
Optimal Tests of Treatment Effects for the Overall Population 
and Two Subpopulations in Randomized Trials, using Sparse 
Linear Programming

Michael Rosenblum*, Han Liu†, and En-Hsu Yen‡

Michael Rosenblum: mrosenbl@jhsph.edu
*Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 
USA, 21205

†Department of Operations Research and Financial Engineering, Princeton University, Princeton, 
NJ, USA, 08544

‡Department of Computer Science, University of Texas at Austin, TX, USA, 78712

Abstract

We propose new, optimal methods for analyzing randomized trials, when it is suspected that 

treatment effects may differ in two predefined subpopulations. Such subpopulations could be 

defined by a biomarker or risk factor measured at baseline. The goal is to simultaneously learn 

which subpopulations benefit from an experimental treatment, while providing strong control of 

the familywise Type I error rate. We formalize this as a multiple testing problem and show it is 

computationally infeasible to solve using existing techniques. Our solution involves a novel 

approach, in which we first transform the original multiple testing problem into a large, sparse 

linear program. We then solve this problem using advanced optimization techniques. This general 

method can solve a variety of multiple testing problems and decision theory problems related to 

optimal trial design, for which no solution was previously available. In particular, we construct 

new multiple testing procedures that satisfy minimax and Bayes optimality criteria. For a given 

optimality criterion, our new approach yields the optimal tradeoff between power to detect an 

effect in the overall population versus power to detect effects in subpopulations. We demonstrate 

our approach in examples motivated by two randomized trials of new treatments for HIV.

1 Introduction

An important goal of health research is determining which populations, if any, benefit from 

new treatments. Randomized trials are generally considered the gold standard for producing 

evidence of treatment effects. Most randomized trials aim to determine how a treatment 

compares to control, on average, for a given population. This results in trials that may fail to 

detect important differences in benefits and harms for subpopulations, such as those with a 

certain biomarker or risk factor. This problem affects trials in virtually all disease areas.

Consider planning a randomized trial of an experimental treatment versus control, where 

there is prior evidence that treatment effects may differ for two, predefined subpopulations. 

Such evidence could be from past trials or observational studies, or from medical knowledge 

of how the treatment is conjectured to work. Our goal is to construct a multiple testing 
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procedure with optimal power to detect treatment effects for the overall population and for 

each subpopulation. We consider both Bayes and minimax optimality criteria. Existing 

multiple testing procedures in general do not satisfy either of these criteria.

It is a challenging problem to construct optimal multiple testing procedures. According to 

Romano et al. (2011), “there are very few results on optimality in the multiple testing 

literature. ” The problems we consider are especially challenging since we require strong 2 

control of the familywise Type I error rate, also called the studywide Type I error rate, as 

defined by Hochberg and Tamhane (1987). That is, we require that under any data 

generating distribution, the probability of rejecting one or more true null hypotheses is at 

most a given level α. We incorporate these constraints because control of the studywide 

Type I error rate is generally required by regulatory agencies such as the U.S. Food and 

Drug Administration and the European Medicines Agency for confirmatory randomized 

trials involving multiple hypotheses (FDA and EMEA, 1998).

Strong control of the familywise Type I error rate implies infinitely many constraints, i.e., 

one for every possible data generating distribution. The crux of our problem is constructing 

multiple testing procedures satisfying all these constraints and optimizing power at a given 

set of alternatives. In the simpler problem of testing only the null hypothesis for the overall 

population, the issue of infinitely many constraints can be sidestepped; this is because for 

most reasonable tests, strong control of the Type I error is implied by control of the Type I 

error at the global null hypothesis of zero average treatment effect. In contrast, when dealing 

with multiple populations, procedures that control the familywise Type I error at the global 

null hypothesis can have quite large Type I error at distributions corresponding to a positive 

effect for one subpopulation and a nonpositive effect for another. For this reason, 

optimization methods designed for a single null hypothesis, such as those of Jennison 

(1987); Eales and Jennison (1992); Banerjee and Tsiatis (2006); and Hampson and Jennison 

(2013), do not directly apply to our problem. Though in principle these methods could be 

extended to handle more Type I error constraints, such extensions are computationally 

infeasible in our problems, as we discuss in Section 7.

Our solution hinges on a novel method for transforming a fine discretization of the original 

multiple testing problem into a large, sparse linear program. The resulting linear program 

typically has over a million variables and constraints. We tailor advanced optimization tools 

3 to solve the linear program. To the best of our knowledge, this is the first computationally 

feasible method for constructing Bayes or minimax optimal tests of treatment effects for 

subpopulations and the overall population, while maintaining strong control of the 

familywise Type I error rate.

We apply our approach to answer the following open questions: What is the maximum 

power that can be gained to detect treatment effects in subpopulations if one is willing to 

sacrifice x% power for detecting an effect in the overall population? What is the minimum 

additional sample size required to increase power for detecting treatment effects in 

subpopulations by x%, while maintaining a desired power for the overall population?
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A motivating data example is given in Section 2. We define our problem in Section 3, 

present our method for solving it in Section 4, and demonstrate this method in Section 5. We 

explain how we overcome computational challenges in our problem in Sections 6 and 7. 

Section 8 extends our method to decision theory problems. The sparse linear programming 

algorithm we use is given in Section 9. We conclude with a discussion of limitations of our 

approach and future directions for research in Section 10.

2 Example: Randomized Trials of New Antiretroviral Treatments for HIV

We demonstrate our approach in scenarios motivated by two recently completed randomized 

trials of maraviroc, an antiretroviral medication for treatment-experienced, HIV positive 

individuals (Fätkenheuer et al., 2008). There is suggestive evidence from these trials that the 

treatment benefit may differ depending on the suppressive effect of an individual’s 

background therapy, as measured by the phenotypic sensitivity score (PSS) at baseline. The 

estimated average treatment benefit of maraviroc among individuals with PSS less than 3 

was larger than that among individuals with PSS 3 or more. This pattern has been observed 

for other antiretroviral medications, e.g., in randomized trials of etravirine (Katlama et al.,

2009). We refer to those with PSS less than 3 as subpopulation 1, and those with PSS 3 or 

more as subpopulation 2. In the combined maraviroc trials, 63% of participants are in 

subpopulation 1.

In planning a trial of a new antiretroviral medication, it may be of interest to determine the 

average treatment effect for the overall population and for each of these subpopulations. We 

construct multiple testing procedures that maximize power for detecting treatment benefits 

in each subpopulation, subject to constraints on the familywise Type I error rate and on 

power for the overall population.

3 Multiple Testing Problem

3.1 Null Hypotheses and Test Statistics

Consider a randomized trial comparing a new treatment (a=1) to control (a=0), in which 

there are two prespecified subpopulations that partition the overall population. Denote the 

fraction of the overall population in subpopulation k ∈ {1, 2} by pk. We assume each patient 

is randomized to the new treatment or control with probability 1/2, independent of the 

patient’s subpopulation. Below, for clarity of presentation, we focus on normally distributed 

outcomes with known variances. In Section A of the Supplementary Materials, we describe 

asymptotic extensions allowing a variety of outcome types, and where the variances are 

unknown and must be estimated.

For each subpopulation k ∈ {1, 2} and study arm a ∈ {0, 1}, assume the corresponding 

patient outcomes are independent and distributed as , for each patient i = 

1, 2, … nka. For each subpopulation k ∈ {1, 2}, define the population average treatment 

effect as Δk = µk1 − µk0. For each k ∈ {1, 2}, define H0k to be the null hypothesis Δk ≤ 0, i.e., 

that treatment is no more effective than control, on average, for subpopulation k; define H0C 

to be the null hypothesis p1Δ1+p2Δ2 ≤ 0, i.e., that treatment is no more effective than 5 

control, on average, for the combined population.
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Let n denote the total sample size in the trial. For each k ∈ {1, 2} and a ∈ {0, 1}, we assume 

the corresponding sample size nka = pkn/2; that is, the proportion of the sample in each 

subpopulation equals the corresponding population proportion pk, and exactly half of the 

participants in each subpopulation are assigned to each study arm. This latter property can 

be approximately achieved by block randomization within each subpopulation.

We assume the subpopulation fractions pk and the variances  are known. This implies the 

following z-statistics are sufficient statistics for (Δ1,Δ2):

for .

We also consider the pooled z-statistic for the combined population,

We then have ZC = ρ1Z1 + ρ2Z2, for , which is the covariance of 

Zk and ZC. The vector of sufficient statistics (Z1,Z2) is bivariate normal with mean 

 and covariance matrix the identity matrix. We call (δ1, δ2) the 

non-centrality parameters of (Z1,Z2). For Δmin > 0 the minimum, clinically meaningful 

treatment effect, let  and  be the non-centrality parameters that correspond to Δ1 = 

Δmin and Δ2 = Δmin, respectively.

Define δC = EZC = ρ1δ1 + ρ2δ2. We use the following equivalent representation of the null 

hypotheses above:

(1)

For any (δ1, δ2), denote the corresponding set of true null hypotheses in the family ℋ = 

{H01,H02,H0C} by ℋTRUE(δ1,δ2); for each k ∈ {1, 2}, this set contains H0k if and only if δk 

≤ 0, and contains H0C if and only if ρ1δ1 + ρ2δ2 ≤ 0.

3.2 Multiple Testing Procedures and Optimization Problem

The multiple testing problem is to determine which subset of ℋ to reject, on observing a 

single realization of (Z1,Z2). The pair (Z1,Z2) is drawn from the distribution Pδ1,δ2, defined 

to be the bivariate normal distribution with mean vector (δ1,δ2) and covariance matrix the 2 

× 2 identity matrix.

Let  denote an ordered list of all subsets of the null hypotheses ℋ. Consider multiple 

testing procedures for the family ℋ, i.e., maps from each possible realization of (Z1,Z2) to an 

element of , representing the null hypotheses rejected upon observing (Z1,Z2). It will be 
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useful to consider the class ℳ of randomized multiple testing procedures, defined as the 

maps M from each possible realization of (Z1,Z2) to a random variable taking values in . 

Formally, a randomized multiple testing procedure is a measurable map M = M(Z1,Z2, U) 

that depends on (Z1,Z2) but also may depend on an independent random variable U that has 

a uniform distribution on [0, 1]. Define the class of deterministic multiple testing procedures 

ℳdet to be all M ∈ ℳ such that for any (z1, z2) ∈ ℝ2 and u, u′ ∈ [0, 1], we have M(z1, z2, u) 

= M(z1, z2, u′); for such procedures, we let M(z1, z2) denote the value of M(z1, z2, u), which 

does not depend on u.

The reason we use randomized procedures, rather than restricting to deterministic 

procedures, is computational. We show in Section 4 that the discretized version of our 

optimization problem reduces to a linear program, when we optimize over a class of 

randomized procedures. In contrast, if we restrict to deterministic procedures, the 

optimization problem reduces to an integer program. Linear programs are generally much 

easier to solve than integer programs. This computational advantage is especially important 

in our context where we have a large number of variables and constraints. Though we 

optimize over randomized procedures, it turns out that each optimal solution in the examples 

in Section 5.1 is a deterministic procedure, as we discuss in Section 10. For conciseness, we 

write “multiple testing procedure” instead of “randomized multiple testing procedure,” with 

the understanding that unless otherwise stated, we deal with the latter throughout.

Let L denote a bounded loss function, where L(s; δ1,δ2) represents the loss if precisely the 

subset s ⊆ ℋ is rejected when the true non-centrality parameters are (δ1, δ2). An example is 

the loss function that imposes a penalty of 1 unit for failing to reject the null hypothesis for 

each subpopulation when the average treatment effect is at least the minimum, clinically 

meaningful level in that subpopulation. This loss function can be written as 

, where 1[C] is the indicator function taking value 1 

if C is true and 0 otherwise. In Section D of the Supplementary Materials, we consider 

modifications of L̃ where the penalty is proportional to the corresponding treatment benefit, 

up to a given maximum penalty. Our general method can be applied to any bounded loss 

function that can be numerically integrated with respect to δ1, δ2 by standard software with 

high precision. In particular, we allow L to be non-convex in (δ1, δ2), which is the case in all 

our examples.

We next state the Bayes version of our general optimization problem. Let Λ denote a prior 

distribution on the set of possible pairs of non-centrality parameters (δ1, δ2). We assume Λ is 

a distribution with compact support on (ℝ2, ℬ), for ℬ a σ-algebra over ℝ2.

Constrained Bayes Optimization Problem—For given α > 0, β > 0, , L, and 

Λ, find the multiple testing procedure M ∈ ℳ minimizing

(2)

under the familywise Type I error constraints: for any (δ1, δ2) ∈ ℝ2,
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(3)

and the power constraint for the combined population:

(4)

The objective function (2) encodes the expected loss incurred by the testing procedure M, 

averaged over the prior distribution Λ. The constraints (3) enforce strong control of the 

familywise Type I error rate.

The corresponding minimax optimization problem replaces the objective function (2) by

(5)

for ℘ a subset of ℝ2 representing the alternatives of interest.

4 Solution to Constrained Bayes Optimization Problem

The above constrained Bayes optimization problem is either very difficult or impossible to 

solve analytically, due to the continuum of Type I error constraints that must be satisfied. 

Our approach involves discretizing the constrained Bayes optimization problem. We 

approximate the infinite set of constraints (3) by a finite set of constraints, and restrict to 

multiple testing procedures that are constant over small rectangles. This transforms the 

constrained Bayes optimization problem, which is non-convex, into a large, sparse linear 

program that we solve using advanced optimization tools. In Section 6, we bound the 

approximation error in the discretization using the dual linear program; we apply this to 

show the approximation error is very small in our examples.

We first restrict to the class of multiple testing procedures ℳB ⊂ ℳ that reject no 

hypotheses outside the region B = [−b, b] × [−b, b] for a fixed integer b > 0. Intuitively, if 

we select b large enough that (Z1,Z2) ∈ B with high probability under the prior Λ, we may 

expect the Bayes risk of the optimal solution among procedures in ℳB to be within a small 

value ∈ of the optimal solution over ℳ. For the examples in Section 5.1, we verify that it is 

sufficient to set b = 5 to achieve this at ε = 0.005, as shown in Section 6. In Section B of the 

Supplementary Materials, we show how to augment the structure of an approximately 

optimal procedure among ℳB to allow rejection of null hypotheses outside of B.

We next restrict to a finite subset of the familywise Type I error constraints (3). These will 

be selected from points in G = {(δ1, δ2) : δ1 = 0 or δ2 = 0 or ρ1δ1 + ρ2δ2 = 0}, which 

represents the pairs of non-centrality parameters at which the first subpopulation has zero 

average benefit, the second subpopulation has zero average benefit, or the combined 

population has zero average benefit. Our restricting to G is motivated by the conjecture that 

the worst-case, familywise Type I error occurs on the union of the boundaries of the null 

spaces for H01,H02,H0C. We verified this holds for each example in Section 5.1. We also 

prove in Section 5.2 that for a class of multiple testing procedures with certain intuitively 

Rosenblum et al. Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



appealing properties, the worst-case, familywise Type I error always occurs at some (δ1, δ2) 

∈ G. Let G′ denote a finite subset of G; e.g., for some τ1, τ2 > 0, we could set G′ to be

In Section 6, we discuss why certain carefully selected, finite subsets G′ of G lead to 

solutions that are very close to optimal for the original problem, and that satisfy all 

constraints of the original problem.

The next step is to define a subclass of multiple testing procedures that are constant over 

small rectangles. For fixed τ = (τ1, τ2), for each k, k′ ∈ ℤ, define the rectangle Rk,k′ = [kτ1, (k

+1)τ1)×[k′τ2, (k′+1)τ2). Let ℛ denote the set of such rectangles in the bounded region B, i.e., 

ℛ = {Rk,k′ : k, k′ ∈ ℤ,Rk,k′ ⊂ B}. Define ℳℛ to be the subclass of multiple testing 

procedures M ∈ ℳB that, for any u ∈ [0, 1] and rectangle r ∈ ℛ, satisfy 

 whenever (z1, z2) and ( ) are both in r. For any procedure M 

∈ ℳℛ, its behavior is completely characterized by the finite set of values m = 

{mrs}r∈ℛ,s∈ , where

(6)

For any r ∈ ℛ, it follows that

(7)

Also, for any set of real values {mrs}r∈ℛ,s∈  satisfying (7), there is a multiple testing 

procedure M ∈ ℳℛ satisfying (6), i.e., the procedure M that rejects precisely the subset of 

null hypotheses s with probability mrs when (Z1,Z2) ∈ r.

The advantage of the above discretization is that if we restrict to procedures in ℳℛ, the 

objective function (2) and constraints (3)–(4) in the constrained Bayes optimization problem 

are each linear functions of the variables m. This holds even when the loss function L is 

non-convex. To show (2) is linear in m, first consider the term inside the integral in (2):

(8)

(9)

The objective function (2) is the integral over Λof (8), which by the above argument equals
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(10)

The constraints (3) and (4) can be similarly represented as linear functions of m, as we show 

in Section C of the Supplementary Materials.

Define the discretized problem to be the constrained Bayes optimization problem restricted 

to procedures in ℳℛ, and replacing the familywise Type I error constraints (3) by those 

corresponding to (δ1, δ2) ∈ G′. The discretized problem can be expressed as:

Sparse Linear Program Representing Discretization of Original Problem (2)–(4)

For given α > 0, β > 0, , τ, b, G′, L, and Λ, find the set of real values m = 

{mrs}r∈ℛ,s∈  minimizing (10) under the constraints:

(11)

(12)

(13)

(14)

The constraints (11) represent the familywise Type I error constraints (3) restricted to (δ1, 

δ2) ∈ G′ and M ∈ ℳℛ; (12) represents the power constraint (4) restricted to ℳℛ. We refer 

to the value of the Bayes objective function (10) evaluated at m as the Bayes risk of m. 

Denote the optimal solution to the above problem as , which through (6) 

characterizes the corresponding multiple testing procedure which we denote by M* ∈ ℳℛ.

The constraint matrix for the above linear program is quite sparse, that is, a large fraction of 

its elements are 0. This is because for any r ∈ ℛ the constraint (13) has only | | nonzero 

elements, and for any r ∈ ℛ, s ∈ , the constraint (14) has only 1 nonzero element. The 

power constraint (12) and the familywise Type I error rate constraints (11) generally have 

many nonzero elements, but there are relatively few of these constraints compared to (13) 

and (14).

The coefficients in (11) and (12) can be computed by evaluating the bivariate normal 

probabilities Pδ1,δ2 [(Z1,Z2) ∈ r]. This can be done with high precision, essentially 

instantaneously, by standard statistical software such as the pmvnorm function in the R 

package mvtnorm. For each r ∈ ℛ, s ∈ , the term in curly braces in the objective function 

(10) can be computed by numerical integration over (δ1, δ2) ∈ ℝ2 with respect to the prior 
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distribution Λ. We give R code implementing this in the Supplementary Materials. The 

minimax version (5) of the optimization problem from Section 3.2 can be similarly 

represented as a large, sparse linear program, as described in Section J of the Supplementary 

Materials. We show in Section 9 how to efficiently solve the resulting discretized problems 

using advanced optimization tools.

5 Application to HIV Example in Section 2

5.1 Solution to Optimization Problem in Four Special Cases

We illustrate our method by solving special cases of the constrained Bayes optimization 

problem. We use the loss function L̃ defined in Section 3.2. The risk corresponding to L ̃ has 

an interpretation in terms of power to reject subpopulation null hypotheses. We define the 

power of a procedure to reject a null hypothesis H ∈ ℋ as the probability it rejects at least H 

(and possibly other null hypotheses). For any non-centrality parameters 

and any M ∈ ℳℛ, the risk Eδ1,δ2 L̃ (M(Z1,Z2, U); δ1, δ2) equals one minus the power of M 

to reject H01 under (δ1, δ2); an analogous statement holds for subpopulation 2. For 

, the risk equals the sum of one minus the power to reject each 

subpopulation null hypothesis.

We specify the following prior on the non-centrality parameters , 

where w = (w1,w2,w3,w4) is a vector of weights. Let λ1, λ2, λ3, λ4 be point masses at 

, and ( ) respectively. We consider two cases below. In the 

first, called the symmetric case, we set the subpopulation proportions p1 = p2 = 1/2 and use 

the symmetric prior Λ1 defined by weights w(1) = (0.25, 0.25, 0.25, 0.25). In the second, 

called the asymmetric case, we set p1 = 0.63 and use the prior Λ2 defined by weights w(2) = 

(0.2, 0.35, 0.1, 0.35); this case is motivated by the example in Section 2, where 

subpopulation 1 is 63% of the total population and is believed to have a greater likelihood of 

benefiting from treatment than subpopulation 2. In Section D of the Supplementary 

Materials, we give examples using a continuous prior distribution on ℝ2.

For each case, we solved the corresponding linear program using the algorithm in Section 9. 

The dimensions of the rectangles in the discretization are set at τ = (0.02, 0.02), and we set b 

= 5. We describe how G′ is determined in Section 6.2. Each discretized linear program has 

approximately 1.5 million variables and 1.8 million constraints; all but a couple hundred 

constraints are sparse. We give the precise structure of this linear program in Section 9.

We set α = 0.05 and set each variance  to be a common value σ2. Let  denote the 

uniformly most powerful test of the single null hypothesis H0C at level α, which rejects H0C 

if (Z1,Z2) is in the region RUMP = {(z1, z2) : ρ1z1 + ρ2z2 > Φ−1(1 − α)}, for Φ the standard 

normal cumulative distribution function. To allow a direct comparison with , we set 

the total sample size n equal to nmin, defined to be the minimum sample size such that 

 has 90% power to reject H0C when the treatment benefit in both populations equals 

Δmin. We round all results to two decimal places.
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Consider the symmetric case. Let  denote the solution to the discretized 

problem at H0C power constraint 1 − β. For 1 − β = 0.9, any multiple testing procedure that 

satisfies the power constraint (4) and the familywise Type I error constraint (3) at the global 

null hypothesis (δ1, δ2) = (0, 0) must reject H0C whenever (Z1,Z2) ∈ RUMP and cannot reject 

any null hypothesis when (Z1,Z2) ∉RUMP, except possibly on a set of Lebesgue measure 

zero; this follows from Theorem 3.2.1 of Lehmann and Romano (2005). Since this must 

hold for the optimal procedure  what remains to be determined is what regions in 

RUMP correspond to  rejecting H01,H02, both, or neither. The rejection regions for 

, computed using our method, are depicted in Figure 1a. For each s ∈ , the 

region where  rejects precisely s is shown in a different color.

Consider weakening the H0C power constraint from 1 − β = 0.9 to 0.88. The optimal solution 

 is shown in Figure 1b. Unlike , the procedure  has 

substantial regions outside RUMP where it rejects a single subpopulation null hypothesis. 

However, there is a small region in RUMP where  does not reject any null 

hypothesis. Also, in some parts of RUMP corresponding to one z-statistic being large and 

positive while the other is negative,  only rejects the null hypothesis 

corresponding to the large z-statistic, while  rejects both this and H0C.

The optimal solutions  and  illustrate a tradeoff between power for 

H0C and for H01,H02, as shown in the first two columns of Table 1. For each procedure, the 

first row gives one minus the Bayes risk, which is a weighted sum of power under the three 

alternatives ( ), and ( ); these alternatives correspond to the 

treatment only benefiting subpopulation 1, only benefiting subpopulation 2, and benefiting 

both subpopulations, respectively, at the minimum, clinically meaningful level. The 

contributions from each of these are given in rows 2–4 of Table 1. There is no contribution 

from the alternative (0, 0) since the loss function L̃ is identically zero there.

The upshot is that using the procedure  in place of  involves 

sacrificing 2% power for H0C at ( ), but gaining 11% power to reject H01 at 

 plus an identical increase in power to reject H02 at . We further discuss this 

tradeoff over a range of β values in Section 5.3.

Next consider the asymmetric case, corresponding to p1 = 0.63 and prior Λ2. Let 

 denote the solution to the corresponding discretized problem at 1 − β. Figures 

1c and 1d show the optimal solutions  and . The main difference 

between these and the solutions for the symmetric case is that  and 

have larger rejection regions for H01 and smaller rejection regions for H02. The power 

tradeoff between  and  is given in the last two columns of Table 1. 

Sacrificing 2% power for H0C at ( ) leads to an increase in 12% power to reject H01 

at , and an increase in 5% power to reject H02 at .
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5.2 Monotonicity Properties and Approach for Verifying (3)

Let ℳ* denote the set . Each 

procesdure M* ∈ ℳ* satisfies properties that we define next. For any M ∈ ℳdet and any R 

⊆ ℝ2, define the following monotonicity properties with respect to R: for any (z1, z2) ∈ R,

a. if H01 ∈ M(z1, z2), then  for any  for which ;

b. if H02 ∈ M(z1, z2), then  for any  for which 

;

c. if H0C ∈ M (z1, z2), then  for any  for which 

;

d. if M(z1, z2) ≠ ∅, then M(z1+x, z2+x) ≠ ∅ for any x > 0 such that (z1+x, z2+x) ∈ R.

We verified that each procedure M* ∈ ℳ* satisfies all of these monotonicity properties 

with respect to the region R = B. These properties are intuitively appealing. Also, they 

simplify the process of verifying all the familywise Type I error constraints (3) of the 

original problem; below, we give an overview of the main steps involved in verifying this 

for the procedures ℳ*. The full argument is given in Section H of the Supplementary 

Materials, including the proof of the following theorem:

Theorem 1: (a.) For any M ∈ ℳdet ∩ ℳB that satisfies (a)–(d) with respect to R = B,

(15)

(b.) For any M ∈ ℳdet that satisfies (a)–(d) with respect to R = ℝ2, (15) holds.

By part (a) of Theorem 1, to verify the familywise Type I error constraints (3) of the original 

problem for all (δ1, δ2) ∈ ℝ2, it suffices to check the constraints for all (δ1, δ2) ∈ G. We 

check these latter constraints by first partitioning G into multiple regions. For each region 

that is sufficiently far from B, we directly prove (3) holds over that region, using that ℳ* ⊆ 

ℳB. Each of the remaining regions is discretized, and we compute the familywise Type I 

error at each point in the discretization; we combine this with an analytic bound on the 

maximum possible discrepancy between the familywise Type I error rate at any point in that 

region, and the familywise Type I error rate at the nearest point in the discretization.

To upper bound (15) by 0.05 using this approach, it was necessary to solve the discretized 

problems at α = 0.05 − 10−4. This reduction from 0.05 had a negligible effect on the Bayes 

risk of the resulting procedures, as described in Section H of the Supplementary Materials.

5.3 Optimal Power Tradeoff for Combined Population versus Subpopulations

We explore the tradeoffs in power for rejecting a subpopulation null hypothesis when the 

treatment only benefits one subpopulation, versus power for rejecting the combined 

population null hypothesis when the treatment benefits both subpopulations. Figure 2 shows 

the Bayes risk and its components for the optimal procedure , for each value of 
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1 − β in a grid of points on the interval [0.8, 0.9], for the symmetric case. The solid curve in 

Figure 2a gives the optimal tradeoff between the Bayes risk and the constraint 1 − β on the 

power to reject H0C at ( ). Figures 2b–d show the contribution to the Bayes risk 

from power under the three alternatives , , and ( ).

In each plot, we included points corresponding to  and , as well as 

three existing multiple testing procedures. The first is a procedure of Rosenbaum (2008) that 

rejects H0C when  does, and if so, additionally rejects each subpopulation null 

hypothesis H0k for which Zk > Φ−1(1 − α). The second existing method is an improvement 

on the Bonferroni and Holm procedures by Bergmann and Hommel (1988) for families of 

hypotheses that are logically related, as is the case here. The third is a special case of the 

method of Song and Chi (2007) that trades off power for H0C to increase power for H01, we 

augmented their procedure to additionally reject H02 in some cases. The details of the latter 

two procedures are given in Section E of the Supplementary Materials. Each of the three 

existing procedures strongly controls the familywise Type I error rate at level α.

The procedure of Rosenbaum (2008) is quite close to the optimal threshold at 1 − β = 0.9, 

being suboptimal compared to  by only 0.4% in terms of the Bayes risk; the 

corresponding rejection regions are very similar to those of . The procedure of 

Bergmann and Hommel (1988) is suboptimal by 5% in power for rejecting H01 at 

and for rejecting H02 at . The procedure of Song and Chi (2007) is close to optimal 

for rejecting H01 at , but is 9% suboptimal for H02 at . This is not surprising 

since their procedure was designed with a focus on the null hypothesis for a single 

subpopulation, rather than for both a subpopulation and its complement.

The tradeoff curves are steep near 1 − β = 0.9, indicating that a small sacrifice in power to 

reject H0C at ( ) leads to a relatively large gain in power to detect subpopulation 

treatment effects when the treatment benefits only one subpopulation. The first two columns 

of Table 1, which compare  versus , are an example of this tradeoff. 

Diminishing returns set in for 1 − β less than 0.84, in that there is negligible improvement in 

the Bayes risk or any of its components if one further relaxes the power constraint for H0C.

Consider the impact of increasing the total sample size n above nmin, holding Δmin and the 

variances  fixed. Define the multiple testing procedure  to be the solution to the 

discretized optimization problem in the symmetric case at 1 − β = 0.9 and sample size n, for 

n ≥ nmin. As n increases from nmin, the rejection regions of  progress from 

as in Figure 1a to rejection regions qualitatively similar to  as in Figure 1b; these 

regions are given in Section F of the Supplementary Materials. Increasing sample size from 

n = nmin to n = 1.06nmin, the power of  to reject H01 at  increases from 42% 

to 52%; there is an identical increase in power to reject H02 at .

To give a sense of the value of increasing power from 42% to 52%, consider testing the 

single null hypothesis H01 based on Z1, using the uniformly most powerful test of H01 at 
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level α′. Consider the sample size for which the power of this test is 42% at a fixed 

alternative . To increase power to 52%, one needs to increase 

the sample size by 38%, 31%, or 28%, for α′ equal to 0.05, 0.05/2 or 0.05/3, respectively. In 

light of this, the above 10% gains in power for detecting subpopulation treatment effects at 

the cost of only a 6% increase in sample size (and while maintaining 90% power for H0C), 

as  does, is a relatively good bargain.

The tradeoff curve in Figure 2a is optimal, i.e., no multiple testing procedure satisfying the 

familywise Type I error constraints (3) can have Bayes risk and power for H0C 

corresponding to a point that exceeds this curve. The Bayes risk is a weighted combination 

of power at the three alternatives given above, as shown in Figures 2b–d. It follows that no 

multiple testing procedure satisfying (3) can simultaneously exceed all three power curves in 

Figures 2b–d. However, there do exist procedures that have power greater than one or two of 

these curves but that fall short on the other(s). By solving the constrained Bayes 

optimization problem using different priors Λ, one can produce examples of such 

procedures.

A similar pattern as in Figure 2 holds for the asymmetric case. The main difference is that 

power to reject H01 at  is larger than power to reject H02 at . In Section F of 

the Supplementary Materials, we answer the question posed in Section 1 of what minimum 

additional sample size is required to achieve a given power for detecting treatment effects in 

each subpopulation, while maintaining 90% power for H0C and strongly controlling the 

familywise Type I error rate. We do this for p1 = p2, but the general method can be applied 

to any subpopulation proportions.

6 Using the Dual of the Discretized Problem to Bound the Bayes Risk of the 

Original Problem

6.1 Active Constraints in the Dual Solution of the Discretized Problem

For each optimal procedure from Section 5.1, Figure 3 shows the constraints among (11) 

and (12) that are active, i.e., for which the corresponding inequalities hold with equality. In 

all cases, the global null hypothesis (δ1, δ2) = (0, 0), the power constraint (12), and one 

constraint on the boundary of the null space for each of H01 and H02, are active. In addition, 

each of the optimal procedures at 1 − β = 0.88 has two active constraints on the boundary of 

the null space for H0C. The active familywise Type I error constraints correspond to the 

least-favorable distributions for a given procedure.

To illustrate the importance of all these constraints, consider what would happen if we only 

imposed the familywise Type I error constraint (3) at the global null hypothesis and the 

power constraint (4) at 1− β = 0.88. The optimal solution to the corresponding constrained 

Bayes optimization problem in the symmetric case has familywise Type I error 0.54 at non-

centrality parameters  and ; in the asymmetric case, the familywise Type I 

error at each of these alternatives is 0.39 and 0.69, respectively. The rejection regions are 

given in Section G of the Supplementary Materials. This demonstrates the importance of the 

additional familywise Type I error constraints.
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As described in Section 5.2, the optimal solutions to the discretized problems in Section 5.1 

satisfy all constraints (3); this holds despite our not having imposed the constraints (3) for 

(δ1, δ2) ∈ G \ B. Intuitively, this is because the optimal solutions are driven by the active 

constraints, all of which are contained in B for the value b = 5 used in defining our 

discretized problem.

6.2 Improving Accuracy by More Closely Approximating the Active Constraints

For each example in Section 5.1, we first solved the discretized problem at an initial, 

relatively coarse discretization, where we set b = 5, τ1 = τ2 = 0.1, and G′ = Gτ,b. The 

locations of active constraints in the resulting solution were then used to construct a new, 

more focused set  of constraints (3). Specifically, for each active familywise Type 

I error constraint (δ1, δ2) from the solution at the initial discretization, we included in  a 

high concentration of points along a small line segment in G containing (δ1, δ2); we did not 

include any other points. The motivation was to simultaneously obtain closer 

approximations to the active constraints of the original problem, and to reduce the total 

number of constraints. We then solved the discretized problem at the finer discretization b = 

5, τ1 = τ2 = 0.02, using familywise Type I error constraints . The set  for each 

example from Section 5.1 is given in Section K of the Supplementary Materials. As one 

example, the number of constraints in  is 106 for the symmetric case at 1 − β = 0.88.

6.3 Bounding the Bayes Risk of the Optimal Solution to the Original Problem

The optimal multiple testing procedures shown in Figure 1 are the solutions to versions of 

the discretized problem (10)–(14), which is an approximation to the constrained Bayes 

optimization problem (2)–(4). We refer to the latter as the original problem. A natural 

question is how the optimal Bayes risk for the discretized problem compares to the optimal 

Bayes risk achievable in the original problem.

We use the optimal solution ν* to the dual of the discretized problem to obtain a lower 

bound on optimal Bayes risk of the original problem. For a given discretized problem and 

optimal dual solution ν*, let CFWER denote the set of indices of active familywise Type I 

error constraints among (11); these are the indices j of the pairs (δ1,j, δ2,j) ∈ G′ 

corresponding to the nonzero components  of ν*. Let  denote the value of the dual 

variable corresponding to the power constraint (12). Let ℳc denote the subclass of multiple 

testing procedures in ℳ that satisfy all the constraints (3) and (4) of the original problem. 

Then we have the following lower bound on the objective function (2) of the original 

problem:

(16)

(17)
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which follows since all components of ν* are nonnegative, by definition. The minimization 

problem (17) is straightforward to solve since it is unconstrained. We give the solution in 

Section I of the Supplementary Materials, which is computed by numerical integration. We 

then computed the absolute value of the difference between this lower bound and the Bayes 

risk of the optimal solution to the discretized problems in Section 5.1, which is at most 0.005 

in each case. This shows the Bayes risk for the optimal solution to each discretized problem 

is within 0.005 of the optimum achievable in the original problem, so little is lost by 

restricting to the discretized procedures at the level of discretization we used.

7 Computational Challenge and Our Approach to Solving It

Previous methods, such as those of Jennison (1987); Eales and Jennison (1992); and 

Banerjee and Tsiatis (2006) are designed to test a null hypothesis for a single population. 

These methods require specifying one or two constraints that include the active constraints 

for a given problem. This can be done for a single population since often the global null 

hypothesis of zero treatment effect and a single power constraint suffice. However, as shown 

in the previous section, in our problem there can be 6 active constraints in cases of interest. 

Especially in the asymmetric case shown in Figure 3d, it would be difficult to a priori guess 

this set of constraints or to do an exhaustive search over all subsets of 6 constraints in G′. 

Even if the set of active constraints CFWER for our problems from Section 5.1 were 

somehow known or correctly guessed, the problems could still be challenging to solve using 

standard optimization methods such as Lagrange multipliers. We discuss this in Section L of 

the Supplementary Materials.

Our approach overcomes the above computational obstacles by transforming a fine 

discretization of the original problem to a sparse linear program that contains many 

constraints; we then leverage the machinery of linear program solvers, which are expressly 

designed to optimize under many constraints simultaneously. The sparsity of the constraint 

matrix of the discretized linear program is crucial to the computational feasibility of our 

approach. This sparsity results from being able to a priori specify a subset G′ of the 

familywise Type I error constraints that contains close approximations to the active 

constraints, where G′ is not so large as to make the resulting linear program computationally 

intractable. The size of G′ in the examples from Section 5.1 and in the examples in the 

Supplementary Materials was never more than 344. More generally our method is 

computationally feasible with G′ having up to a thousand constraints.

8 Application to Decision Theory Framework

A drawback of the hypothesis testing framework when considering subpopulations is that it 

does not directly translate into clear treatment recommendations. For example, if the null 

hypotheses H0C and H01 are rejected, it is not clear whether to recommend the treatment to 

subpopulation 2. We propose a decision theory framework that formalizes the goal of 

recommending treatments to precisely the subpopulations who benefit at a clinically 

meaningful level. The framework allows one to explore tradeoffs in prioritizing different 

types of errors in treatment recommendations to different subpopulations. The resulting 
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optimization problems, which were not solvable previously, are solved using our general 

approach.

We use the definitions in Section 3.1. Our goal is to construct a decision procedure D, i.e., a 

measurable map from any possible realization of (Z1,Z2) to a set of subpopulations (∅, {1}, 

{2}, or {1, 2}) to recommend the new treatment to. We consider randomized decision 

procedures, i.e., we allow D to additionally depend on a random variable U that is 

independent of Z1,Z2 and that has uniform distribution on [0, 1].

We next define a class of loss functions. For each subpopulation k ∈{1, 2}, let lk,FP be a 

user-defined penalty for recommending the treatment to subpopulation k when  (a 

False Positive); let lk,FN be the penalty for failing to recommend the treatment to 

subpopulation k when  (a False Negative). Define the loss function LD (d; δ1, δ2) = 

LD,1(d; δ1, δ2) + LD,2(d; δ1, δ2), where for each d ⊆ {1, 2} and k ∈{1, 2},

. For illustration, we 

consider two loss functions. The first, , is defined by lk,FN = 1 and lk,FP = 2 for each k; 

the second, , is defined by lk,FN = 2 and lk,FP = 1 for each k.

We minimize the Bayes criterion ∫ Eδ1,δ2 {L(D(Z1,Z2, U); δ1, δ2)} dΛ(δ1, δ2), over all 

decision procedures D as defined above, under the constraints that for any (δ1, δ2) ∈ ℝ2, 

Pδ1,δ2 {∑k∈D(Z1,Z2,U) pkΔk ≤ 0} ≤ α} These constraints impose a bound of α on the 

probability of recommending the new treatment to an aggregate population (defined as the 

corresponding single subpopulation if D = {1} or {2}, or the combined population if D = {1, 

2}) having no average treatment benefit.

We consider the symmetric case from Section 5.1. The optimal decision regions are given in 

Figure 4. The optimal decision rule under , denoted by D(1)*, is more conservative in 

recommending the treatment than the optimal rule under , denoted by D(2)*. This is 

because the former loss function penalizes more for false positive recommendations. Table 2 

contrasts D(1)* and D(2)*. When , the conservative rule D(1)* 

recommends treatment to both subpopulations 21% less often compared to D(2)*. However, 

when the treatment only benefits one subpopulation, the conservative rule D(1)* has 11% 

greater accuracy in recommending it to just that subpopulation.

One may prefer to strengthen the constraints above to require for any (δ1, δ2) ∈ ℝ2, Pδ1,δ2 
[D(Z1,Z2, U) ∩ {k : δk ≤ 0} ≠ ∅] ≤ α, that is, to require probability at most α of 

recommending the new treatment to any subpopulation having no average treatment benefit. 

Our framework allows computation of the tradeoff between optimal procedures under these 

different sets of constraints, which is an area of future research.

9 Algorithm to Solve Our Large, Sparse Linear Programs

The discretized problem from Section 4 can be represented as a large-scale linear 

programming problem. To show this, define the following ordering of subsets of ℋ:
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We leave out the subset {H01,H02}, since by the results of Sonnemann and Finner (1988) it 

suffices to consider only coherent multiple testing procedures, which in our context are 

those that reject H0C whenever {H01,H02} is rejected. For a given ordering r1, r2, … of the 

rectangles ℛ, define x = (mr1s1, …,mr1s6,mr2s1, …, mr2s6,mr3s1 …), which has nυ = |ℛ|(| ′| 

− 1) components. We do not include the variables mris0 in x, since by (13) these variables 

are functions of variables already in x; in particular, .

The discretized problem from Section 4 can be expressed in the canonical form:

(18)

The objective function cTx represents the Bayes objective function (10). We set the first nd 

= |G′| + 1 rows of A to comprise the dense constraints, which include the familywise Type I 

error constraints (11) and the H0C power constraint (12). The remaining ns rows of A 
comprise the sparse constraints (13) and (14). Since |ℛ| = (2b/τ +1)2, for the symmetric case 

at 1− β = 0.88 in Section 5.1 with b = 5, τ = τ1 = τ2 = 0.02, and | ′| − 1 = 6, we have nυ = |

ℛ|(| ′| − 1) = 1,506,006, nd = |G′|+1 =106 (where  defined in Section 6.2), and ns 

= |ℛ| + nυ = 1,757,007. Then A is a 1,757,113 × 1,506,006 matrix with structure:

b is a vector with nd + ns = 1, 757, 113 components (comp.) as follows:

and c is a vector with nυ = 1,506,006 components.

The problem scale of (18) is quite large. In particular, the constraint matrix A has ≈ 2.6 × 

1012 entries. However, we can solve (18) by exploiting the sparsity structure of A. We use a 

projected subgradient descent method, which consists of a subgradient descent step and a 

projection step, where the solution at iteration k + 1 is x(k+1) = Ps (x(k) − δkg(k)), where Ps(.) 
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means projection onto the feasible region determined by the sparse constraints, δk is a step 

size, and g(k) is the subgradient of xk, defined as

The projection operator Ps(.) can be applied in (nυ) oating point operations (ops) by 

computing the projection in |ℛ| independent subsystems, each with | ′| − 1 variables. 

Checking violations of nd dense constraints together with the projection costs at most 

(nυ(nd+1)) flops per iteration. The projected subgradient descent method above is 

guaranteed to converge to the optimum of (18) (Boyd et al., 2004). However, it may take a 

large number of iterations to achieve a high precision solution. In our implementation, we 

continue until an iteration k′ is reached where the proportion improvement in the objective 

function value is smaller than 10−3; we then use x(k′) as the initial point in a parametric 

simplex solver (Vanderbei, 2010). Though each iteration of a parametric simplex solver runs 

in superlinear time, for our problem it only requires a few iterations to move from x(k′) to a 

very precise optimal solution. Our solutions all had duality gap at most 10−8 showing they 

are within 10−8 of the true optimal solution to the discretized problem.

10 Discussion

An area of future research is to consider a variety of optimization criteria, and to find a 

multiple testing procedure (if one exists) that simultaneously has good performance under 

each criterion. For example, one may specify a finite set of pairs of loss functions and priors, 

with each pair determining an objective function of the form (2). Our general method can be 

adapted to minimize the maximum of these objective functions, under the constraints (3) and 

(4), as described in Section J of the Supplementary Materials.

Though the discretized problem involved optimizing over the class of randomized multiple 

testing procedures ℳℛ, the optimal solutions in all our examples were in ℳdet. This is 

interesting, since there is no a priori guarantee that there exists an optimal solution that is 

deterministic, since the problem involves the large class of constraints (11). If the optimal 

solution to a problem is not deterministic, it might be possible to learn from its structure to 

find a close approximation that is deterministic; this is an area for future research.

An important question posed by a reviewer is what to do if, for given L and Λ, the optimal 

solution to the constrained Bayes optimization problem does not have monotonicity 

properties (a)–(d). Then Theorem 1 would not apply, and the active constraints would not be 

guaranteed to be in G. How to handle this situation is an area for future research, but we 

briey describe two approaches that could be tried. The first approach is to augment G′ to 

additionally include points (δ1, δ2) outside of G. For example, one could include a grid of 

points on the subset of B where at least one null hypothesis is true. Intuitively, if each active 

constraint in the original problem is closely approximated by a constraint in the discretized 

problem, one may expect the solution to the discretized problem to be approximately 
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feasible and optimal. A limitation is that the more constraints one adds, the more 

computationally difficult the discretized problem becomes.

A second way to handle the above situation is to restrict attention to the subclass of 

procedures that satisfy monotonicity properties (a)–(d). In Section M of the Supplementary 

Materials, we generalize the definitions of the these properties to randomized multiple 

testing procedures, and denote the subclass satisfying these properties by ℳmon ⊂ ℳ. We 

show our general method can be adapted to solve the constrained Bayes optimization 

problem restricted to procedures in ℳmon, by encoding each monotonicity property as a set 

of sparse constraints in the discretized problem. A limitation is that the optimal solution 

restricted to procedures ℳmon may have worse performance compared to the optimal 

solution over ℳ.

An additional area of future research is to apply our methods to construct optimal testing 

procedures for trials comparing more than two treatments. Other potential applications 

include optimizing seamless Phase II/Phase III designs and adaptive enrichment designs.

Though we focused on two subpopulations, it may be possible to extend our approach to 

three or four subpopulations. This is an area for future research. However, with more than 

this many populations, our approach will likely be computationally infeasible. This is 

because the number of variables in the discretized linear program grows with the fineness of 

the discretization as well as the number of components in the sufficient statistic for the 

problem. One strategy for reducing the computational burden in larger problems is to start 

by solving the problem at a relatively coarse discretization; one can then use the structure of 

the resulting solution to inform where to set constraints when solving the problem at a finer 

discretization. An example of this strategy was used in Section 6.2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Optimal multiple testing procedures, for the symmetric case (a) and (b), and for the 

asymmetric case (c) and (d). In each plot, the black line is the boundary of RUMP for the 

corresponding case.
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Figure 2. 
Optimal tradeoff between Bayes risk and power constraint 1 − β on H0C, for symmetric case, 

i.e., p1 = p2 = 1/2 and prior Λ1. In (a), we give one minus the Bayes risk on the vertical axis, 

so that in all four plots above, larger values represent better performance.
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Figure 3. 

Active constraints for optimal procedures , , ; and 

. Lines indicate boundaries of null spaces for H01,H02,H0C.
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Figure 4. 

Optimal decision regions for symmetric case (p1 = 1/2, Λ = Λ1), for oss functions (a) 

and (b) . For comparability to Figure 1, we included the solid line representing the 

boundary of the rejection region for .
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Table 1

Bayes risk and power for optimal multiple testing procedures in symmetric and asymmetric cases, at 1 − β = 

0.9 and 1 − β = 0.88.

Symmetric Case Asymmetric Case

masym
* (0.88)

One Minus Bayes Risk 0.52 0.58 0.67 0.71

Power for H01 at 

0.39 0.51 0.55 0.67

Power for H02 at 

0.39 0.51 0.25 0.30

[Power H01 at  + Power H02 at ]/2

0.65 0.66 0.64 0.64

Power for H0C at 

0.90 0.88 0.90 0.88
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