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Abstract

7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dGuo) is a useful biomarker of oxidative stress. 

However, its analysis can be challenging because 8-oxo-dGuo must be quantified in the presence 

of dGuo, without artifactual conversion to 8-oxo-dGuo. Urine is the ideal biological fluid for 

population studies, since it can be obtained non-invasively and it is less likely that artifactual 

oxidation of dGuo can occur because of the relatively low amounts that are present when 

compared with hydrolyzed DNA. Stable isotope dilution liquid chromatography/selected reaction 

monitoring-mass spectrometry (LC-SRM/MS) with [15N5]-8-oxo-dGuo as internal standard 

provided the highest possible specificity for 8-oxo-dGuo analysis. Furthermore, artifact formation 

was determined by addition of [13C10
15N5]-dGuo and monitoring its conversion to [13C10

15N5]-8-

oxo-dGuo during the analytical procedure. 8-Oxo-dGuo concentrations were normalized for inter-

individual differences in urine flow by analysis of creatinine using stable isotope dilution LC-

SRM/MS. A significant increase in urinary 8-oxo-dGuo was observed in tobacco smokers when 

compared with non-smokers using either simple urinary concentrations or after normalization for 

creatinine excretion. The mean levels of 8-oxo-dGuo were 1.65 ng/mL and the levels normalized 

to creatinine were 1.72 μg/g creatinine. Therefore, stable isotope dilution LC-SRM/MS analysis of 

urinary 8-oxo-dGuo complements urinary isoprostane (isoP) analysis for assessing tobacco-

smoking-induced oxidative stress. This method will be particularly useful for studies that employ 

polyunsaturated fatty acids, where reduction in arachidonic acid precursor could confound isoP 

measurements.
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Introduction

Reactive oxygen species (ROS) generated during normal cellular metabolism are detoxified 

by a suite of antioxidant enzymes including superoxide dismutases, catalases, glutathione 

peroxidases, and thioredoxins as well as by dietary antioxidants [1–5]. Oxidative stress 

occurs when ROS overwhelm the endogenous detoxification pathways such as during 

inflammation [6], viral and bacterial infections [6], metabolism of endogenous molecules 

such as estrogens [7], metabolism of drugs such as etoposide [8] metabolism of 

environmental chemicals such as benzo[a]pyrene [9], or tobacco smoking [10]. During 

oxidative stress, ROS can cause oxidative damage to cellular DNA [1, 11] as well as to the 

trinucleotide precursors of DNA [12]. 8-Oxo-dGuo is by far the most studied of the DNA-

adducts that arise through ROS-mediated oxidative damage to DNA [13, 14].

Previous studies have revealed that significant amounts of dGuo are excreted in the urine 

[15–20]. This raised the possibility that adventitious oxidation of dGuo to 8-oxo-dGuo could 

occur during the urine extraction and analysis as we have previously shown for cellular 

DNA [11, 21]. It is noteworthy that rigorous feeding studies have shown that dietary 8-oxo-

dGuo is not excreted in the urine [22, 23] and a number of studies have demonstrated that 

urinary 8-oxo-dGuo does not arise from cell death [24–26]. However, it is of significant 

concern that urinary 8-oxo-dGuo measurements could not be validated in the carbon 

tetrachloride rat model, one of the most widely accepted animal models of oxidative stress 

[27]. In spite of this potential problem, urinary 8-oxo-dGuo has become widely accepted as 

a measure of oxidative DNA-base damage [14]. This is because urinary 8-oxo-dGuo is quite 

stable [19] and urine can be readily acquired through a non-invasive procedure. 

Furthermore, there are multiple methods available for the analysis of urinary 8-oxo-dGuo 

including, enzyme-linked immunosorbent assay (ELISA) [18, 24, 28, 29], stable isotope 

dilution gas chromatography-mass spectrometry (GC-MS) [22, 25, 26, 30], and high 

performance LC coupled with electrochemical detection (ECD) [15, 18, 19, 31–33]. LC-

MS-based methodology has proved to be particularly useful for urinary 8-oxo-dGuo analysis 

and so the approach described in this critical methods paper is based upon concepts 

described in these previous studies [16, 17, 20, 28, 34–58].

The clean-up methods employed for the urine before injection into the mass spectrometer 

have included: offline SPE and immunoaffinity column purification [33], two-steps of off-

line clean-up followed by HPLC/ECD [32] or offline HPLC pre-purification followed by 

GC-MS analysis [30]. Newer methods have used a SPE clean-up step, coupled with LC-

SRM/MS analysis [16, 53, 58]. Concentrations determined by LC-MS were correlated with 

those obtained by ELISA measurements using an assay where the primary antibody 

incubation was conducted at 4 °C [44]. Interestingly, although the mean amounts determined 

by LC-MS and ELISA were similar (Table 1), there were substantial inter-individual 
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differences [44]. In a similar study conducted by Garratt et al. [28], there was a much greater 

difference between the LC-MS and ELISA values at both 4 °C and 37 °C (Table 1). The 

differences that were observed between LC-MS- and ELISA-based assays can be explained 

in part by the effect of urea on the antibody-antigen interaction that occurs in the ELISA 

[29]. As a result, the reported urinary 8-oxo-dGuo concentrations obtained by ELISA-based 

methodology have questionable validity [14]. This was particularly evident when urine 

samples are analyzed from individuals with a pathological condition such as cystic fibrosis 

[28].

Principles

Three base excision repair enzymes, human MutY homolog (hMutY) [59], hOGG1 [60], and 

hOGG2 [61] are involved in the repair of 8-oxo-dGuo-derived lesions in DNA, whereas, the 

hydrolase enzyme mammalian homologue of E. coli MutT (MTH) 1 removes 8-oxo-dGuo 

from the trinucleotide pool [40, 62]. It is this latter pathway that is considered to be the 

major source of urinary 8-oxo-dGuo (Fig. 1) [12]. Stable isotope dilution LC-SRM/MS 

methods are potentially more specific than ELISA-based methodology for the analysis of 8-

oxo-dGuo because they can separate the individual oxidized DNA- and RNA-derived base-

adducts. In general, a triple quadrupole (TQ) mass spectrometer operated in the SRM mode 

is employed for the analysis of urinary 8-oxo-dGuo. In this mode of operation, a precursor 

ion is pre-selected and resolved in quadrupole (Q) 1 of the TQ, fragmented by collision 

induced dissociation (CID) in Q2, and the resultant product ion is analyzed in Q3. Under 

optimal operating conditions, the precursor to product ion “reaction” is monitored many 

times per second, resulting in extremely reproducible chromatographic peak shape and 

intensity. In this way, a stable isotope labeled analog internal standard is used to establish 

the presence of an endogenous analyte using both the LC retention time and MS/MS mass 

selection of the TQ platform. This level of specificity cannot be attained with any other 

bioanalytical technique employed for biomarker analysis.

An authentic stable isotope labeled analog of an analyte has identical physicochemical 

properties to the endogenous analyte except for its mass. The term stable isotope dilution 

refers to the use of a stable isotope labeled internal standard spiked into a sample at a known 

concentration. The response ratio between the analyte and labeled compound can then be 

interpolated onto a standard curve to calculate the absolute amount of analyte in the 

unknown sample. Therefore, the stable isotope internal standard offers a means to verify the 

presence of the analyte and normalize experimental variables such as sample storage and 

matrix suppression. The use of structural analogs as internal standards, rather than authentic 

isotope labeled analogs, is undesirable because they will have different retention times and 

ionization properties compared with the analyte of interest. Therefore, differential ionization 

can occur between an analyte and a structural analog in the source of the mass spectrometer. 

This difference arises in part from suppression of ionization by constituents present in the 

biofluid that is being analyzed and can lead to significant imprecision during quantitative 

analyses [63]. Unfortunately, suppression effects vary with chromatographic retention time 

and with biofluid samples from different individuals [64]. It is therefore extremely difficult 

to standardize the amount of suppression occurring within any particular sample [65].
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The ideal control offered by an authentic isotope labeled internal standard is not always 

possible because for many biomarkers only deuterated and structural analogs are available. 

Deuterated forms of a compound are not perfect internal standards, since there is a small but 

significant separation of the deuterium analog internal standards and their corresponding 

endogenous protium forms during LC analysis [66]. This slight difference in 

chromatography can result in differential suppression or enhancement of ionization and 

affect the quality of the analytical data. Fortunately, [15N5]- and [13C10
15N5]-dGuo analogs 

are available so the corresponding labeled 8-oxo-dGuo internal standards can be readily 

synthesized [11, 34, 53, 67]. Previous reports have described the use of both in-house 

synthesized stable isotope labeled internal standards as well as commercially available 

[15N5]-8-oxo-dGuo [14, 58] for the quantification of 8-oxo-dGuo in urine. Typically, [15N]- 

and [13C]-labeled internal standards have identical LC retention times to the corresponding 

protium forms [68]. Structural analogs are even less representative of the endogenous 

compound, since in addition to differences in LC retention time, the structural analog can 

show different absorptive losses. Selective binding to active sites on glassware or other 

surfaces can occur during extraction and LC analysis, leading to significant analyte loss. 

Whereas, a structural analog might not account for this loss, an isotope labeled internal 

standard has identical physicochemical properties, and is therefore lost at the exact same rate 

as the endogenous analyte. Due to this feature of stable isotope analogs, they may act as 

carriers, preventing the loss of trace amounts of analyte during extraction and analyses [69]. 

Finally, variability introduced during compound isolation can be fully controlled by an 

authentic isotope labeled standard [68].

As noted in previous studies (including our own) the specificity of LC-SRM/MS analysis of 

8-oxo-dGuo arises from the use of a unique transition from the protonated molecule (MH+) 

at m/z 284 to a product ion derived from the loss of the protonated ribose moiety (m/z 116) 

at m/z 168 [11, 34, 53, 58]. Similar specific transitions 5 Da higher in mass were employed 

for the internal standard [15N5]-8-oxo-dGuo from m/z 289 to m/z 173, and for the marker of 

artifactual oxidation ([13C10
15N5]-8-oxo-dGuo) 15 Da (MH+) and 5 Da (product ion) higher 

in mass were used from m/z 299 to m/z 178. Thus, three parameters have to be correct in 

order to satisfy the analytical constraints required for identification of urinary 8-oxo-dGuo. 

The analyte must have the correct MH+ at m/z 284, the correct product ion at m/z 168 and an 

identical retention time to the internal standard (Fig. 2). This potentially provides higher 

specificity than can be obtained with HPLC-ECD because an internal standard with identical 

physicochemical properties cannot be used with this methodology. Interfering substances 

present in the urine were removed using SPE columns. A parallel standard curve was 

obtained in urine compared with a standard curve constructed in water (Fig. 3). Parallelism 

of the urine and water standard curves, which is important when analyzing endogenous 

analytes such as 8-oxo-dGuo, provided further validation of the assay specificity [68].

Validation of the critical methods assay was conducted on 5 separate days with five 

replicates at the lower limit of quantitation (LLOQ, 0.2 ng/mL), as well as with low quality 

control (LQC, 0.4 ng/mL), middle quality control (MQC,4 ng/mL) and high quality control 

(HQC, 20 ng/mL) samples. Precision and accuracy were within the range of ± 15 % and 

between 85 % and 115 %, respectively. Analysis of study samples was conducted using 
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standard curves covering the range of concentrations found in the urine (Fig. 2) together 

with two LQC samples, two MQC samples, and two HQC samples. Assays were repeated if 

the QC values are outside the range of 15 % for precision or 85 % to 115 % for accuracy. 

Artifact formation was determined by addition of [13C10
15N5]-dGuo and monitoring its 

conversion to [13C10
15N5]-8-oxo-dGuo during the analytical procedure (Fig. 2). 8-Oxo-

dGuo concentrations were normalized for inter-individual differences in urine flow by 

analysis of creatinine using a stable isotope dilution LC-SRM/MS assay that was based upon 

a previously reported procedure [16]. These methods can then be employed to determine 

whether there is a relationship between urinary 8-oxo-dGuo and tobacco smoking as a 

biomarker of tobacco smoke-induced oxidative stress.

Materials and methods

Chemicals and supplies

1 [15N5]-7,8-Dihydro-8-oxo-2′-deoxyguanosine ([15N5]-8-oxo-dGuo) (Cambridge 

Isotope Laboratories Inc. Cat. No. NLM-6715).

2 [13C10
15N5]-dGuo (Cambridge Isotope Laboratories Inc. Cat. No. CNLM-3900).

3 8-oxo-dGuo (Sigma Aldrich Cat. No. H5653).

4 Desferal (Sigma Aldrich Cat. No. D9533).

5 Formic acid (Sigma Aldrich Cat. No. 56302).

6 Sodium chloride (Sigma Aldrich Cat. No. S7653).

9 Chelex 100 resin (Bio-Rad Cat. No. 143-2832).

10 Methanol, acetonitrile, water-all Optima grades were from Fisher Scientific.

11 Oasis HLB (30 mg, 1 mL) (Waters Cat. No. 94225).

12 Conical glass tubes 10 mL (Kimble Cat. No 73790-10).

Study participants and urine samples

Urine samples were obtained from non-smokers (n=48) or from cigarette smokers (n=85) 

who had smoked for a minimum of 6 years and a maximum for 60 years (mean = 34 years). 

Samples, which were provided during a clinic visit, were not collected at pre-determined 

times after the last cigarette had been smoked. Subjects were healthy individuals 

participating in an on-going study approved by the University of Pennsylvania Institutional 

Review Board (Protocol # 800924). Smoking status was assigned based on questionnaires, 

which requested information on smoking history, packs/day, and use of other tobacco 

products. All of the smoking subjects were cigarettes smokers except for one individual who 

also smoked one cigar/day. Urine samples were collected in 20 mL polypropylene tubes 

fitted with a screw cap. The tubes were capped, labeled and urine samples were stored in 

−80 °C until analysis.
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Sample preparation

1. Positive Displacement Automated 1 mL pipette (Mettler Toledo, Cat. No. 

MR-1000).

2. Hamilton gas tight glass syringe (Fisher Scientific, Cat. No. 13-684-81).

3. 24-port SPE Vacuum manifold (Fisher Scientific, Cat. No. 03-251-253).

4. Centrifuge (Sorvall Cat. No. 75004377).

5. Vortex (Fisher Scientific, Cat. No. 02-215-360).

6. Analytical nitrogen evaporator 24 sample positions (Fisher Scientific, Cat. No. 

NC9892499).

Liquid-chromatography

1. Phenomenex Kinetex C18 column (100 × 2.1 mm I.D., 2.6 μm) (Phenomenex, Cat. 

No. 00D-4462-AN).

2. Guard column C18 cartridge (0.5u × 0.004 in) (Phenomenex, Cat. No. AF0-8497).

3. HPLC. An Agilent 1200 series HPLC pump (Agilent Technologies, Santa Clara, 

CA) was used. It was equipped with an autosampler and thermo controller (set at 

4°C). The column heater was set at 30 °C.

4. The mobile phase A was water with 0.02 % formic acid and mobile phase B was 

acetonitrile. The linear gradient was as follows: 3 % B at 0 min, 3 % B at 2 min, 20 

% B at 8 min, 80 % at 8.1 min, 80 % at 11 min, 3 % B at 11.1 min and 3 % B at 15 

min with a flow rate of 0.2 mL/min. Injections of 10 μL were made.

Mass spectrometry

An Agilent Technologies 6460 triple quadrupole mass spectrometer equipped with a 

JetStream source, was operated in positive mode, but any triple quadruple instrument could 

be used. The column effluent was diverted to waste for the first 3 min and the last 5 min of 

the analysis to prevent extraneous material from entering the mass spectrometer. The 

Agilent 6460 operating conditions were as follows: gas temperature was set at 275°C and 

the gas flow was set to 8 L/min. Sheath gas temperature was 400 °C and the sheath gas flow 

was set to 10 L/min. The capillary voltage was set to 3500 V. The nozzle voltage was set to 

1000 V. The following transitions were monitored: m/z 284 (MH+) → m/z 168 [MH+-2′-

deoxyribose+H] transition for 8-oxo-dGuo and m/z 289 (MH+) → m/z 173 [MH+-2′-

deoxyribose+H] transition for [15N5]-8-oxo-dGuo. For dGuo and m/z 268 (MH+) → m/z 152 

was monitored and for the labeled [13C10
15N5]-dGuo m/z 283 (MH+) → m/z 162. Any 

labeled [13C10
15N5]-8-oxo-dGuo that was formed during samples preparation from the 

added [13C10
15N5]-dGuo was monitored by the transition m/z 299 (MH+) → m/z 178.
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Protocol

Preparation of standards and calibration curves solutions

Individual primary stock solutions of 8-oxo-dGuo and [15N5]-8-oxo-dGuo (1 μg/mL) were 

prepared in methanol and stored at −80°C. For [13C10
15N5]-dGuo a stock of 10 μg/mL was 

prepared in methanol as well. Working solutions were prepared by serial dilutions with 

methanol. One large urine sample (500 mL) was obtained from a never-smoker and used for 

the preparation of quality control (QC) samples. Calibration curves were prepared by 

spiking 8-oxo-dGuo in 250 μL of urine from a never-smoker who had not been exposed to 

second-hand smoke with 250 μL of 1 M NaCl with 100 μM desferal in Chelex-treated water, 

followed by the addition of 20 μl of internal standard solution (500 ng/mL). 8-oxo-dGuo was 

analyzed in the range 0.4 to 20 ng/mL. Daily eight point calibration samples (0, 0.2, 0.4, 1, 

2, 4, 10 and 20 ng/mL) were prepared and analyzed together with two each of low, medium 

and high QC samples (LQC 1, MQC 4 and HQC 20 ng/mL, respectively). Concentrations 

are expressed as means ± standard deviation.

Sample preparation

The urine samples were stored at −80 °C until the night before analysis. The samples were 

thawed at 4 °C overnight and a 250 μL aliquot was taken from each tube after centrifuged 

for 3 min (10,000 × g) to remove any precipitates. With a set up containing two vacuum 

manifolds it is best to do at one time 34 urine samples, 8 calibration point samples and 6 QC 

samples.

1. Label one set of conical glass tubes with calibration, QC and urine sample 

numbers.

2. Add with the glass syringe 20 μL of internal standard solution (500 ng/mL) and 20 

μL of [13C10
15N5]-dGuo 10 μg/mL to all of the tubes.

3. Add with the glass syringe 10 μL of corresponding standard solutions to calibration 

and QC labeled tubes.

4. Add 250 μL of 1 M NaCl with 100 μM desferal in Chelex-treated water to all tubes 

with the automated 1 mL pipette.

5. Add 250 μL of water with 100 μM desferal in Chelex-treated water to all tubes that 

were used for calibration and QC samples.

6. Add 250 μL from each thawed urine sample to the tube labeled with the 

corresponding number with the automated pipette.

7. Vortex each tube for 5 sec.

SPE preparation

1. Label Oasis HLB cartridges exactly as the labeled tubes for samples.

2. Insert them in the vacuum manifold.

3. Pre-conditioned with 1 mL of acetonitrile added with the automated 1 mL pipette 

without vacuum.
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4. Pre-conditioned with 1 mL of water added with the automated 1 mL pipette without 

vacuum.

5. Load the samples without vacuum. Change the pipette tip for every sample!

6. Wash with 1 mL Chelex treated water added with the automated 1 mL pipette 

without vacuum.

7. Wash with 1 mL 5 % methanol in Chelex treated water added with the automated 1 

mL pipette without vacuum.

8. With the vacuum attached, the cartridges are dried under vacuum for 5 min.

9. Insert a labeled set of clean glass tubes to collect the samples.

10. Add to the SPE tubes 0.7 mL of 50% acetonitrile with the automated pipette to 

elute the analytes. It might be necessary to apply the vacuum for few seconds to get 

the cartridges wet, but the elution should be done without vacuum.

11. Remove the tubes from the manifold and dry the samples with the nitrogen 

evaporator.

HPLC sample preparation

1. Add 100 μL of water/acetonitrile (97/3) to the tubes containing the dried-down 

samples using an automated pipette.

2. Vortex for 10 sec.

3. Label the HPLC vials.

4. Move the re-suspended samples into the labeled HPLC with the pipette. Change the 

tip for every sample!

Calculations and Expected Results

Usually each analytical instrument has software that would do the calibration and QC 

samples automatically, after which would calculate the amount of 8-oxo-dGuo in all the 

analyzed samples. The instrument software package is used to calculate the peak areas based 

on the correct retention time. The peak areas for 8-oxo-dGuo and [15N5]-8-oxo-dGuo are 

shadowed in Fig 2. To get the calibration curve, one would calculate the area ratio for each 

of the calibration points, and those ratios were plotted against known concentrations of 8-

oxo-dGuo (Fig. 3). From the calibration point one would find out the equation of the line in 

the form: , where y represents the area ratio and x the concentration.

For an unknown sample, once could find the y value by doing the area ratio of the analyte 

(8-oxo-dGuo) area over the internal standard ([15N5]-8-oxo-dGuo) area. Whit the calculated 

y, one could back-calculate the concentration
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Using this method, urine samples from apparently health smokers (85) and non-smokers 

(48) were analyzed (Fig. 4). The concentration of 8-oxo-dGuo was found to vary widely, 

between 0.6 ng/mL to 15.7 ng/mL for the smokers (Fig. 4A). The concentrations in the non-

smoker subjects were closer in range, varying between 0.2 ng/mL to 4.1 ng/mL (Fig. 4A). 

The mean urinary 8-oxo-dGuo concentration for 48 non-smokers was 1.65 ng/mL with a 

standard deviation (SD) of 1.68 ng/mL and the mean concentration for 85 smokers was 2.83 

ng/mL with a SD of 2.67 ng/mL (Fig. 4A). When the values were normalized for creatinine 

concentrations, there was little effect on the range of values. The mean of the 8-oxo-dGuo 

concentrations in non-smokers’ urine was 0.72 nmol/mmol creatinine (SD = 0.45 nmol/

mmol creatinine) and the mean concentration in the smokers’ urine was significantly higher 

at 1.07 nmol/mmol creatinine (SD, 1.50 nmol/mmol creatine) (Fig. 4B). These values 

correspond to a mean of 1.72 μg/mg creatinine (SD = 1.10 μg/mg creatinine) for the non-

smokers and a mean of 2.21 μg/mg creatinine (SD = 1.79 μg/mg creatinine) for the smokers. 

There was no significant difference in the urinary creatinine concentrations between non-

smokers and smokers. The mean values for non smokers (n = 48) were 1.22 mg/mL (SD = 

1.16 ng/mL) or 10.77 mM (SD = 10.25 mM) and for smokers (n=84) were 1.42 mg/mL (SD 

= 1.10 ng/mL) or 12.59 mM (SD = 9.81 mM).

Caveats

DNA damage, which occurs during oxidative stress, results in the formation of 8-oxo-dGuo 

[9, 11, 70]. The 8-oxo-dGuo is excised from DNA by glycosylase-mediated repair, which 

results in the release of 8-oxo-guanine rather than 8-oxo-dGuo [60, 61]. Therefore, analyses 

of urinary 8-oxo-guanine cannot distinguish between RNA and DNA-damage. In contrast, 

oxidative damage to the trinucleotide pool results in the formation of 8-oxo-2′-deoxyguosine 

triphosphate (8-oxo-dGTP), which is hydrolyzed by MTH1 to release 8-oxo-2′-

deoxyguosine monophosphate (8-oxo-dGMP) rather than 8-oxo-guanine [62]. The 8-oxo-

dGMP is then converted to 8-oxo-dGuo by cellular phosphatases [71]. Therefore, urinary 8-

oxo-dGuo concentrations are thought to reflect oxidative damage to the trinucleotide pool 

rather than to DNA [12]. Ideally, it would be best to analyze urinary 8-oxo-dGuo in 24 h 

urine samples so that the possible changes in the glomerular filtration rate (GFR) during that 

period would have a minimal effect on the concentration of 8-oxo-dGuo. Unfortunately, this 

is often not possible in biomarker studies as it is difficult to collect urine for an entire 24-h 

period. Spot urine samples are frequently used as an alternative because they are simple to 

collect and pose minimal subject inconvenience. However, spot urinary 8-oxo-dGuo 

concentrations may fluctuate because of many factors (such hydration status) that are 

unrelated to its rate of formation. This means that changes in urinary 8-oxo-dGuo 

concentrations from shorter collections times might simply reflect modulation in GFR 

during a particular collection period.

The concept of creatinine adjustment to normalize for changes in GFR, which was originally 

proposed by Vought et al. [72], depends upon daily urinary creatine excretion by a healthy 

individual being constant [73]. Creatinine is formed non-enzymatically from creatine 

(primarily in the muscle) at an almost steady-state rate of approximately 2 % of the creatine 

pool per day [74]. Creatine itself can be formed endogenously from glycine and arginine 

through the transamidinase-mediated intermediate formation of guanidinoacetate, which is 
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then converted into to creatine by N-guanidinoacetate methyltransferase-mediated 

methylation by S-adenosylmethionine [75]. The rate of creatine synthesis is closely 

regulated by feedback inhibition of transamidinase. Thus, on a creatine-free vegetarian diet, 

this pathway is fully activated, and adequate guanidinoacetate is synthesized from its amino 

acid precursors [76]. Conversely, creatine that is ingested from meat, partially or totally 

represses transamidinase to modulate its endogenous production. Creatinine is formed non-

enzymatically from creatine through cyclization and dehydration or by the intermediate 

formation of phosphocreatine. The resulting creatinine then diffuses into the circulation and 

appears in the urine after glomerular filtration.

Daily urinary excretion of creatinine derived from muscles occurs at a rate of approximately 

1 g/day (1 g/20 kg of muscle mass) [77]. The normal daily urinary excretion of creatinine is 

relatively stable for an individual, with a daily variation of between 4 % and 8 %; however, 

there are substantial inter-individual differences, which are dependent upon sex, height, 

weight, race, age, and other factors [78]. This means that considerable uncertainty could be 

introduced when using creatinine excretion is used as a normalization factor. Nevertheless, 

adjustment for creatinine concentration is commonly used for ELISA-, GC-MS-, HPLC-

ECD- and LC-MS-based assays of urinary 8-oxo-dGuo (Table 1) [16, 28, 32, 39, 44, 46, 

52]. Conversely, total urinary nicotine concentrations, which provide an index of smoking 

topography, are rarely normalized for creatinine [79]. Another possible confounding factor 

is the general use of colorimetric assays for the analysis of urinary creatinine. We have 

found that this underestimates creatinine concentrations by 20 % (data not shown) when 

compared with LC-MS-based methodology similar to that described by Teichert et al. [16]. 

Therefore, it is conceivable that additional uncertainties exist in much of the 8-oxo-dGuo 

data that has been published when the simple colorimetric assay was employed to analyze 

urinary creatinine.

Alternative approaches have been advocated such as using timed urine collections and then 

normalizing to the urinary creatinine excretion rate rather than its concentrations. However, 

there could still be uncertainty in the actual timing of the urine collections unless they are 

conducted under carefully controlled conditions. A more innovative approach has been 

proposed by Warrack et al. for use in metabonomic analyses of urinary metabolites. This 

involves normalization to urine osmolality, which is a direct measure of total endogenous 

metabolic output [80]. Using this normalization method, it was possible to reduce variation 

among biological replicates, which was not corrected by the use of creatinine concentrations 

[80]. There are as yet no reports on the use of either of these approaches for the analysis of 

urinary 8-oxo-dGuo. Therefore, in future studies, it will be necessary to evaluate the utility 

of these methods for normalizing urinary 8-oxo-dGuo concentrations in spot urine samples 

to take account of potential intra- and inter-individual differences in GFR.
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Abbreviations

8-oxo-dGuo 7,8-Dihydro-8-oxo-2′-deoxyguanosine

CID collision-induced-dissociation

dGuo 2′-deoxyguanosine

dGMP 2′-deoxyguanosine-monophosphate

dGTP 2′-deoxyguanosine-triphosphate

ECD electrochemical detection

ELISA enzyme-linked immunosorbent assay

GC-MS gas chromatography-mass spectrometry

hMutY human MutY homolog

hOGG human 8-oxo-guanine glycosylase

isoP isoprostane

HPLC high performance LC

HQC high quality control

LC-SRM/MS liquid chromatography/selected reaction monitoring-mass spectrometry

LLOQ lower limit of quantitation

LQC lowest quality control

MQC middle quality control

MTH mammalian homologue of E. coli MutT

Q quadrupole

SPE solid phase extraction

TQ triple quadrupole
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Highlights

• 7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dGuo) an oxidative stress 

biomarker.

• Urine is the ideal biological fluid for analyzing 8-oxo-dGuo in population 

studies.

• High specificity with LC-SRM/MS and [15N5]-8-oxo-dGuo internal standard.

• Artifact formation can be determined by addition of [13C10
15N5]-dGuo.

• A significant increase in urinary 8-oxo-dGuo was observed in tobacco smokers.
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Figure 1. 
Scheme for the formation of urinary 8-oxo-dGuo.
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Figure 2. 
Calibration curve constructed with authentic standards, performed in water and urine.
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Figure 3. 
LC-SRM/MS chromatograms from a non-smoker’s urine sample.
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Figure 4. 
8-Oxo-dGuo concentrations in urine from apparently healthy non-smokers and smokers. (A) 

Concentrations in ng/mL urine. B. Concentrations normalized to creatinine (nmol/mmol 

creatinine). A two-tailed, unpaired t-test with Welch’s correction for unequal variances, and 

a confidence interval of 95 % was used to determine statistical significance.
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