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Summary

Background Facial port-wine stains (PWSs) are usually isolated findings; however,
when associated with cerebral and ocular vascular malformations they form part
of the classical triad of Sturge–Weber syndrome (SWS).
Objectives To evaluate the associations between the phenotype of facial PWS and
the diagnosis of SWS in a cohort with a high rate of SWS.
Methods Records were reviewed of all 192 children with a facial PWS seen in
2011–13. Adverse outcome measures were clinical (seizures, abnormal neuro-
development, glaucoma) and radiological [abnormal magnetic resonance imaging
(MRI)], modelled by multivariate logistic regression.
Results The best predictor of adverse outcomes was a PWS involving any part of the
forehead, delineated at its inferior border by a line joining the outer canthus of the
eye to the top of the ear, and including the upper eyelid. This involves all three
divisions of the trigeminal nerve, but corresponds well to the embryonic vascular
development of the face. Bilateral distribution was not an independently significant
phenotypic feature. Abnormal MRI was a better predictor of all clinical adverse out-
come measures than PWS distribution; however, for practical reasons guidelines
based on clinical phenotype are proposed.
Conclusions Facial PWS distribution appears to follow the embryonic vasculature of
the face, rather than the trigeminal nerve. We propose that children with a PWS
on any part of the ‘forehead’ should have an urgent ophthalmology review and a
brain MRI. A prospective study has been established to test the validity of these
guidelines.

What’s already known about this topic?

• Facial port-wine stains (PWSs) are common, but are rarely associated with Sturge–

Weber syndrome (SWS).

• Early diagnosis of SWS is important to reduce ophthalmological and neural compli-

cations.

• Bilateral and ophthalmic division trigeminal nerve PWSs are thought to confer

higher risk of SWS.

What does this study add?

• The strongest predictor of SWS was found using a new classification of PWS based on

the vascular embryological distribution and not the neural innervation of the face.

• We propose new guidelines for investigation of children with facial PWS based on

this new classification of phenotype.
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The original description of Sturge–Weber syndrome (SWS) by

William Sturge in 1879 was of a triad of extensive facial, scalp

and truncal capillary malformation (port-wine stain, PWS),

contralateral focal seizures suggested to be due to an ipsilateral

abnormality on the surface of the brain, and ipsilateral intra-

ocular vascular malformation with glaucoma.1 Kalischer con-

firmed the presence of an ipsilateral leptomeningeal vascular

malformation on pathological examination in 1901,2 and in

1922 Weber described the radiological appearances of ipsilat-

eral cerebral atrophy and the characteristic intravascular calcifi-

cation in a patient with extensive bilateral facial, truncal and

upper-limb PWS.3 Over the years the definition of SWS has

expanded to include cases without cutaneous lesions,4 and

variable distributions of brain and ophthalmological lesions.5,6

Neurological features have been described in detail since the

advent of computed tomography and magnetic resonance

imaging (MRI), revealing angiomatosis (a capillary–venous

malformation)7,8 of the leptomeninges, atrophy and calcifica-

tion of the affected cerebral hemisphere, absence of superficial

cortical veins and/or dilated deep-draining veins, and vascular

malformations involving the choroid plexus.5,9–11 Recent

advances in functional imaging have demonstrated decreased

cerebral perfusion and network connectivity in affected

areas.12–14 Clinical neurological problems include seizures

(often but not always contralateral focal motor seizures), neu-

rodevelopmental delay, headache and stroke-like episodes.15

The ophthalmological features in SWS are enlarged venous

vessels affecting the conjunctiva, episclera, retina and/or chor-

oids, associated with glaucoma, retinal detachment and

choroidal haemorrhage.1,16,17

Therapeutic studies have shown that early diagnosis and

treatment of SWS may reduce ensuing complications, based

on a new understanding of the pathogenesis of disease pro-

gression. The typical MRI findings of atrophy and calcifica-

tion are now considered to be the consequence of chronic

cortical hypoxaemia due to vascular stasis and decreased per-

fusion in the cortex underlying the leptomeningeal angi-

oma.6,14 Imaging studies during the characteristic stroke-like

episodes have suggested decreased perfusion of affected

areas.18–20 This new understanding has led to the administra-

tion of prophylactic aspirin,21,22 and although randomized

controlled trials are lacking, current data show reduced

occurrence of stroke-like episodes and seizures.21 The poten-

tial benefits of diagnostic MRI and use of prophylactic aspirin

need to be considered in relation to the potential adverse

effects in the individual patient by the clinician. Given the

severity of seizures and the association with acute neurologi-

cal deficit, there is a rationale for the diagnosis of brain

involvement in asymptomatic infants and children. Further-

more, as seizure activity correlates with poorer cognitive

prognosis,23,24 some authors recommend prophylactic antiep-

ileptic treatments.25 Early treatment of glaucoma is known to

be critical in preserving visual function, and prompt diagno-

sis in SWS is important as glaucoma can be present from

birth. Early identification of patients with facial PWS who

may be at risk of SWS is therefore crucial in instigating early

clinical and radiological investigation, and, where appropri-

ate, prophylactic therapy.

Facial PWSs are a far more common occurrence than SWS,

with an incidence of approximately 1 in 30026–28 for the for-

mer and an estimated incidence of between 1 in 20 000 and

1 in 50 000 for the latter.

In infants true PWS should not be confused with a salmon

patch (naevus simplex). Naevus simplex is a transitory func-

tional capillary lesion occurring in about 40% of newborns,

which presents most commonly as an irregularly bordered,

symmetrical pink macule overlying the midline of the neck,

the forehead or the upper eyelids.

SWS occurs sporadically with equal frequency in boys and

girls. Early studies of the relationship between facial PWS phe-

notype and risk of SWS implicated PWS in the ophthalmic

(V1) division of the trigeminal nerve, a bilateral distribution,

and lesions affecting the upper eyelids.29,30 However, more

recent studies comparing PWS phenotype with cerebral and

ocular phenotype have shown that while bilaterality and V1

distribution appear to be a risk factor, more extensive PWS

with additional V2 and/or V3 involvement of the trigeminal

nerve contribute to the risk of SWS.31,32

The aim of this study was to correlate facial PWS phenotype

with intracranial and intraocular abnormalities, to review the

validity of the trigeminal nerve classification, and to propose

guidelines for investigation of facial PWS that can be used in

our population for future prospective studies.

Patients and methods

In total 192 children (97 female) with a facial PWS were seen

sequentially between March 2011 and January 2013 in the

paediatric dermatology and neurology departments at Great

Ormond Street Hospital for Children. This cohort included

both new patients and follow-up patients. As this is a tertiary

referral centre the cohort included a much higher percentage

of children with SWS than would be seen in the general pop-

ulation of children with PWS; however, we considered that

this may improve the power of our statistical analysis of phe-

notypic associations. We were not aiming to document the

incidence of SWS in a population of patients with PWS.

Hospital notes, radiological results (MRI) and professional

high-resolution photographs of these patients were reviewed

retrospectively. Clinical data collected were age, sex, cutaneous

phenotype, presence of glaucoma, seizures and abnormal neu-

rodevelopment, defined as any degree of motor or cognitive

impairment on formal assessment. Facial PWSs were classified

using the traditional method based on the sensory branches of

the trigeminal nerve (V1, V2, V3) (Fig. 1) and whether they

were in a unilateral or bilateral distribution. A second classifi-

cation was also performed by dividing up the face into eight

areas on each side, and indicating which were affected. These

areas were the central forehead, lateral forehead, upper eyelid,

lower eyelid, maxillary area, mandibular area, ear (where visi-

ble) and chin. Scalp involvement was not classified, as the

majority of the photographs did not show this adequately.
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Adverse outcome measures were (i) clinical: seizures,

abnormal neurodevelopment and glaucoma; and (ii) radiologi-

cal: abnormal MRI. Absence of adverse outcome measures was

recorded only where definite negative clinical information was

documented, rather than by assumption (for example absence

of glaucoma was recorded only where a normal ophthalmo-

logical examination had occurred). Statistical analysis of the

association between the cutaneous phenotype variables and

outcome measures was by multivariate logistic regression. For

calculation of odds ratios for the effect of involvement of the

forehead on outcome measures, 1 was added to each group to

correct for a value of 0 in one cell.

Results

A cohort of 192 patients with facial PWS was seen between

March 2011 and January 2013. The mean age at the time of

analysis was 8�3 years (SEM 0�4) and the mean patient fol-

low-up period was 8 years. Seventy-five patients had an oph-

thalmological examination, of whom 55 were diagnosed with

glaucoma. One hundred and twenty-one patients had an MRI

of the brain, of which 90 were abnormal. Forty-nine of 162

patients for whom there were reliable data had seizures, and

59 of 143 had neurodevelopmental delay. As a result of these

investigations 104 children were diagnosed with SWS, using

the definition of any facial PWS plus either MRI abnormalities

or glaucoma. The frequencies of the original classification of

V1–3 are shown in Table 1.

Strikingly, there was no significant association between the

trigeminal nerve distribution and an abnormal MRI. Associa-

tions between the eight facial areas from the second classifica-

tion and abnormal MRI were then tested, and independently

significant areas were found to be the central forehead and lat-

eral forehead. Upper-eyelid involvement and bilateral distribu-

tion were initially significant but became nonsignificant when

combined with the lateral forehead and central forehead. We

therefore defined a new area that was the best predictor of an

abnormal MRI, which equates to the ‘forehead’. This is delin-

eated at the lateral and inferior margins by a line joining the

outer canthus of the eye to the top of the ear, and including

the upper eyelid. This area covers parts of the distribution of

all three branches of the trigeminal nerve (Fig. 1b).

Once the forehead area was identified as the relevant area

this was used to model the association with clinical outcome

measures. Of the 103 children in this cohort with involvement

of the forehead, 83 had SWS, and 20 had only the facial PWS.

However, this figure cannot be extrapolated to the total popu-

lation as our cohort is selected for more severely affected

patients. For patients with any involvement of this area the

odds ratio of neurodevelopmental abnormality was 24�7 [95%

confidence interval (CI) 3�2–188�8, P = 0�002], of seizures

15�8 (95% CI 2�1–120�5, P = 0�008) and of glaucoma 14�4
(95% CI 1�8–113�3, P = 0�011). Absolute numbers of those

in each group are shown in Table 2, with Fisher’s exact P-val-

ues. Bilateral involvement was not independently significant in

any of these models when an interaction variable was used.

On closer examination of the data we found that only six

cases had bilateral involvement that did not include the fore-

head on either side. None of these six had any clinical or

radiological adverse outcome.

Interestingly, when abnormal MRI was included in the

model for clinical outcome measures, this was a better predic-

tor of all clinical outcome measures than the forehead distri-

bution of PWS, with odds ratios for seizures of 80�3 (95% CI

(a) (b)

Fig 1. (a) Distribution of the three branches of the trigeminal nerve.

(b) Distribution of the ‘forehead’, defined as any part of the forehead

from the midline to an imaginary line between the outer canthus of

the eye and the top of the ear including the upper eyelids. Figure

adapted from Anatomy of the Human Body.36

Table 1 Frequency of phenotypic distribution of facial port-wine stain

(PWS) using the traditional trigeminal nerve classification, with which

no clear associations were found with SWS, in 171 patients

Trigeminal nerve distribution of PWS Patients, n (%)

V1 alone 25 (14�6)
V2 alone 21 (12�3)
V3 alone 9 (5�3)
V1 and V2 63 (36�8)
V1 and V3 2 (1�2)
V2 and V3 10 (5�8)
V1, V2 and V3 41 (24�0)

Table 2 New clinical classification of PWS phenotype with respect to

clinical outcomes, where both adequate data and photographs were

available

Forehead

involved

Forehead

not involved

Fisher’s exact

P-value

Seizures 36/111 0/33 < 0�001
Abnormal
neurodevelopment

42/93 0/30 < 0�001

Glaucoma 45/92 0/15 < 0�001
Abnormal magnetic
resonance

imaging scan

69/94 0/4 0�002
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9�0–714�6, P < 0�001), neurodevelopmental abnormalities

24�7 (95% CI 3�2–188�8, P = 0�002) and glaucoma 14�4
(95% CI 1�8–113�3, P = 0�011). However, guidelines based

on clinical phenotyping are proposed for practical purposes so

that MRI can be targeted to the highest-risk infants.

Discussion

Recent groundbreaking research by Shirley et al.7 has identified

the causative mutation underlying both Sturge–Weber syn-

drome and the majority of isolated PWSs. This is a somatic

activating mutation in the gene GNAQ, which increases cell

proliferation and inhibits apoptosis due to increased down-

stream signalling through the RAS effector pathways. The cell

of origin affected by the mutation is not yet known, but it is

likely that the mutation occurs earlier in development in SWS

than in isolated PWS, thus affecting a more primitive progeni-

tor with wider potential effects. As all the manifestations of

SWS are thought to be related to abnormal vasculature, we

hypothesized that the identified high-risk ‘forehead’ area

might correspond to the vascular distribution of the face.

We therefore considered the adult arterial supply, the adult

venous drainage and the embryological vasculature of the face.

The central forehead in adult life is supplied by the supra-

trochlear and supraorbital arteries, which are branches of the

internal carotid artery, whereas the lateral forehead is supplied

by the superficial temporal artery, a branch of the external car-

otid. While this supply corresponds to the forehead area (with

central and lateral areas often affected separately), the adult

arterial supply to the cerebral cortex comes only from the

internal carotid, and we therefore discounted adult arterial

supply as a satisfactory explanation for the strong association

between the forehead and cerebral involvement. Adult venous

drainage is far more interconnected and could conceivably be

a reasonable distribution for the observed pattern of facial

PWS. The internal and external jugular veins (unlike their car-

otid artery counterparts) communicate at the level of the mid-

neck, which could help to explain the importance of both the

central and lateral forehead, and as the primary abnormality in

the brain is venous, this seemed a plausible model. However,

it was more difficult to see how the venous patterning could

be related to PWS on other areas of the face, particularly the

relatively common lesions with a sharp lower-edge cut-off

joining the angle of the mouth to the bottom of the ear,

which do not correspond to the venous drainage patterns.

We therefore considered the embryological origin of the

face, which involves the fusion of placodes and the formation

of the optic vesicles (Fig. 2a). Each placode brings its own

developing vasculature from the neural crest, and the primitive

vasculature therefore maps to the placode shaping. We found

that the forehead corresponds to the frontonasal prominence

plus the skin in the optic vesicle area. Crucially, these two

structures are the only parts of the face that are formed by the

migration of neural crest cells from the developing prosen-

cephalon (forebrain) and anterior mesencephalon (midbrain),

whereas the maxillary and mandibular prominences formed

from the first branchial arch consist of neural crest cells from

the posterior mesencephalon and rhombencephalon, respec-

tively.33 As the cerebral cortex and the eye both develop from

the forebrain, the co-occurrence of forehead involvement and

neurological and ophthalmological abnormalities is strongly

suggestive of a single mutation affecting the neural crest cells

emanating from the forebrain region. In some support of this

embryological theory is the notable similarity between the

regions identified here and those identified as being affected

by infantile haemangiomas.34,35 For haemangiomas clear pat-

terns of distribution have been delineated, where the authors

described an association of the nose and philtrum region with

the midline forehead (in that publication so-called segment

4), suggesting that this midline forehead region was narrower

than in previous publications, and described a temporal region

with a lower border running horizontally from the outer can-

thus (segment 1).35 While it is possible that our forehead

region corresponds to segments 4 and 1 together, we have

not looked for associations between PWS in different regions

of the face, as we were focused primarily on adverse out-

comes. We do however have patients with wider central fore-

head involvement that does correspond to the more classical

descriptions of the frontonasal prominence (Fig. 2b–d).

Anecdotally we tested our theory of vasculature-based classi-

fication of PWS using archived pictures of PWS on the limbs

in our patient cohort. We found a striking visual correlation

(a) (b) (c) (d)

Fig 2. (a) Configuration of the facial placodes. The blue area represents the ‘forehead’, constituting a central frontonasal placode (marked by the

dotted lines) and lateral optic vesicle areas. (b) Frontonasal prominence port-wine stain (PWS) – not to be confused with a salmon patch (naevus

simplex). (c) PWS sparing the majority of the frontonasal prominence. (d) Unilateral PWS in the ‘forehead’, suggesting a mutation after division

of vasculature into right and left.
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between the vascular but not the neural supply of both

extremities and the distribution of PWS (examples in Fig. 3),

strengthening our finding in the face. As there were only a

few patients presenting with a PWS on their hands or feet, a

separate study including a larger group of patients with PWS

on their limbs is needed to examine the concept of vascular-

based distribution of PWS on the extremities.

This study was not designed to assess the controversial issue

of the optimal timing of brain MRI in the investigation of

PWS; however, it is known that the features of SWS can be

missed through early MRI.5 As our study demonstrates that an

abnormal MRI is the best predictor of all adverse clinical out-

comes for these patients, we propose that a gadolinium-

enhanced brain MRI be done within the first 3 months of life,

with the caveat that a negative result should not be considered

conclusive if neurological symptoms develop (Fig. 4). In the

context of clinical suspicion of SWS the MRI should be

repeated at a later date if negative. In addition, it is important

that the appropriate information be given to families sur-

rounding the use of gadolinium enhancement in young chil-

dren. The potential benefits of diagnostic MRI and use of

prophylactic aspirin need to be considered in relation to the

(a)

(b)

Fig 3. Comparison of port-wine stain with the vascular and neural

distribution, showing similarity to the vascular distribution in (a) the

palm and (b) the sole. Figure adapted from Anatomy of the Human

Body.36

Fig 4. Great Ormond Street Hospital management guidelines for children with facial port-wine stain (PWS) on the forehead. MRI, magnetic

resonance imaging.
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potential adverse effects in the individual patient by the clini-

cian. Given the severity of seizures and the association with

acute neurological deficit, there is a rationale for the diagnosis

of brain involvement in asymptomatic infants and children.

These guidelines will now be followed by a prospective study

in our department to assess their validity, and ideally would

also be assessed in secondary-care settings.

In conclusion, the distribution of facial PWS appears to fol-

low the embryological vasculature of the face rather than the

trigeminal nerve distribution, and this new classification

improves the prediction of SWS based on facial PWS pheno-

type. In this cohort, only children with PWS involving the

‘forehead’ had any seizures, neurodevelopmental abnormali-

ties, glaucoma or abnormal MRI of the brain, making this the

most useful clinical feature. We propose that children with a

PWS affecting any part of the forehead should have an oph-

thalmology review as early as possible, ideally on the first day

of life, and a brain MRI with gadolinium contrast. Given the

potential use of prophylactic aspirin therapy for those with

abnormal MRI we propose that MRI should be performed ide-

ally within the first 3 months, with the understanding that it

may need to be repeated at a later date if reported as normal

but with a clinical suspicion of SWS. Children with an abnor-

mal MRI should have an electroencephalogram and regular

neurological, neurodevelopmental and ophthalmological fol-

low-up. A prospective study has been set up to test these new

guidelines.
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