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Abstract

Computerized liver volumetry has been studied, because the current “gold-standard” manual 

volumetry is subjective and very time-consuming. Liver volumetry is done in either CT or MRI. A 

number of researchers have developed computerized liver segmentation in CT, but there are fewer 

studies on ones for MRI. Our purpose in this study was to develop a general framework for liver 

segmentation in both CT and MRI. Our scheme consisted of 1) an anisotropic diffusion filter to 

reduce noise while preserving liver structures, 2) a scale-specific gradient magnitude filter to 

enhance liver boundaries, 3) a fast-marching algorithm to roughly determine liver boundaries, and 

4) a geodesic-active-contour model coupled with a level-set algorithm to refine the initial 

boundaries. Our CT database contained hepatic CT scans of 18 liver donors obtained under a liver 

transplant protocol. Our MRI database contains 23 patients with 1.5T MRI scanners. To establish 

“gold-standard” liver volumes, radiologists manually traced the contour of the liver on each CT or 

MR slice. We compared our computer volumetry with “gold-standard” manual volumetry. 

Computer volumetry in CT and MRI reached excellent agreement with manual volumetry (intra-

class correlation coefficient = 0.94 and 0.98, respectively). Average user time for computer 

volumetry in CT and MRI was 0.57 ± 0.06 and 1.0 ± 0.13 min. per case, respectively, whereas 

those for manual volumetry were 39.4 ± 5.5 and 24.0 ± 4.4 min. per case, respectively, with 
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statistically significant difference (p < .05). Our computerized liver segmentation framework 

provides an efficient and accurate way of measuring liver volumes in both CT and MRI.

I. Introduction

Assessment of the liver volume is crucial in liver transplantation because graft size is a 

major predictor of success for both donor and recipient. Thus, accurate, noninvasive liver 

volumetry is necessary [1–4] for planning liver transplantation. CT or MRI is used for 

assessing the liver volume. Manual tracing of the liver boundary on each image is the 

current “gold-standard” technique for liver volume calculation. Although manual tracing 

provides accurate results, it is very time-consuming and subjective. It takes more than 30 

minutes on average to determine the liver volume for one patient [5]. In addition, manual 

volumetry has relatively large intra- and inter-observer variations. To address this issue, a 

number of researchers have developed computerized liver segmentation schemes in CT [5–

11]. However, there are fewer studies on ones for MRI [12–14]. We have developed a 

computerized scheme for liver volumetry for CT [15,16]. However, it was not clear that the 

same methodology was applicable to MRI liver volumetry. No study on the development of 

a computerized scheme for liver volumetry for both CT and MRI has been reported. Our 

purpose in this study was to develop a general framework for liver segmentation in both CT 

and MRI.

II. Liver Segmentation Framework

A. Anisotropic diffusion noise reduction

We have developed a computerized liver volumetry framework for both CT [15,16] and 

MRI [17] that is based on fast marching and geodesic active contour segmentation [18] 

coupled with level-set contour evolution [19], as shown in Fig. 1. To reduce noise without 

sacrificing detailed structures in the liver, we employed an anisotropic diffusion filter [20]. 

The anisotropic diffusion filter follows a differential equation called a modified curvature 

diffusion equation [21]:

(1)

where ∇ is the gradient operator, f is a CT or MR image,

(2)

is the diffusion coefficient, and K is a user-specified conductance parameter to control the 

filter’s sensitivity to edge contrast.

B. Scale-specific gradient magnitude filter

A scale-specific gradient magnitude filter was applied to the noise-reduced CT or MR 

images to enhance the liver boundaries for the succeeding level-set-based segmentation. The 

scale of enhancing edges is controlled by the standard deviation σ of a Gaussian filter 
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applying to the noise-reduced image. The following differential operator was used for 

calculating the magnitude of the image gradient at each voxel:

(3)

where fG is a Gaussian filtered image.

C. Fast-marching initial segmentation

Segmentation of the liver from a CT or MR volume was accomplished by use of a two-step 

approach involving fast marching segmentation and a geodesic active contour model [18] 

with a level-set methodology [19]. The fast-marching algorithm [22] was used to estimate an 

initial rough contour of the liver. The fast-marching level-set algorithm [22] is a simplified, 

efficient version of general level-set algorithms. In the fast-marching level-set algorithm, the 

evolution of a closed contour is expressed as a function of time, t, with speed, F(p), in the 

normal direction at a point, p, on the contour. The time at which the contour crosses a point, 

p, is obtained by solving the following partial differential equation, called the Hamilton-

Jacobi equation:

(4)

where ψ(p, t) is a level-set function, with the initial level set at t=0 given by

(5)

and Γ a closed contour (curve) in R2 space.

D. Level-set geodesic active contouring

Next, a geodesic-active-contour level-set segmentation refined the initial contour (i.e., the 

initial level set) determined by the fast-marching algorithm to approximate the liver 

boundaries more precisely. The evolution of a geodesic-active-contour level-set function, 

ψ(p, t), is controlled by the following partial differential equation:

(6)

where A is an advection vector function, F is an expansion (or speed) function, and Z is a 

spatial modifier function for the mean curvature κ. The user-defined scalar constants α, β 

and γ allow us to determine the extent to which each of the three functions (advection, 

expansion, and curvature) affect the change, dψ/dt, of the contour of the level set, ψ.

III. Databases of Liver CT and MRI

A. CT Cases

Our database for CT consisted of dynamic contrast-enhanced hepatic CT scans of 18 living 

liver donors at the University of Chicago Medical Center. The patients’ mean age was 33.1 
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± 10.3 years. There were 10 women (mean age, 33.2 ± 10.9) and 8 men (mean age, 33.0 ± 

10.2). Scans were obtained under a liver transplant protocol with a multi-detector CT system 

with a 16-, 40-, or 64-channel detector scanner (Brilliance, Philips Medical Systems, 

Amsterdam, Netherlands). Nonionic contrast medium (iohexol, Omnipaque 350; Nycomed 

Amersham, Princeton, NJ) of 120–150 cc (mean, 125 ± 8) was administered to the patients 

intravenously for acquisition of arterial- and portal-venous-phase CT images. The CT 

scanning parameters included collimation of 3 (n=11), 4 (n=4), or 5 mm (n=3) and 

reconstruction intervals of 2.5 (n=2), 3.0 (n=13), or 4.0 mm (n=3). Each reconstructed CT 

slice had a matrix size of 512 × 512 pixels, with an in-plane pixel size of 0.53–0.85 mm 

(mean: 0.68 ± 0.08).

B. MR/Cases

Twenty-three patients (14 male and 9 female patients; ages ranged from 46 to 84 years) were 

scanned in the supine position with 1.5T MRI scanners (Signa HDx/HDxt, GE Medical 

Systems, Milwaukee, WI; and Achieva, Philips Medical Systems, Cleveland, OH) at the 

University of Chicago Medical Center. Intravenous gadolinium contrast agent (8–20 mL; 

mean: 15.3±4.2 mL) was administrated. Post-contrast MR images were obtained by use of 

TI-weighted liver acquisition with volume acceleration (LAV A) or T1-weighted high-

resolution isotropic volume examination (THRIVE) sequence. The scanning parameters 

included collimation of 5 mm (for the GE system) or 4 mm (for the Philips system) and 

reconstruction intervals of 2.5 mm (for the GE system) or 2 mm (for the Philips system). 

Each MR slice had a matrix size of 256×256, 384×384, or 512×512 pixels with an in-plane 

pixel size ranging from 1.17 to 1.72 mm. The 23 cases in our database had liver diseases 

(hepatocellular carcinoma in 11 cases and metastasis in 12 cases).

C. “Gold-standard” manual segmentation

The manual liver contours in CT and MR images were traced carefully by board-certified 

abdominal radiologists on each slice containing the liver. The number of slices in each CT 

case and MR case ranged from 52 to 77 (average: 62.3) and from 88 to 120 (average: 97.9), 

respectively. The time required to complete the manual tracing was recorded. To calculate 

the entire liver volume for each case, we summed the volumes obtained by multiplying the 

areas of the manually traced regions in each slice by the reconstruction interval. Liver 

volumes obtained by use of our computerized liver segmentation framework were compared 

with manual liver volumes, used as the “current gold standard.”

IV. Results

Figure 2 illustrates the intermediate images taken from each step of our framework for an 

example case. The noise in the original CT image in Fig. 2(a) was reduced by the 

anisotropic diffusion filter, while maintaining the liver structures such as the portal vein and 

the liver border, as shown in Fig. 2(b). A scale-specific gradient magnitude filter was 

applied to the noise-reduced image to enhance the liver boundary, as shown in Fig. 2(c). 

Finally, the liver was segmented by use of the fast-marching segmentation followed by the 

geodesic active contour level-set segmentation, as shown in Fig. 2(d). After the 

segmentation, the median filter was applied for removal of impulse noise in the extracted 
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liver. Liver volumes were calculated using the segmented liver regions. The same liver 

segmentation framework was applied to MR cases where parameters of our framework had 

been modified to accommodate general MR images. In other words, a different single set of 

parameters was determined specific to MRI.

The mean liver volume obtained by use of our framework for CT cases was 1,504 cc, with a 

standard deviation of 407 cc (range: 956–2,381 cc), whereas the mean “gold-standard” 

manual volume was 1,457 cc with a standard deviation of 357 cc (range: 984–2,439 cc), 

with a mean absolute difference of 105 cc (7.2%). On the other hand, the mean gold-

standard manual volume for MR cases was 1,710 cc with a standard deviation of 401 cc 

(range: 1,013–2,529 cc), while the mean volume of our computerized framework was 1,697 

cc with a standard deviation of 400 cc (range: 1,120 – 2,418 cc).

The relationship between the computer-estimated volumes and the “gold-standard” manual 

volumes is shown in Fig. 3. The two volumetrics for CT and MRI reached excellent 

agreement (the intra-class correlation coefficient was 0.94 and 0.98, respectively). Pearson’s 

product moment correlation coefficient for CT and MRI were 0.94 and 0.98, respectively, at 

a non-statistically-significant level (p=11.5 and 23.65). For CT cases, the mean absolute 

difference and the percentage volume error (E) were 104 cc and 7.0%, respectively. On the 

other hand, the mean absolute difference and the percentage volume error for MR cases 

were 56 cc and 3.6%, respectively. The overall mean of the Dice coefficients was calculated 

as 93.6±1.7%, and the accuracy of liver segmentation was 99.4±1.4%.

Figure 4 illustrates computerized liver segmentation and “gold-standard” manual 

segmentation for a CT case. The computerized liver segmentation agrees almost perfectly 

with the “gold-standard” manual liver segmentation for a slice through the superior portion 

of the liver. Figure 5 illustrates computerized liver segmentation and “gold-standard” 

manual segmentation for a MR case. The computerized liver segmentation agrees almost 

perfectly with the “gold-standard” manual segmentation.

The average processing time by our automated framework for CT cases was 3.6 ± 1.5 

minutes per case (range: 1.7–7.0) on a computer (Intel, Xeon, 2.66 GHz). Because the time 

that a radiologist spent in automated volumetry was only the time for providing several 

initial points within the liver, we considered it as user time. The average user time for the 

computer volumetry was 0.57 ± 0.06 minutes per case. The difference was statistically 

significant (p < .025). On the other hand, the average processing time by our framework for 

MR cases was 1.03 ± 0.13 minutes per case (range: 0.9–1.5 min/case), whereas that for the 

manual method was 24.0±4.4 minutes per case (range: 18–30 min/case). The difference was 

statistically significant (p<0.001).

V. Conclusion

We developed a computerized framework for segmenting the liver in CT and MRI by using 

a fast marching and geodesic active contour segmentation coupled with level-set algorithms. 

Liver volumetrics determined by our computerized framework agreed excellently with 

“gold-standard” manual volumetrics in both CT and MRI. Our computerized framework 
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required substantially less completion time, compared with manual segmentation. Our 

framework provides an efficient and accurate way of measuring liver volumes in CT and 

MRI; thus, it would be useful for radiologists in their measurement of liver volumes.
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Figure 1. 
Flow chart of our computerized liver segmentation framework for both CT and MRI.
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Figure 2. 
Illustration of the resulting images at each step in our framework. (a) Original CT image. (b) 

Anisotropic diffusion noise reduction. (c) Scale-specific gradient magnitude filter. (d) 

Geodesic active contour segmentation.
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Figure 3. 
Relationship between computer-estimated volumes and “gold-standard” manual volumes. 

(a) CT cases. (b) MRI cases. The computer and manual volumetrics for CT and MRI 

reached an excellent agreement (the intra-class correlation coefficient was 0.94 and 0.98, 

respectively).
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Figure 4. 
Illustrations of computerized liver segmentation and “gold-standard” manual liver 

segmentation for CT. (a) Original CT image. (b) Computerized liver segmentation (thick 

solid contour) and “gold-standard” manual segmentaton (thin dashed contour).
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Figure 5. 
Illustrations of computerized liver segmentation and “gold-standard” manual segmentation 

for MRI. (a) Original MR image. (b) Computerized liver segmentation (red contour) and 

“gold-standard” manual segmentation (blue contour).
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