refractory and relapsed FLT3-

ITD AML patients (n=69), Metzelder et al reported CRR on sorafenib monotherapy in 23% 

of the cases, with more frequent and durable response (median of 197 days) in patients who 

relapsed post- allogeneic stem cell transplant compared to those who relapsed after 

chemotherapy (median of 136 days).253 This raised the possibility of an enhanced sorafenib 

activity by graft-versus-leukemia (GVL) effect. Elevated FLT3 ligand levels following 

chemotherapy resulting in FLT3 receptor activation was postulated as a mechanism of 
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resistance to FLT-3 inhibitors.254 Ravandi et al studied the combination of azacytidine and 

sorfenib in 43 patients with refractory or relapsed FLT-3 ITD AML. The CRR was 43% 

(ORR 46%) but with a median duration of only 2.3 months.255

Sunitinib (SU11248) is another oral inhibitor of FLT3, c-kit, PDGFR, and VEGFR (1–2). It 

was evaluated in 15 patients with AML, who were given two doses of 50 mg/day and 75 

mg/day for a 4-week cycle followed by 1 or 2 weeks of rest. The responses were limited to 

partial remissions for short durations (4 to 16 weeks) and morphological remission in 1 

patient. These effects were mainly observed in patients with FLT3 mutations. The higher 

dose of 75 mg was associated with DLTs of cardiac failure, hypertension, and profound 

fatigue.256

Midostaurin (PKC412) is another FLT3 inhibitor that was examined in patients with 

relapsed or refractory AML and high-risk MDS (n = 95). They were given doses of 50 mg 

and 100 mg twice daily. The drug was well tolerated and induced hematological 

improvement in patients with wild-type and FLT3 mutations (42% and 71%, 

respectively).257 A subsequent phase 3 CALGB study was launched in 2008, in which 

patients aged 60 years or less with newly diagnosed AML with FLT3 mutations were 

randomized to either midostaurin with standard induction and consolidation therapy or 

standard chemotherapy and consolidation without midostaurin. The results are pending 

(NCT00651261). Finally, patients with activating mutations of FLT3 who are in first 

remission will be randomized (phase II) to either observation or mitostaurin maintenance 

after allogeneic stem cell transplantation (NCT01883362). This trial is just beginning and 

the results will be expected in the next 3–5 years.

Quizartinib (AC220) is a new selective FLT3 inhibitor with improved efficacy and a better 

pharmacokinetic profile. A phase 1 study of 76 patients with relapsed or refractory AML 

and who were treated with quizartinib (12 to 450 mg/day) revealed an ORR of 53% in the 

FLT3-ITD+ group (CR noted in 24%) and 14% in the FLT3-ITD− group.258 Quizartinib was 

further studied in a phase 2 trial of AML, in which an ORR of 68% was achieved in patients 

with refractory or relapsed AML, including those who relapsed after allogeneic bone 

marrow transplantation.259 Allogeneic transplantation after quizartinib response was 

performed in 35% of both FLT3-ITD+ and FLT3-ITD− cases. The OS at 1 year for FLT3-

ITD+ patients post-allogeneic stem cell transplant was 39% among those achieving complete 

and partial remission. Alternatively, the OS at 1 year without allogeneic stem cells 

transplantation after complete and partial remission were 25% and 5%, respectively.260 A 

phase 1 clinical trial is currently examining the role of Quizartinib as maintenance in AML 

post-allogeneic stem cell transplantation (NCT01468467).

On the basis of in vitro analyses of primary AML samples, it was concluded that increased 

mutant allelic burden (>50%) and disease relapse confer increased sensitivity to FLT3 

inhibitors.261 The type and location of FLT3 mutations have also influenced the therapeutic 

response.262–264 Parmar et al demonstrated resistance of CD34+FLT3-ITD+ leukemic 

progenitors in vitro to FLT3 inhibitors when cultured with stromal niche cells.265 

Alternatively, recent publications by Weisberg and colleagues demonstrated the benefits of 
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using multikinase targeting agents (e.g., AKT, JAK2, Abl) to overcome stromal-cell–derived 

protective effects and to sensitize AML blasts to FLT3 inhibitors.266,267

C-KIT

The stem cell factor receptor (c-kit) is a type III tyrosine kinase receptor encoded by the 

proto-oncogene kit. The binding of c-kit to its ligand, the stem cell factor (SCF), results in 

dimerization and autophosphorylation of the receptor and subsequent activation of multiple 

pro-survival signaling pathways, including PI3 kinase, RAS-RAF-MAP kinase, and JAK/

STAT.268,269 C-kit is expressed in normal hematopoietic cells and in more than 70% of 

patients with AML, and it plays important roles in cell differentiation, expansion, and 

survival.268,270,271 Constitutive activation of c-kit is most frequently due to point mutations 

in the receptor tyrosine kinase or to ITDs, and these were associated with an increased risk 

of relapse, drug resistance, and shorter survival (particularly with t(8;21) AML).272,273–276 

Imatinib is a SMI that blocks the ATP binding site of the tyrosine kinases c-kit, PDGFRα 

and PDGFRβ, and BCR-ABL fusion protein.277 The published data regarding the efficacy of 

imatinib for the treatment of refractory AML are inconsistent. This might be explained by 

variations in patient selection, c-kit mutational status and level of expression and/or 

dependency of leukemic cell survival on other genetic alterations.278–282 The addition of 

imatinib to the reinduction regimen of mitoxantrone, etoposide and cytarabine in a phase I/II 

trial (n=33) have shown a good response, particularly in patients with relapsed disease, and 

responses were correlated with AKT inhibition.283 Imatinib resistance due to the D816 c-kit 

and to other secondary mutations in c-kit that develop after exposure to imatinib has been 

described in patients with GIST and CML.282 In preclinical experiments, Santos et al 

showed an apoptotic/anti-proliferative response of AML progenitor cells to dasatinib, a new 

c-kit and src inhibitor, with an additive effect when administered in combination with 

chemotherapy.284 A recent CALGB/Alliance and other clinical trials are testing the role of 

dasatinib in patients with t(8;21) and inv16 AML, both AMLs that can be negatively 

impacted by activating mutations of c-kit (NCT00850382, NCT02013648, NCT01876953).

JAK2

Janus kinases (JAKs) are non-receptor tyrosine kinases that include JAK1, JAK2, and 

tyrosine kinase 2 (TYK2).285 JAKs are associated with the intracellular domain of the class 

1 and 2 cytokine receptors for the transmission of cytokine-induced growth and 

inflammatory signaling to the nucleus through the phosphorylation of the transcription 

factors STATs.286,287 Hyperactivated JAK/STAT signaling is frequently observed in 

patients with AML, and a negative impact of elevated phosphorylated JAK2 levels on 

treatment outcome was recently demonstrated.288–291 The activating mutation JAK2V617F 

was reported in 0.5% to 8% of de novo AML, with a higher frequency seen in patients with 

t(8;21) leukemia, in whom it is considered a cooperating mutation.290,292–295 Alterations in 

the negative regulators of JAK/STAT signaling have also been identified, including the 

downregulation of CD45 in patients with t(8;21) AML, and hypermethylation of the 

suppressor of cytokine signaling-1, and the protein inhibitor of activated stats-2 in 70% of 

AML population.296–298
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The treatment of refractory leukemia with ruxolitinib (Jakafi, a JAK1/2 inhibitor FDA 

approved for the treatment of advanced myelofibrosis) in a phase 2 trial resulted in CR in 

only 3 of the 38 participants.299 All responders had post-myeloproliferative AML, and the 

JAK2V617F mutation did not influence the treatment response. The toxicity was limited, and 

it manifested mainly as thrombocytopenia and increased transaminases. Hyperactivated 

JAK/STAT signaling was postulated as a mechanism of resistance to selective FLT3 

inhibitors.300 The simultaneous targeting of FLT3 and JAK/STAT pathways has shown 

synergistic effects against AML cell lines.300,301 Of note, lestaurtinib, a JAK2/FLT3 

inhibitor, failed to improve patient responses or survival in a phase 2 study when given 2 

days after salvage chemotherapy in patients with FLT3-mutant AML (n = 224). These 

results were attributed to unfavorable pharmacokinetics resulting in inadequate suppression 

of FLT3 or to post-chemotherapy elevation in FLT3 ligand levels (thus minimizing FLT3 

inhibition) and α1-acid glycoprotein (thus decreasing the free serum levels of the drug).302 

Another FLT3/JAK2 inhibitor, pacritinib (SB1518), demonstrated impressive preclinical 

activity in FLT3-TKI resistant AML, which has led to a phase 1/2 study in patients with 

advanced AML (NCT00719836).301

Polo-Like Kinases (Plk)

The Polo-like Kinases (Plks) from the family of serine/threonine kinases (Plk1-4) have 

emerged as important regulators of cytokinesis and cell cycle progression. But Plk1 

(STPK13) is the only isoform that has been shown to have a critical role in activation of 

Cdc2, centrosomal maturation and normal spindle formation.303 These family members, 

especially Plk1, are overexpressed in many tumors and have been thought to be logical 

therapeutic targets, especially in light of in vitro data suggesting that genetic deletion of Plk1 

or knockdown of Plks in cell lines results in either loss of viability or decrease in 

proliferation. Of note is that this occurred predominantly in those cell lines harboring K-

RAS mutationa.304 Although multiple Plk inhibitors are now in early phase clinical trials for 

non-hematologic malignancies, no studies have thus far been opened for the treatment on 

AML.

Hedgehog Pathway

Hedgehog signaling is critical for hematopoietic stem cell differentiation and survival. It is 

positively regulated by the transmembrane molecule, Smoothened (SMO), and the Glioma 

family of transcription factors (GLI1, GLI2 and GLI3). The transmembrane proteins, 

Patched (PTCH1 and PTCH2), have inhibitory effects through the suppression of SMO. 

When GLI2 and GLI3 are phosphorylated on serine and threonine by glycogen synthase 

kinase (GSK3β), protein kinase A, and casein kinase, they undergo C-terminal 

ubiquitination and proteasomal proteolysis, yielding truncated proteins that inhibit the 

transcription of downstream targets. Ligand binding results in PTCH and SMO dissociation 

followed by SMO accumulation and stabilization of GLI2 and GLI3, which translocate to 

the nucleus and induce transcription of GLI1, PTCH1, and PTCH2, which then mediate cell 

cycle progression, apoptosis, and stem cell renewal.305 Aberrant Hedgehog signaling can 

contribute to tumor initiation, angiogenesis, and cancer cell survival via gain-of-function 

SMO mutations, loss-of-function PTCH mutations, aberrant GLI2 and GLI3 expression, 
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upregulation of drug resistance genes (e.g., p-glycoprotein, MDR1, BCRP, and ABCG2) or 

by influencing the interaction of cancer stem cells with the stroma. 306–312 The expression of 

SHH, GLI1, and GLI2 has been demonstrated in AML blasts, and an anti-leukemic effect 

was observed in vitro in response to cyclopamine, an SMI of Hedgehog/SMO signaling.309

Minami and colleagues demonstrated that the SMO inhibitor PF-04449913 could inhibit 

leukemia-initiating cells as assessed by the serial xenotransplantation of primary AML 

blasts.313 The initial results from a phase 1 trial evaluating PF-04449913 in multiple 

hematological malignancies are suggestive of good safety profile and treatment response.314 

PF-04449913 could also reduce the resistance to Ara-C mediated by co-culturing of AML 

cell lines with bone marrow stromal cells in vitro.315 A clinical trial examining the effect of 

PF-04449913 with chemotherapy in patients with AML or MDS is currently underway 

(NCT01546038). In addition, a GLI2 inhibitor (GANT61) has recently shown promising 

anti-leukemic activity in vitro.316

WNT/β-Catenin Pathway

WNT is a glycoprotein that plays an important role in hematopoietic stem cell growth and 

renewal and in organogenesis during embryonic development.317 WNT is normally in an 

inactive state in adults, but it is overexpressed and activated in patients with multiple 

cancers.318 It is also implicated in epithelial-mesenchymal transition (EMT) that increases 

the metastatic potential of tumors.319 Growing evidence supports the role of the WNT/β-

catenin (canonical) pathway in AML. The activation of this pathway is induced by the 

engagement of WNT with the Frizzled receptor and its co-receptors, the lipoprotein-

receptor–related proteins (LRP5 and LRP6). This leads to the relocation of the multiprotein 

degradation complex (MDC), which consists of glycogen synthase kinase (GSK3β), 

adnomatous polyposis coli (APC) and axin proteins to the cell membrane resulting in 

suppression of MDC function. MDC is normally responsible for the phosphorylation of β-

catenin which is then targeted by the E3–ubiquitin–ligase complex for proteasomal 

degradation. Thus, the inactivation of MDC leads to the intracellular accumulation of β-

catenin, which translocates to the nucleus to be associated with the T-cell receptor factor and 

the lymphoid enhancer-binding factor 1 (LEF1) leading to upregulation of survivin, cyclin-

D1, C-MYC, and CD44 among others.320–323

β-catenin expression in primary AML specimens has been associated with WNT activation 

and reduced patient survival.324,325 Multiple strategies are being investigated to abrogate 

WNT/β-Catenin signaling; 1)disrupting ligand interaction with WNT and its co-receptors (a 

soluble ligand binding domain of Fzd8, Fzd8-CRD-FC); 2)blocking β-catenin accumulation 

via the inactivation of Dishevelled, a protein that interacts with Frizzled and that is involved 

in MDC inactivation (e.g., niclosamide); or by the upregulation of axin (e.g., XAV939, 

IWR-1); 3) blocking β-catenin nuclear localization by NSAID; 4)the inhibition of HGF-

mediated degradation of E-cadherin, a protein that normally complexes with β-catenin 

leading to β-catenin intracellular sequestration (e.g., PHA665752); 5)the inactivation of p38 

MAPK, a kinase that normally phosphorylates and inactivates GSK3 resulting in 

upregulation of Snail and the downregulation of E-cadherin (e.g., PH-797804); and 

6)blocking the formation and transactivation of β-catenin/LEF/TCF complex (e,g., ICG-001, 
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CGP049090, ZTM000990, PFK115-584).326–337 Several drugs targeting WNT/β-catenin 

signaling are undergoing clinical evaluation in AML (Table 1).

IDH1 and IDH2

Mutations in isocitate dehydrogenase (IDH1 and IDH2) are detected in around 6–16% and 

8–19% of AML patients, respectively.338 The incidence is higher in patients with normal 

cytogenetics and NPM1 mutations.338–340 But the data are conflicting regarding the 

prognostic significance of such mutations.338,341 However, recent studies suggested that an 

elevated serum level of 2-hydroxyglutarate protein (which is produced by IDH1 and IDH-2 

mutant cells, and is thought to induce DNA hypermethylation and accelerate 

leukemogenesis) is a marker of IDH mutation, and disease activity and a predictor of poor 

outcome.340,342–345 Cell line studies by Chaturvedi et al demonstrated suppression of 

growth and MAPK signaling in IDH1- mutant leukemic cells when treated with HMS-101 (a 

SMI of IDH1 mutation).346 AG-6780 is a SMI of IDH2/RI40Q mutation that has been 

shown to stimulate the expression of maturation markers in leukemic cells in vitro, 

reflecting induction of differentiation.347 AG-221, is another IDH2 inhibitor that is being 

evaluated as a single agent in patients with MDS, relapsed/refractory AML, and newly 

diagnosed, older AML patients carrying IDH2 mutation. The initial report of the phase I trial 

of AG-221 supports safety of the drug with early signs of efficacy. Responses were observed 

in 6 of 10 evaluable patients; with 2 CR (one of whom proceeded to allogeneic stem cell 

transplantation).348

Immunotherapy: Monoclonal and Bispecific Antibodies

Gemtuzumab ozogamicin (GO) is a humanized monoclonal antibody- drug conjugate 

directed against CD33, a transmembrane receptor expressed by the majority of AML 

blasts.349 An ORR of 26–30% in several Phase II trials of GO as monotherapy in relapsed 

AML led to the initial FDA approval in 2000. GO was withdrawn in 2010 due to increased 

death rate and lack of an additional benefit in a SWOG study. However, emerging data from 

subsequent phase III trials studying the incorporation of GO to standard chemotherapy 

indicated an improved disease-free and overall survival, especially in the low risk 

groups.350–352 It was presumed that such controversy is due to using lower doses of 

daunorubicin in the GO arm of the SWOG trial.353 Further, GO was associated with high 

response and prolonged remission in APL when used as monotherapy (substituting 

chemotherapy in older patients or in molecular relapse) and as an alternative to 

anthracyclines in combination with ATRA and arsenic trioxide (for induction therapy of 

high-risk APL).354–356

New technologies in protein engineering have led to the generation of promising immune-

based therapeutic agents that could recruit immune effector cells to tumor targets. Such 

molecules are called bispecific antibodies. They combine two antigen specificities for the 

simultaneous binding to specific markers expressed by effector cells and tumor cells, 

thereby leading to immune response activation for the selective eradication of target cells in 

an antigen-specific and MHC-unrestricted manner.357–359 Thus, bispecific antibodies could 

bypass some of the protective barriers of AML blasts against immune responses such as 
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MHC-downregulation, impaired immunological synapse formation between T cells and 

blasts, and expression of negative co-stimulatory ligands (such as PD-1L) on target AML 

and tumor cells. Currently, the most developed platforms of bispecific antibodies are the 

bispecific T-cell engagers (BiTEs) and the dual affinity re-targeting molecules (DARTs). A 

CD3 × CD33 BiTE has shown promising tumoricidal effects in vitro and in vivo preclinical 

models.360 Our group has investigated a CD3 × CD123 DART in AML and shown near-

complete eradication of the CD123+ human AML in the peripheral blood in a primary 

human AML xenotransplantation model.361 However, non-specific T cell activation and 

cytokine storm are potential risks with the use of such bi-specific agents. Blinatumomab 

(CD3 × C19 BiTE) has been shown to induce high rates of remissions in patients with B-

precursor acute lymphoblastic leukemia (B-ALL), but with prolonged B lymphocyte 

depletion and hypogammaglobulinemia.181–183 Cytokine release syndrome was observed, 

manifested with fever, rigors, and hypoxia, which could be ameliorated by steroid 

prophylaxis.184 Approximately 15% of patients experienced CNS complications, including 

convulsions and encephalopathy, which were reversible after drug withdrawal.362–364 Wong 

and colleagues demonstrated recently the activation of T cell cytotoxicity against B-

precursor CLL (B-CLL) following exposure to Blinatumomab in vitro.365 Blinatumomab is 

currently being evaluated in patients with ALL, B-NHL and B-CLL (NCT01466179).

Expert Commentary

Aberrant signal transduction has been considered the driving force of oncogenesis, with a 

high degree of complexity and cross-talk among the different pathways. The use of SMIs 

allows for the specific targeting of intracellular kinases and protein–protein interactions, 

which has been proven effective for improving the survival of GIST, APL and CML and 

which has prompted substantial interest in AML. However, in contrast with the preclinical 

results, there has been only a modest clinical benefit of SMIs in patients with AML, 

especially when used in the absence of chemotherapy. These limited clinical responses may 

involve the upregulation of the targeted gene, the selective expansion of a resistant clone (as 

a result of epigenetic alterations or primary or acquired mutations), a protective tumor 

microenvironment, the presence of other molecular aberrations that maintain leukemic cell 

proliferation and survival, or the properties of the cell lines or primary AML samples 

examined in the preclinical work.185 This argues for the importance of the combination with 

other targeting and cytotoxic agents while considering the potential toxicity that may result 

from the off-target effects on normal cells.

It is important to note that most of the data available are from early-phase studies. This 

preludes accurate interpretation in the light of the heterogenousity and small number of the 

patients, the short duration of follow up, selection bias, and the presence of multiple 

confounding factors that may influence treatment outcomes (e.g., drug exposure, clinical 

status, cytogenetics, interval of CR, and number of treatment cycles administered). In 

another aspect, the high remission rate of FLT3 inhibitors, although it is mostly short-

lasting, can be considered as a bridging strategy for transplantation. Combining SMIs with 

conventional chemotherapy is an interesting investigational approach in AML to reduce 

disease burden and thereby improve transplantation outcome. Studies have shown the 

immunomodulatory properties of some SMIs.366 For example, sunitinib down regulates the 
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expression of PDL-1 (by myeloid-derived suppressor cells {MDSCs}), and CTLA-4 and 

PD-1 (by tumor cells), reduces T-regulatory cells and MDSCs, and increases cytotoxic T 

cell expansion.367 It may therefore be reasonable to study such SMIs 1) as maintenance 

therapy post-transplantation to enhance GVL effect, prolong disease remission and eliminate 

minimal residual disease, and 2) to enhance the GVL effect of donor lymphocyte infusion 

for relapsed AML after transplantation. We also agree with previous reports that durable 

partial response and disease-stabilization of well tolerated SMIs are potential markers of 

clinical benefit, particularly in older patients, unfit for chemotherapy and transplantation, 

and in relapsed AML patients with limited therapeutic options.145

Five-year view

Compelling evidence supports the heterogenousity of AML, the importance of cytogenetics, 

and the use of gene expression profiling to stratify the risk and design a treatment plan that 

is based on the biological characteristics of the disease. It is intuitively appealing to 

incorporate molecular markers of prognosis and biochemical response on the basis of 

correlative scientific analyses of the relevant patient specimens for more personalized 

treatment decisions and clinical trial design. Understanding the redundancy of pro-survival 

pathways, tumor evolution, and cancerous cell interaction with protective niches is an 

ongoing challenge to the discovery and validation of new drug targets and combination 

therapies. Additional effort is needed to exploit the pharmacokinetics/dynamics and 

mechanisms of action and resistance of the current SMIs for enhanced therapeutic strategies 

in the future.
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Key issues

• Small molecule inhibitors have been developed to modulate the activity of 

proteins encoded by mutated or overexpressed genes in patients with acute 

myeloid leukemia.

• Clonal evolution, dependency on alternative signaling pathways, and 

pharmacodynamics are potential obstacles to the clinical development of small 

molecule inhibitors for the treatment of acute myeloid leukemia.

• Multi-targeting and the combination of small molecule inhibitor treatment with 

chemotherapy may improve treatment efficacy.

• The analysis of patient samples is an important tool to investigate resistance 

mechanisms and to discover and validate biological markers that could be used 

for the prediction and assessment of treatment response.
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Table.1

Selected Ongoing Clinical Trials of Small Molecular Inhibitors in Patients with Acute Myeloid Leukemia

Molecular Target Small Molecule
Inhibitor

Phase of the
study

Study Design ClinicalTrials.gov
Identifier

Aurora kinase Alisertib
(Aurora A Kinase inhibitor)

Phase 1 alisertib in combination with 7+3 
induction chemotherapy

NCT01779843

AMG 900 Phase 1 Single agent NCT01380756

Farnesyl transferase Lestaurtinib Phase 1/ 2 lestaurtinib + cytarabine + idarubicin 
relapsed and refractory AML

NCT00469859

Histone deacetylase Valproic acid Phase 1/ 2 ATRA+ Valproic acid+ low dose 
cytarabine

NCT00995332

Entinostat
(MS275)

Phase 2 Entinostat + 5AZC in elderly NCT01305499

Vorinostat Phase 2 Temozolomide + vorinostat in patients 
more than 60 years old with newly 
diagnosed or relapsed or refractory AML

NCT01550224

Vorinostat Phase 3 Cytarabine + daunorubicin hydrochloride 
or idarubicin+ cytarabine with or without 
vorinostat

NCT01802333

Proteasome inhibitors Bortezomib Phase 2 Comparing decitabine with decitabine + 
subcutaneously injected bortezomib in 
untreated AML

NCT01420926

Ixazomib Phase 2 Single agent for NPM1c relapsed/ 
refractory AML

NCT02030405

CXCR4 Plerixafor Phase 1 Plerixafor+ decitabine for induction and 
post-remission therapy in elderly

NCT01352650

Plerixafor Phase 1/2 Plerixafor+ GCSF + chemotherapy in 
refractory or relapsed AML

NCT00906945

BL-8040 Phase 2A, 
multicenter, 
open-label

Single agent therapy for relapsed and 
refractory AML

NCT01838395

BMS-936564 (Anti-CXCR4) Phase 1, 
multicenter, 
open-label

Single agent in relapsed AML, and B cell 
malignancies

NCT01120457

HSP90 Ganetespib Phase 1/2 To combine either the tyrosine kinase 
inhibitor AC220, plerixafor, or ganetespib 
with chemotherapy in older patients with 
AML and high-risk myelodysplastic 
syndrome (AML18 Pilot)

NCT01236144

FLT3 Crenolanib Phase 2 Single agent therapy in relapsed and 
refractory AML with FLT3- D835 
activating mutation

NCT01522469

Sorafenib Phase 1/2 Sorafenib + vorinostat, + bortezomib for 
AML with complex or poor-risk 
(monosomy 5/7) cytogenetics or FLT3-
ITD–positive mutation

NCT01534260

Sorafenib Phase 1 Single agent maintenance therapy after 
allogeneic stem cell transplantation.

NCT01398501

Sorafenib Phase 3 Bortezomib+ sorafenib for de novo AML 
with high allelic ratio FLT3-ITD disease

NCT01371981

Midostaurin
(PKC412)

Phase 2 Single agent therapy for c-kit or FLT3-
ITD mutated t(8;21) AML

NCT01830361
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Molecular Target Small Molecule
Inhibitor

Phase of the
study

Study Design ClinicalTrials.gov
Identifier

c-kit Nilotinib Phase 1/2 Nilotinib+ mitoxantrone, etoposide +high-
dose cytarabine (NOVE-HiDAC) 
induction chemotherapy followed by 
consolidation therapy for poor-risk 
patients up to 65 years old with c-kit 
positive AML

NCT01222143

Hedgehog pathway PF-04449913 Phase 2 Single agent therapy for high risk AML 
post-allogeneic stem cell transplantation 
relapse

NCT01841333

WNT pathway PRI-724 Phase 1/2 Single agent tharpy for advanced 
malignancies.

NCT01606579

CWP232291 Phase 1 Single agent therapy for relapsed and 
refractory AML, chronic myelomonocytic 
leukemia, myelodysplastic syndrome or 
high-risk myelofibrosis

NCT01398462

IDH1/2 AG-120 Phase 1 Monotherapy in advanced hematological 
malignancies with IDH1 mutation

NCT02074839

AG-221 Phase 1 Monotherapy in advanced hematological 
malignancies with IDH2 mutation

NCT01915498

AML, Acute myeloid leukemia; 5AZC, 5-Azacytidine.
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Table.2

Potential therapeutic targets in the tumor microenvirment

Molecular target Biological Significance and related Studies Refrences

VLA-4/VCAM-1 • BIO5192, is a VLA-4 antagonist that causes disruption of the intearction of VLA-4 adhesion 
molecule on progenotors with its ligand VCAM-1 on mesenchymal stroma cells, and results in 
significant progenitor cell mobilization.

• VCAM-1/VLA-4 intraction stimulates NFκB signaling and is linked to chemoresistance in 
AML.

[368, 369]

Angiogenesis • The addition of Bevcizumab to chemotherapy had no additive effect in a phase II tria of older 
AML patients with newly diagnosed AML.

• Inhibition of the PI3K/Akt/mTOR signaling reduced angioregulatory cytokine release from the 
tumor and the stroma cells (fibroblasts, osteoblasrts and endothelial cells), with an anti-
proliferative effect in vitro.

• The interaction between AML cells and endothelial cells enhances angiogenesis through 
upreglation of VEGF and Notch/Dll4 pathway.

[370–372]

HIF-1α • Upreglates VEGF and induces angiogenesis.

• Upregulates CXCR4 and CXCL12 leading to increased CXCR4-CXCL12-mediated chemotaxis, 
and migration of leukemic stem cell to the protective bone marrow niche.

• The cross-talk between HIF-1α and Notch pathway promotes leukemic stem cell survival.

• Echinomycin, an HIF inhibitor showed an anti-leukemic activity in vitro and in vivo.

[373–376]

Arginase II • Released by AML blasts.

• Associated with suppressed proliferation of T cells and CD34+ heamatopoietic progenitors, 
polarization of monocytes to immunosuppressive M2-like phenotype, and increased AML 
engrafment.

• The immunosuppresive effects could be revrersed with the use of the Arginase inhibitor NOHA, 
and the NO synthase inhibitor L-NMMA.

• Clinical development was delayed due to concens of drug toxicity.

[377, 378]

CD44 • Mediates cell-cell and cell-extracelluar matrix adhesion.

• Binding to hyaluronan ligand induces intracellur signaling.

• CD44 antibody eliminated leukemic stem cells in vivo, as demonstrated by serial transplantation 
experiment.

[373, 379]

VLA-4 , veruy late antigen-4; VCAM-1, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor; HIF-α, hypoxia induced 
factor-1 alpha; AML, acute myeloid leukemia.

Expert Rev Hematol. Author manuscript; available in PMC 2015 January 05.


