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Abstract

Gait parameters such as stride length, width, and period, as well as their respective variabilities, 

are widely used as indicators of mobility and walking function. Foot placement and its variability 

have thus been applied in areas such as aging, fall risk, spinal cord injury, diabetic neuropathy, 

and neurological conditions. But a drawback is that these measures are presently best obtained 

with specialized laboratory equipment such as motion capture systems and instrumented 

walkways, which may not be available in many clinics and certainly not during daily activities. 

One alternative is to fix Inertial Measurement Units (IMUs) to the feet or body to gather motion 

data. However, few existing methods measure foot placement directly, due to drift associated with 

inertial data. We developed a method to measure stride-to-stride foot placement in unconstrained 

environments, and tested whether it can accurately quantify gait parameters over long walking 

distances. The method uses ground contact conditions to correct for drift, and state estimation 

algorithms to improve estimation of angular orientation. We tested the method with healthy adults 

walking over-ground, averaging 93 steps per trial, using a mobile motion capture system to 

provide reference data. We found IMU estimates of mean stride length and duration within 1% of 

motion capture, and standard deviations of length and width within 4% of motion capture. Step 

width cannot be directly estimated by IMUs, although lateral stride variability can. Inertial sensors 

measure walks over arbitrary distances, yielding estimates with good statistical confidence. Gait 

can thus be measured in a variety of environments, and even applied to long-term monitoring of 

everyday walking.
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1. Introduction

Human walking exhibits variability from step to step. This may reflect variations in the 

sensory, neural, and biomechanical systems that produce gait. Gait parameters such as step 

length, width, and period and their respective variabilities can therefore serve as indicators 
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of mobility or function in a variety of populations [1, 2]. Changes in such parameters have 

been observed with aging [3] or development [4]. They may be associated with risk or fear 

of falling [5, 6], cognitive or attentional capacity [7, 8], and brain activity [9]. Step 

parameters also vary with conditions such as spinal cord injury [10], Parkinson’s disease 

[11], traumatic brain injury [12], cerebellar ataxia [13], and multiple sclerosis [14]. But a 

difficulty is that the measurement of foot placement typically requires specialized equipment 

such as motion capture systems, thereby limiting measurements to the laboratory. 

Technological developments in miniature inertial measurement units (IMUs: accelerometers 

and gyroscopes) offer the potential to measure strides outside the laboratory. However, 

accelerometers measure translational accelerations and gyroscopes measure angular 

velocities in a body-fixed reference frame, and these imperfect measurements must 

somehow be transformed into foot placement in an absolute frame. If that transformation 

could be achieved with accuracy comparable to laboratory equipment, it would enable 

evaluation of strides and stride variability in the field, using only foot-mounted sensors.

One approach for using foot-mounted sensors exploits empirical or kinematic associations 

between inertial measurements and step parameters. Human walking is quite systematic, so 

that speed and step parameters are correlated with each other [4] and with inertial 

measurements. These correlations, derived from previous gait data, allow step parameters to 

be estimated from IMUs mounted on the body [15, 2, 16]. Estimation accuracy can be 

improved by calibrating trends for specific individuals [17] rather than a population. This 

approach is, however, less applicable to gait pathologies or other cases where locomotion 

may vary considerably from previous calibration data. An alternative is to use a kinematic 

leg model to associate data from inertial sensors on the leg with step parameters [18, 19]. 

This also requires kinematic model parameters, which may themselves require calibration 

for a subject.

Another approach is to integrate inertial measurement data over time to yield positions in 

space. The principal challenge of integration is drift, referring to errors in position and 

orientation that accumulate over time due to imperfect data. Drift in orientation may be 

reduced with a state estimator or Kalman Filter [20], which models the IMU motion in space 

to predict accelerations and angular velocities, and uses the mismatch with actual 

measurements to reduce orientation errors. Position drift can be reduced by resetting the 

foot’s velocity to zero at each footfall. This model assumption is imperfect, but does not rely 

on subject-specific calibration or normative correlation data. A combination of such drift 

correction methods can be used to localize the foot in the sagittal plane [21] or in space [22, 

23, 24, 25]. Similar assumptions may be applied to waist-mounted IMUs for estimating 

stride parameters [26]. These methods require minimal assumptions regarding the subject’s 

gait, mainly that the foot is periodically stationary on the ground.

These drift reduction methods may facilitate measurement of foot placement variability over 

long distances of over-ground walking. Variability is best measured over many strides [27], 

which is often challenging to capture in absolute space. But stride variability only requires 

the foot’s displacement relative to the preceding footfall, for which drift error can be 

stabilized using the methods above (e.g., [22]). In the present study, we propose an 

algorithm, using no skeleton or correlation model, for estimating foot placement and its 
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variability from inertial data. We then test the algorithm against reference data obtained 

from a mobile motion capture system [28], during long walking bouts.

2. Inertial Sensor Processing

We assemble an algorithm to integrate foot-mounted IMU data and yield drift-reduced stride 

displacements. We divide the processing into four steps (Figure 1): (1) stride segmentation, 

(2) rotational orientation estimation, (3) translational velocity estimation, and (4) trajectory 

formation. Stride segmentation uses raw sensor measurements to detect zero velocity 

instants when the foot is stationary on the ground. We estimate orientation by integrating the 

gyroscope data and correcting for tilt drift with a Kalman Filter. We estimate translational 

velocity by integrating accelerometer data, then adjusting the velocities to be compatible 

with each zero velocity instant. Finally, the foot trajectory is formed by integrating the 

corrected velocities, oriented with respect to a local walking heading. That trajectory 

directly yields foot placement, from which stride parameters are calculated.

Stride Segmentation

We identify zero velocity instants based on raw IMU data (Figure 2 A). We use thresholds 

on the magnitude of the gyroscope and accelerometer signals to identify these times. 

Assuming solid ground and no foot slip, the foot velocity and acceleration will be near zero 

during part of each stance phase. We identify stationary phases as periods when the 

gyroscope output magnitude is small and the accelerometer output magnitude is close to 

gravitational (g). The midpoint of each stationary interval defines a zero velocity instant, 

demarcating strides. In the present study, we used magnitude thresholds of 1.7 radian·s−1 

and 0.8 m·s−2 (relative to g). We also exclude erroneously detected phases caused by short 

periods of constant velocity and low angular velocity during swing, as well as quick foot 

slips during stance. These are detected as unusually short stationary or swing periods. We 

have found minimum period thresholds of 0.133s for stationary and 0.2s for swing to 

perform well.

This simple algorithm identifies zero velocity instants during normal walking using few 

parameters. It is not optimized for estimating stance and swing durations nor for detecting 

events such as footfall or toe-off.

Rotational Orientation estimation

Orientation of each IMU in space is determined by integrating gyroscope signals with a 

discrete Kalman Filter (Figure 2 B). Gyroscope-derived orientations are subject to drift, but 

the estimated vertical direction, referred to as tilt, can be corrected based on the 

accelerometer’s reading of gravity. We integrate the gyroscope signals over time to estimate 

the 3d angular orientation of the IMU [22]. Then a discrete tilt correction is applied at the 

detected zero velocity instant at the end of each stride. The accelerometers are used as an 

inclinometer to produce a discrete Kalman update, which stabilizes tilt drift over arbitrarily 

long durations. The Kalman Filter requires relative values of the measurement and process 

noise to integrate the sensors. The gyroscope variance describes the gyroscope noise, the 

accelerometer variance describes the accelerometer noise and the zero velocity assumption 
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noise. The process variance describes the constant angular velocity assumption noise. We 

found modest gains sufficient for tilt correction, with the Kalman updates correcting about 

2.6 · 10−3 tilt radians per footfall.

The integration yields a time-varying representation of the IMU’s orientation. This is 

expressed relative to the IMU’s initial orientation, which is an arbitrary home orientation 

reference. (The IMU can be attached to the foot in any orientation.) The gravity vector in the 

initial orientation defines vertical. The output of these calculations is therefore a tilt-

corrected IMU orientation in space. This algorithm does not correct for drift in heading 

about vertical, which can potentially be reduced using other sensors such as magnetometers 

[25].

Translational Velocity estimation

Foot velocity can be estimated from accelerometer signals (Figure 2 C). We first use the 

IMU orientation to transform accelerometer readings into absolute space. Acceleration in 

space is found by subtracting the estimated gravity vector. The result is integrated forward in 

time, starting at one detected zero velocity instant and ending at the next. This yields a 

velocity estimate which is subject to drift during each stride. To correct for drift, we 

constrain foot velocity to zero at the zero velocity instant at the end of each stride. Rather 

than an impulsive correction [22], we distribute the correction over the stride assuming that 

error grows linearly with time, to yield a smooth correction.

Trajectory formation

The foot’s trajectory in space is obtained by integrating the corrected velocities (Figure 2 C). 

This is also subject to unbounded drift in absolute space, but stride measurement only 

requires displacement relative to the preceding footfall. Foot placement therefore only drifts 

over the relatively short duration of a single stride, and can be estimated with reasonable 

accuracy. It is obtained by integrating foot velocity between successive zero velocity 

instants. Having corrected for drift in tilt and foot placement, the resulting trajectory is 

mostly only subject to growing drift in heading about vertical. Since subjects may also vary 

heading anyway, we do not rely on the global heading estimate over long durations.

To measure stride displacements, we define a local heading from foot trajectories. We define 

the forward walking direction from a linear fit of three successive footfalls locations. The 

forward direction and gravity vector together define the local lateral direction. Each foot 

trajectory is then examined with respect to the local frame (Figure 2 D).

Finally, we compute stride parameters (Figure 2 D). Stride parameters, such as stride length 

and width, are calculated from the foot trajectories between successive footfalls in their local 

frames. Stride variability is computed from the root-mean-square variations about the 

average stride length and width. Stride duration is calculated based on the difference 

between successive peak times of filtered estimated speed. All integrations are performed 

using the trapezoidal method.
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3. Experiment

We tested IMU-based stride measurements against motion capture performed during over-

ground walking. We measured 9 healthy young subjects walking normally with eyes open, 

and induced greater variability by collecting trials with eyes closed. This is intended to test 

the sensitivity of stride measurements to changes that might occur with a gait pathology. We 

used a cart-mounted motion capture system to collect simultaneous reference data (Figure 

3). We quantified both the statistical agreement between the IMU and motion capture 

estimates, and the sensitivity of the IMU and motion capture estimates to different walking 

conditions. Subjects provided informed consent according to Institutional Review Board 

procedures.

Each subject performed multiple straight walking trials down a hallway. An average of 93 

steps were recorded per trial, and a total of 90 trials were collected of both conditions. An 

IMU was attached to the heel of each shoe (Memsense, Rapid City, South Dakota, nIMUs, 

gyroscope range: 1200deg · s−1, accelerometer range: 10g, sampled at 150 Hz). To provide a 

laboratory-based measurement of foot kinematics, a motion capture system (PhaseSpace, 

Inc. San Leandro, California) with six cameras was mounted on a mobile cart. The cart was 

equipped with a vertical axis gyroscope and two wheel encoders to localize the cart using 

dead reckoning [28]. The subject stood motionless for 20 seconds prior to each trial to yield 

baseline inertial sensor data. A total of 22 trials were excluded due to hardware failures or 

protocol deviations. Within each trial, the first and last 6 steps were excluded to focus on 

steady walking. During eyes closed trials, two experimenters walked beside the subject and 

provided audible cues to keep the subject near the centerline of the hallway.

We examined the agreement between the IMU and motion capture stride estimates. To test 

the performance of the IMU estimation, we compared the IMU-based stride estimates 

against motion capture. This was performed for eyes open and eyes closed conditions to test 

sensititivity to changes in gait. Because neither measurement is perfectly accurate, we 

compared motion capture and IMU stride estimates using intraclass correlation (ICC), which 

summarizes the agreement between methods and quantifies unexplained variance in the data 

([29]; A-1 method). We summarized gait variability for stride length, width, and duration by 

calculating root mean squares (RMS) for each walk, and averaging across walks for each 

condition for each subject. To compare the sensitivity of IMU estimates to motion capture 

estimates, we performed a paired t-test between eyes closed and eyes open estimates.

4. Results

We found the IMU estimates of gait parameters to agree reasonably well with motion 

capture data (Figure 4 A). Estimates of mean stride parameters agreed to within 1%, and 

estimates of RMS variability of stride width and length agreed to within 4%. (Estimates of 

stride duration variability agreed less well; we believe this is due to poor motion capture 

estimates.) As an indicator of the ability to detect relatively subtle changes to gait, both 

methods revealed significant increases in stride width and length variability for walking with 

eyes closed. No significant difference was observed in other measures for eyes closed 

walking, using either measurement method. We summarize the overall correspondence 
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between IMU and motion capture in two ways. First, the RMS difference between the IMU 

and motion capture estimates of all stride lengths is 3.2% of the mean stride length. Second, 

we quantify the fraction of data variation shared by the two instruments using the intra-class 

correlation coefficient (ICC). We observed ICC values of 0.88 for stride width, and 0.98 for 

stride length (Figure 4 B), indicating good agreement.

5. Discussion

We sought to determine whether foot-mounted IMUs can estimate stride measures from 

over-ground walking. We devised an algorithm that calculates stride parameters that are 

drift-stabilized, meaning that errors do not grow unbounded with time. Results show that 

stride measures are comparable between IMU and motion capture methods (Figure 4 A), 

agreeing to within a few percent. Both methods also agree on increased stride variability 

resulting from walking with eyes closed, indicating sufficient sensitivity to detect relatively 

small changes in gait [1]. Having quantified IMU performance relative to motion capture, 

we next consider the limitations and provide recommendations for use.

The main sensitivity of this algorithm is to stride segmentation. Stride segmentation errors, 

when a stationary instant fails to be detected, or when one is detected during the swing 

phase, significantly degrade the algorithm’s performance. Such errors are normally not an 

issue except during extremely slow or unsteady walking. Stride segmentation may be 

facilitated through good sensor placement. Here we used the back of the shoe to 

accommodate comparison with motion capture, but we prefer the top of the shoe above the 

instep, which yields longer stationarity durations. The segmentation algorithm can also be 

improved by applying additional constraints. If both feet are instrumented with time-

synchronized IMUs, the swing of one foot can indicate stationarity of the other. This can 

reduce segmentation errors substantially, albeit only for walking and not running gaits. The 

algorithm presented here is simple and uses few parameters; it can easily be replaced by 

alternative methods as appropriate.

There are a few assumptions under which the proposed algorithm performs best. One is that 

drift in translational velocity occurs continuously over time. We distribute each stride’s 

velocity correction (Figure 2 C) linearly over the entire time interval between stationary 

instants. Alternately, the velocity could be corrected impulsively, for example at each 

stationary instant [22]. This may be appropriate if the errors occur at that time, such as with 

gyroscopes that are sensitive to the impulsive accelerations of heelstrike. Another 

assumption is that foot motions are within the IMU’s range and bandwidth. To estimate the 

consequences of these assumptions, we reprocessed our data with impulsive velocity 

corrections, and separately with artificially reduced sensor ranges (Figure 5 A). We found 

the distributed velocity correction to yield considerably lower errors (with respect to motion 

capture) compared with impulsive correction. We also found a sharp performance 

degradation when limiting IMU ranges. Decreasing the gyroscope range resulted in stride 

length estimate outliers similar to the strides with uncharacteristically low length estimates 

from the IMU (Figure 4 B). Therefore a likely cause for these outliers is momentary 

gyroscope saturation. Our algorithm appears to work best with distributed zero correction, 

and with IMUs with sufficient ranges and bandwidth.
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Although not the focus of this study, integration methods such as ours are also applicable to 

position estimation in space. Previous studies based on integration of inertial data have 

measured relatively short walking bouts [22, 25]. Our methods can also track an IMU 

reasonably well in space for distances on the order of 100 m (Figure 5 B). Most integration 

methods rely on the principal assumption of a zero velocity instant within each stride, 

reducing but not eliminating drift. Further drift reduction is possible using additional 

assumptions. For example, if the walking surface is assumed level, altitude drift can be 

reduced. If the heading is constant [30], or measurable with magnetometers or GPS [25], its 

drift can also be reduced. Position, velocity, and sensor calibrations can be incorporated into 

the Kalman Filter in addition to the proposed Kalman filtering scheme, allowing zero 

velocity updates to correct angular orientation estimates [25]. A spline based velocity 

correction can also be used to correct foot velocity, which works well in certain 

circumstances with sensors of limited range [23]. Of course, such variations require 

additional assumptions, which can lead to amplified errors if violated. For general 

applicability, we have presented a near-minimal set of assumptions here.

Integration methods complement other gait measurement methods. These include IMU 

approaches using a kinematic body model or a correlation model from walking data. These 

may be accurate under particular conditions, but may become inaccurate when the models 

do not apply. In contrast, integration methods assume nothing of the human’s geometry or 

motion other than the existence of zero velocity instants. They also apply to relatively 

unconstrained, over-ground locomotion in varied environments. This contrasts with 

laboratory measurements using motion capture or sensor-embedded walkways. These can 

yield accurate drift-free measurements, but usually for a limited number of steps in a 

confined space. An advantage of IMU integration is that a large number of strides may be 

measured with good accuracy. This can enhance stride parameter estimation (e.g., [27]). An 

example is the effect of walking with eyes open vs. closed, which is best discriminated with 

a relatively large number of strides (Figure 5 C), which are otherwise difficult to capture 

accurately during over-ground walking. Given accurate inertial sensors, we believe 

integration methods are especially well suited for the estimation of stride parameters and 

their variabilities.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of IMU processesing steps (shown at left), with representative data trajectories 

(plotted at right). Stride segmentation uses accelerometer and gyroscope readings to 

determine periods when the foot is stationary on the ground. Orientation estimation uses a 

Kalman Filter to correct for drift in tilt and yield orientation of the foot in space. Velocity 

estimation is performed by integrating tilt-corrected accelerometer signals, subject to a zero 

velocity correction. Finally, trajectory formation is performed by integrating corrected 

velocities to yield foot trajectories in space.

Rebula et al. Page 10

Gait Posture. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
A: Stride segmentation to determine stationary foot instants. Thresholds on the magnitudes 

of the gyroscope (top) and accelerometer (bottom) signals are used to determine foot 

stationary phases. A minimum stationary phase duration is also used to reduce the effect of 

noise. The midpoint of each stationary phase defines a zero velocity instant, which 

demarcates strides. B: Orientation estimation algorithm. Orientation of the foot in space is 

estimated by integrating angular velocities from foot-mounted gyroscopes. At each zero 

velocity instant during stance (t = tf), the accelerometer provides an estimate of gravity, 

which is used to perform a discrete Kalman update of the orientation estimate. The 

orientation trajectories (plotted as Rodrigues angles at right) are corrected impulsively at the 

end of each stride (inset). C: Velocity estimation and trajectory formation. Translational 

velocity in space is found by integrating the transformed and gravity compensated 

accelerometer readings during the stride. A zero velocity correction is then applied, where a 

linear trend is subtracted from the cumulative velocity between stationary instants. Finally, 

the trajectory of the foot in space is found by integrating the velocity over each stride. Stride 

parameters are then calculated from the foot trajectories. D: Foot trajectories and stride 

measurements obtained from IMU data. Overhead view is shown of representative IMU 

trajectories for the right foot of one subject, for an eyes open (top) and eyes closed (bottom) 

walking trial. The trajectories are aligned to a common origin, defined as the beginning of 

each stride. Stride length and width are defined by a local heading determined from three 

successive strides. Stride variability is defined as the root-mean-square (RMS) variability of 

length and width.
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Figure 3. 
Experimental setup for testing foot placement measurement. Subjects walked down a 

hallway while wearing foot-mounted IMUs and motion capture markers. To collect 

reference data, an experimenter pushed a mobile motion capture cart behind the subject. The 

cart was instrumented to use dead reckoning to calculate the motion of the subject in a world 

frame, yielding a comparison between motion capture and IMU results.
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Figure 4. 
A: Comparison of stride parameters as measured with IMU and motion capture. Shown are 

mean stride length and duration, and RMS variability of stride width, length and duration, 

for eyes open and eyes closed conditions. Error bars represent standard deviation across 

subjects. Asterisks denote significant differences detected between eyes open and closed 

conditions (paired t-test, p < 0.05). B: Correlation between stride measurements using IMU 

and motion capture. Individual stride width and length estimates are shown for all subjects 

and conditions (5538 strides). IMU estimates are plotted against motion capture estimates, 

along with intra-class correlation (ICC) and the corresponding linear fit. Perfect agreement 

would yield a line of unity slope.
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Figure 5. 
A: IMU estimation errors with imposed limitations. Stride length (top) and width (bottom) 

errors are shown (relative to motion capture), using the proposed algorithm with a 

distributed vs. impulsive zero velocity correction. Also compared are calculations made with 

artificially limited ranges for gyroscopes (between  and ) and accelerometers 

(between 10g and 3g). Errors are summarized as standard deviation of difference between 

IMU and motion capture estimate. B: Demonstration of IMU processing applied to walking 

in non-laboratory environments. (Top:) Walking around a rectangular hallway circuit of 

approximately 110 meters, completed five times. (Bottom:) Walking up and down a set of 

spiral staircases (illustrated by photograph). Representative data from one subject show 

relatively low drift in absolute positions. C: Estimation of stride width variability as a 

function of number of strides. As individual stride widths are measured (top) from a 

representative subject, the estimate of stride width variability (bottom) improves in 

confidence (shaded areas for 95% confidence intervals).
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