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SUMMARY

Cercarial dermatitis (swimmer’s itch) is a condition caused by
infective larvae (cercariae) of a species-rich group of mammalian
and avian schistosomes. Over the last decade, it has been reported
in areas that previously had few or no cases of dermatitis and is
thus considered an emerging disease. It is obvious that avian schis-
tosomes are responsible for the majority of reported dermatitis
outbreaks around the world, and thus they are the primary focus
of this review. Although they infect humans, they do not mature
and usually die in the skin. Experimental infections of avian schis-
tosomes in mice show that in previously exposed hosts, there is a
strong skin immune reaction that kills the schistosome. However,
penetration of larvae into naive mice can result in temporary mi-
gration from the skin. This is of particular interest because the
worms are able to migrate to different organs, for example, the
lungs in the case of visceral schistosomes and the central nervous
system in the case of nasal schistosomes. The risk of such migra-
tion and accompanying disorders needs to be clarified for humans
and animals of interest (e.g., dogs). Herein we compiled the most
comprehensive review of the diversity, immunology, and epide-
miology of avian schistosomes causing cercarial dermatitis.

INTRODUCTION

Cercarial dermatitis is a condition caused by both mammalian
and avian schistosomes (Trematoda: Schistosomatidae).

Which of those species is more prevalent in a dermatitis outbreak
depends on where you are in the world and how humans and
birds/mammals (and, by association, snails) come into contact
with a particular type of aquatic environment. The name “cer-

carial dermatitis” is derived from the term “cercaria,” the last lar-
val stage developing in an aquatic snail. Cercaria is the infective
stage that, after leaving the snail, searches for and invades a warm-
blooded vertebrate host via skin penetration. Besides the official
name, “cercarial dermatitis,” many local terms are used (“sawah
itch,” “koganbyo,” etc.), with the most widely used name being
“swimmer’s itch.”

Schistosome cercariae were disclosed as the causative agent of
cercarial dermatitis in the United States in 1928 (1). Since that
time, numerous reports of cercarial dermatitis have been docu-
mented from different parts of the world. Global economic losses
due to outbreaks of cercarial dermatitis are not known, as there is
no systematic method of reporting either the number of cases or
incurred economic losses in terms of recreation or person work
hours. Furthermore, what data do exist that estimate local costs
are usually not available to the public domain, but it is accepted
that outbreaks can have considerable impacts on local, tourism-
based economies in the areas of recreational lakes (2). For exam-
ple, in the recreational area of Naroch Lake (Belarus), 4,737 cases
of cercarial dermatitis were recorded between 1995 and 2006 (3).
In addition, cercarial dermatitis may represent a debilitating oc-
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cupational disease among rice farmers (4) and may incur costs in
terms of lost person work hours. Older reports refer to 75% or
more of the population experiencing the characteristic symptoms
of “koganbyo” in the areas of Japan where the disease is most
highly endemic (5). Recent reviews (6–9) agree that in some re-
gions cercarial dermatitis has appeared as a new problem, either
because the dermatitis was previously unknown (e.g., the U.S.
Southwest and Chile) or because the number of reports of out-
breaks increased (8, 10, 11). Consequently, cercarial dermatitis is
now regarded as an emerging disease. Besides human schisto-
somes (Schistosoma spp.), no animal (e.g., avian) schistosomes
have any other presently known pathogenic effects on humans.
Thus, the use of animal models to study the potential risk of ani-
mal (avian) schistosomes to human health is invaluable.

The last decade has revealed diverse avian schistosome species
and biology, as well as the snails that host them. These discoveries
have outpaced the equally essential host-parasite biological, im-
munological, pathological, and epidemiological studies of species
diversity in terms of incorporating the results of such studies into
the current known diversity of schistosomes. Such studies are dif-
ficult and time-consuming, and consequently, only a few species
have been adapted to experimental conditions. Nevertheless, such
studies are crucial to understanding the current and future roles
that these species might play in the frequency and distribution of
cercarial dermatitis, as well as understanding how to break the life
cycle to prevent outbreaks. What has been documented, and is
detailed in the following sections, points to an understanding of
the avian schistosome-host relationships and thus offers the foun-
dation on which future studies will be modeled.

DIVERSITY OF SCHISTOSOMES CAUSING DERMATITIS

Considering only the named species in the literature, there are 4
schistosome genera from mammals and 10 from birds, with about
30 described species from mammals and about 67 from birds (12).
The total is close to 100 species, with �70% of them being avian
schistosomes distributed around the world that may initiate cer-
carial dermatitis. The role of some of the species of avian schisto-
somes as dermatitis agents has not been studied sufficiently, as
they are not often found in areas where people most commonly
are in contact with water and snails. To discuss the distribution
and diversity of schistosomes causing dermatitis within the phy-
logenetic framework of the family Schistosomatidae, we refer to
Fig. 1 (12–14).

The basal clade of the family tree (Fig. 1, clade A) comprises the
exclusively marine avian schistosomes Austrobilharzia (4 species)
and Ornithobilharzia (2 species); the species shown in the tree are
those for which there are genetic data. Species of these two genera
are associated with outbreaks of dermatitis in shallow marine en-
vironments (15, 16). Infection often occurs in people who are
swimming, playing in tidal pools, or working, for example, col-
lecting tidal invertebrates in the sand (15, 17–27). Both of these
genera have robust, large worms as adults and are common schis-
tosomes of marine birds, particularly gulls. Species of Austrobil-
harzia are more often implicated as a cause of dermatitis out-
breaks (25).

The next main clade includes the remaining schistosomes (Fig.
1, clades B, C, and D). Clades B and C are exclusively freshwater
mammalian schistosomes. The largest clade of mammalian schis-
tosomes includes the genus Schistosoma, with �25 species (clade
B). In particular, three of these species (Schistosoma mansoni,

Schistosoma haematobium, and Schistosoma japonicum) cause one
of the most devastating helminth diseases in humans, schistoso-
miasis, affecting about 220 million people, mainly in the tropical
and subtropical latitudes around the world (WHO). All but one
species (S. mansoni) occur exclusively in the Eastern Hemisphere.
These species are not typically implicated in dermatitis outbreaks,
yet there is a mild eruption of dermatitis following penetration by
all schistosomes (28). Most reported cases of dermatitis caused by
the genus Schistosoma are from parasites that infect domesticated
work animals, such as cattle and buffalo, mainly in Asia. For ex-
ample, in countries such as India and Nepal, the species Schisto-
soma turkestanicum, Schistosoma nasale, Schistosoma indicum, and
Schistosoma spindale are often implicated in outbreaks of derma-
titis (29–38). This relationship may not be a surprise, as bovids are
the definitive host, and the people in these areas depend upon
these animals for their livelihood in farming. Additionally, the
snail host for the major species causing dermatitis (S. nasale, S.
indicum, and S. spindale) is Indoplanorbis exustus, a widespread
and abundant snail that is found mainly in Nepal and India, to the
exclusion of Biomphalaria and Bulinus, snail hosts for a majority
of the African transmitted species of Schistosoma.

The genus Bivitellobilharzia is considered a schistosome of el-
ephants, but it has also been reported from wild rhinoceroses in
Nepal (38–41). There are no known reports of cercarial dermatitis
in humans from areas inhabited by African elephants (with the
Bivitellobilharzia loxodontae schistosome), but in areas where do-
mesticated Asian elephants are used, there have been cases of der-
matitis in the mahouts, or elephant handlers, when the elephants
are taken for bathing (e.g., in Sri Lanka [40]). In Nepal, Bivitello-
bilharzia nairi has thus far been found in wild, not domesticated,
elephants (38). The snail host remains unknown but is likely a
pulmonate snail (42). At least two species of Schistosoma from
Biomphalaria snails infect the African hippopotamus, but these
species have not been implicated directly in dermatitis outbreaks,
despite the presence of humans working on lakeshores where
there are hippopotamuses (43–45). Given the prevalence of hu-
man schistosomiasis in these areas, however, dermatitis caused by
hippopotamus schistosomes may easily go undetected.

The small clade C (Fig. 1) has two species of mammalian schis-
tosomes that, as far as we know, are found only in North America
and are not frequently associated with dermatitis outbreaks,
though they both produce a skin reaction (46–50). These two
species are parasites of lymnaeid snails (often Stagnicola elodes),
usually with raccoons and muskrats as mammalian hosts. Schisto-
somatium douthitti adults inhabit aquatic and semiaquatic ro-
dents in more northern latitudes or at high elevations (48, 51, 52).
Heterobilharzia americana has been reported from a wide range of
mammalian hosts (rivaling Schistosoma japonicum), including
horses, in the southern regions of North America (49, 53, 54).

Perhaps the most remarkable clade of schistosomes responsi-
ble for dermatitis is clade D, a large clade of avian schistosomes
whose adults are long and threadlike (except Dendritobilharzia
and Bilharziella) and that includes both freshwater and marine
species. In particular, the genus Trichobilharzia has achieved no-
toriety as the primary etiological agent for dermatitis outbreaks
around the world. The diversity of aquatic environments, host
use, morphology, definitive host habitat, and cercarial behavior is
unparalleled in any other group of schistosomes, and probably
most other groups of trematodes (12, 14). Figure 1 includes a
molecular phylogeny of all the known genera of schistosomes ex-
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cept one. Jilinobilharzia has not been reported since the original
paper reporting it from the duck Anas crecca in northeastern
China; its snail host remains unknown (55). Morphological char-
acteristics and host use suggest that Jilinobilharzia belongs in the
large clade of avian schistosomes (Fig. 1, clade D), perhaps even to
Trichobilharzia.

At the base of clade D is an unresolved group of avian schisto-
somes, most of which have been implicated in dermatitis out-
breaks and comprise the most diverse range of both bird and snail
(9 families) host use (13, 40, 56–66). Current results based on all of
the available sequence data in GenBank for the internal tran-
scribed spacer (ITS) region indicate that there are about nine dis-
tinct lineages, only two of which are described: Gigantobilharzia
and Dendritobilharzia (40, 64–69). Most of the lineages in this part

of clade D have one to a few species and have been seen in only a
few cases, many related to dermatitis outbreaks (12) (Table 1).
Thus far, the literature suggests that species in this clade cause
dermatitis in more local areas, whereas Trichobilharzia causes cer-
carial dermatitis globally. For example, in the San Francisco Bay
area (California), one beach in particular has annual cases of der-
matitis (64). The prevalence of dermatitis caused by schistosomes
from Valvata or Melanoides snails (63, 65, 66) depends on how
often people use areas where these snails release cercariae.

Species of Trichobilharzia (Fig. 1, clade D) are globally distrib-
uted and cause the majority of recreational and occupational re-
ports of dermatitis found in the literature, especially in the tem-
perate latitudes. In North America and Europe, where most of the
research has been focused, outbreaks occur in recreational ponds

FIG 1 Phylogenetic tree showing generic and species positions based on Bayesian analysis of the nuclear ribosomal DNA 28S region (1,200 bp) of Schistoso-
matidae. Panels A to D refer to the clades discussed in the text. This tree is based on genetic data, not morphological data, and as such, there are more species that
have been described morphologically than genetically. Asterisks denote significant posterior probabilities (�0.95).
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and reservoirs. These outbreaks have been reviewed extensively (7,
8, 70, 71). Species of Trichobilharzia have been reported to cause
dermatitis from other areas as well, such as Rwanda-Burundi (72),
South Africa (73, 74), New Zealand and Australia (75–79), Malay-
sia/Indonesia (80–82), Iran (65, 83–86), United Arab Emirates
(66), Thailand (87), and China (88, 89) in the Eastern Hemisphere
and Argentina (57, 90, 91), Chile (11), and El Salvador (92) in the
Western Hemisphere. We are just beginning to better under-
stand the significant disease components for dermatitis as a
global problem.

Cercarial dermatitis is also recognized as an occupational haz-
ard in many areas of the world, especially in areas where rice is
grown (82, 93). Rice fields are areas where snails, domestic and
wild ducks, cattle, and humans seasonally use the water, so the life
cycle is maintained consistently (5, 84, 94–104). Species of Tricho-
bilharzia are identified most often, though not exclusively (5).
Rice fields are plowed by water buffalo and cattle in areas where
Indoplanorbis exustus occurs, and hence, dermatitis may be caused
by one of the species of Schistosoma, as noted above. Nonetheless,
Trichobilharzia is still by far the most common etiological agent.

MOLLUSCAN AND AVIAN HOST SPECIFICITY

Schistosomes have colonized many families of snails as first inter-
mediate hosts (12, 62). Mammalian schistosomes use 3 families of
snails, compared to 15 families used by avian schistosomes, as
summarized in Table 1. The majority of schistosome species are
transmitted by the pulmonate snail families Physidae, Lymnaei-
dae, and Planorbidae (10, 70, 105). Interestingly, two snail families
contain species (e.g., Biomphalaria and Indoplanorbis in the Plan-
orbidae family and Stagnicola in the Lymnaeidae family) that can
host both avian and mammalian schistosomes that cause derma-
titis (40, 51, 70, 104, 106).

Previous papers have reviewed the details of host specificity in
mammalian schistosomes (Fig. 1, clades B and C) (107, 108). Be-
cause avian schistosomes are the major group of schistosomes
causing dermatitis, our own discussion focuses on their avian and
snail hosts. For two reasons, these avian schistosome species com-
prise most of the dermatitis reports: first, many avian hosts sea-
sonally migrate, consequently disseminating avian schistosomes
as they fly (domestic ducks can serve as definitive hosts particu-

TABLE 1 Summary of general host use of known genera of schistosomes, reflecting current knowledge, habitat in the definitive host, and broad
geographic locality

Genus Snail host Mammalian/avian host

Definitive
host
habitat Locality

Aquatic
habitat

Major areas for
outbreaks

Austrobilharzia Nassariidae, Batillaridae,
Littoriniidae,
Potamididae

Charadriiformes Visceral Global Marine Shallow marine areas,
tidal pools

Ornithobilharzia Batillaridae Charadriiformes Visceral Global Marine Shallow marine areas,
tidal pools

Macrobilharzia Unknown Suliformes (Anhinga) Visceral North
America,
Africa

Unknown Unknown if causes
dermatitis

Bivitellobilharzia Unknown Elephantidae, Rhinocerotidae Visceral Africa, Asia Freshwater Probably freshwater
rivers

Schistosoma Planorbidae,
Lymnaeidae,
Pomatiopsidae

Mammalia Visceral,
Nasal

Eurasia, Africa,
South
America

Freshwater Mostly eutrophic ponds

Heterobilharzia Lymnaeidae Mammalia Visceral North America Freshwater Marshy areas
Schistosomatium Lymnaeidae Rodentia Visceral North America Freshwater Marshy areas
Bilharziella Planorbidae Anseriformes, Gruiformes,

Ciconiformes,
Podicipediformes

Visceral Europe Freshwater Eutrophic ponds

Species isolated
from
Haminoea

Haminoeidae Charadriiformes,
Pelicaniformes

Visceral North America Marine Shallow marine areas,
tidal pools

Gigantobilharziaa Physidae Passeriformes Visceral North America Freshwater Marshy areas, usually
with cattails

Dendritobilharzia Planorbidae Anseriformes, Gruiformes,
Pelicaniformes,
Gaviiformes

Visceral Global Freshwater Unknown if reports of
dermatitis

Jilinobilharzia Unknown Anseriformes (Anatidae) Visceral China Unknown Unknown if reports of
dermatitis

Allobilharzia Unknown Anseriformes (swans) Visceral Northern
Hemisphere

Unknown Unknown if causes
dermatitis

Anserobilharzia Planorbidae Anseriformes (geese) Visceral Northern
Hemisphere

Freshwater Eutrophic ponds,
reservoirs

Trichobilharzia Lymnaeidae, Physidae Anseriformes (Anatidae) Visceral,
nasal

Global Freshwater Eutrophic ponds, glacial
lakes, reservoirs

a Since Gigantobilharzia is not a monophyletic genus, the information listed here is for G. huronensis only.
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larly for Trichobilharzia); and second, some snail hosts are habitat
generalists (e.g., Physa [syn. Physella] acuta and Lymnaea stagna-
lis) that are now globally distributed. As a result, the opportunities
for birds and snails to come into contact across time and space are
vast. For example, P. acuta (host to Gigantobilharzia huronensis,
Trichobilharzia physellae, and Trichobilharzia querquedulae)
thrives in both natural and altered environments, with a wide
tolerance for water temperature and chemistry, including the con-
ditions found in ponds, drainage ditches, rivers, marshes, and
ephemeral water (109–111). In Europe, the lymnaeid snail L. stag-
nalis (host of Trichobilharzia szidati) has also been linked to cases
of dermatitis in people who acquired it while working with
aquaria (112, 113), providing evidence of the snail’s ability to per-
sist, in addition to its local global presence.

From an evolutionary perspective, the vagility and habitat
specificity of most bird hosts, in concert with the availability of
snails in aquatic habitats, are likely mechanisms for widespread
host switching in snails, and thus for diversification of avian schis-
tosomes (12, 114). Our knowledge of the current schistosome-
snail associations indicates that once a schistosome is hosted by a
particular species of snail, it possesses little ability to utilize more
than a few species within that genus (e.g., Radix, Stagnicola, and
Physa) (115). Two exceptions are Dendritobilharzia pulverulenta,
which uses Anisus vortex in Europe (116) and Gyraulus parvus in
North America (117), both of which are small, related planorbid
snails, and Trichobilharzia regenti, which employs lymnaeid snails
of the genus Radix in Europe and Austropeplea tomentosa in New
Zealand (118). There is little evidence of schistosome species
crossing snail families, naturally or experimentally (for an excep-
tion, see references 119 and 120). Trichobilharzia franki was re-
ported to be widespread across Europe, but detailed molecular
studies are showing that it may represent several species related to
snail host use (70, 121, 122).

Cercarial dermatitis is caused not only by species of schisto-
somes from indigenous snails but also by those from invasive or
introduced snails. For example, Haminoea japonica (originally
from Japan but now off the California coast) and Ilyanassa obso-
leta (originally from the east coast but now on the west coast of
North America) are responsible for annual dermatitis outbreaks at
marine swimming beaches (25, 64). In freshwater, L. stagnalis is
found commonly in the northern Eastern hemisphere, yet in the
northern Western hemisphere it is only locally common. When L.
stagnalis is found to be infected, the infecting species is related to a
common European species, Trichobilharzia szidati (70, 123). In-
terestingly, P. acuta is one of the most invasive pulmonate snails
and can host at least four species of avian schistosomes in North
America (10, 70), yet there are no reports of this snail hosting
schistosomes in their invasive range (outside North America). It is
also noteworthy that most of the schistosome species transmitted
by physid snails have thus far been found only in North America
(at least based on genetic comparisons) (e.g., G. huronensis, T.
physellae, and one undescribed lineage of schistosome [10]). The
lymnaeid snail genera Stagnicola (found in North America) and
Radix (found in the Eastern Hemisphere) are the main snail hosts
for most species of Trichobilharzia; in fact, thus far, Radix main-
tains most of the reported species diversity of Trichobilharzia
(122). Trichobilharzia regenti has been recognized to cause derma-
titis in Lake Wanaka in New Zealand, and it may have been intro-
duced from Europe in wild duck breeds (Anas platyrhynchos) used
for hunting. It is now found commonly in the endemic nonmigra-

tory scaup Aythya novaeseelandiae and the snail Austropeplea to-
mentosa (118). Schistosomes seem to be specific to particular snail
hosts at the species or genus level, but not as much to their avian or
mammalian hosts, though loose specificity of definitive host use
exists at higher taxonomic levels (Table 1) (e.g., Schistosoma
haematobium in humans, Bivitellobilharzia in elephants, and Allo-
bilharzia in swans).

The diversity of avian schistosomes found around the world is
in no small part due to the ability of thousands of migratory birds
to carry their parasites across several latitudes and longitudes, ex-
posing commonly encountered snails. This propensity to migrate
large distances distinguishes avian schistosomes from mammalian
schistosomes in terms of distribution, diversification, and host
use, perhaps with the exception of Schistosoma mansoni (in terms
of long-distance migration only) (124). Yet the schistosome spe-
cies found in a wide range of avian host orders (e.g., Bilharziella
and Dendritobilharzia) (Table 1) are not the ones recurrently re-
sponsible for outbreaks and are also species that are not genetically
diverse compared to other species (69, 125, 126). Currently, D.
pulverulenta might be the most widespread single species of avian
schistosome, crossing both the Northern and Southern Hemi-
spheres (117, 125, 127, 128).

The most derived clade, or most recently evolved clade, in clade
D has three genera: Allobilharzia, Anserobilharzia, and Trichobil-
harzia (Fig. 1). Allobilharzia, from swans, and Anserobilharzia,
from geese, both have a circumpolar distribution (69, 70, 105, 129,
130). Anserobilharzia brantae, which is common in North Amer-
ica (in the Canada goose [Branta canadensis] and the snow goose
[Chen caerulescens]) but also found in Europe (in the greylag
goose [Anser anser]), has been identified in at least one outbreak of
dermatitis in the United States (10). The area was a eutrophic
municipal lake/pond with a dense population of Gyraulus parvus
snails and Canada geese. The third genus, Trichobilharzia, the
most species-rich genus in the family, is found almost exclusively
in ducks. It should be noted that there are several species of Tricho-
bilharzia reported from other avian families (Trichobilharzia corvi
from passeriforms, along with other species [131, 132]), but based
on the morphology of adults and eggs and snail host use (when
known), these probably represent new genera, or these avian hosts
are not the primary (competent) hosts or might be aberrant cases
(70, 78). Within the genus Trichobilharzia, several clades are spe-
cific to certain groups of ducks: for example, Trichobilharzia stag-
nicolae and Trichobilharzia mergi are found in mergansers (Mer-
ginae) (70, 133), T. querquedulae in the “blue-winged duck” clade
(Anas clypeata, Anas discors, and Anas cyanoptera) (70, 134), T.
physellae in an ecological group of diving ducks that includes
ducks of the Aythinae and Merginae, and a common, undescribed
species of Trichobilharzia, species A, in Anas americana (70). It is
not yet clear which duck groups (phylogenetic or ecological) are
more specific for T. franki or T. szidati. Interestingly, T. regenti has
probably been reported from the most diverse duck species (135)
and does not appear to have a preferred host within the Anatidae.
In North America, T. stagnicolae and T. physellae are most often
identified in dermatitis outbreaks (70).

INTRAMOLLUSCAN DEVELOPMENT OF AVIAN
SCHISTOSOMES

As noted above, Trichobilharzia is the most diverse schistosome
genus and has most often been implicated in outbreaks of cercarial
dermatitis. As a result, studies on the avian schistosome-snail in-
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termediate host relationship have focused primarily on species of
the genus Trichobilharzia. Additionally, long-term laboratory
maintenance of T. szidati and L. stagnalis enabled the experiments
that uncovered the intimate molecular interactions of avian schis-
tosomes and their snail hosts. (The Trichobilharzia ocellata organ-
ism used as an experimental model in European laboratories for
the last few decades is identical to T. szidati, and the latter name is
preferred and is used here [123]. If T. ocellata is used in the text
body, then it refers to the non-European isolates of the parasite.)

After hatching from eggs in an aquatic environment, schisto-
some miracidia search for and invade an appropriate snail host
species. This behavior must be accomplished quickly, as miracidia
have a temperature-dependent limited life span of around 20 h, as
reported for, e.g., T. stagnicolae (136). Studies on the miracidial
behavior of T. szidati have shown a progression of steps from host
finding to penetration and migration. Miracidia respond to envi-
ronmental stimuli, such as light or gravity, that direct them to the
microhabitat occupied by the host snails (137). Snails release var-
ious chemical compounds that form an “active space” around
them and serve as chemoattractants for the miracidia. Miracidia
recognize macromolecular glycoconjugates, termed miracidium-
attracting glycoproteins (MAGs) or miraxones, that consist of a
protein core and carbohydrate chains linked O-glycosidically via
N-acetyl-D-galactosamine and serine/threonine (138, 139). The
attractant for miracidia is encoded in these carbohydrate moieties.
Upon entering the “active space” of the snail, miracidia modify
their movement by increased random turns within the increasing
attractant gradient and by a turn-back form of swimming within
the decreasing attractant gradient (140). This mode of orientation
(chemokinesis), observed, e.g., in T. szidati or T. franki (115, 138),
results in the first contact of the miracidia with the snail, which is
then followed by repeated investigation/probing of the snail sur-
face and, finally, miracidial attachment (140). Penetration of the
snail surface follows, although the factors contributing to this pro-
cess, such as the components of miracidial penetration glands,
remain largely unknown.

After penetrating the surface epithelium of the snail, miracidia
of avian schistosomes transform into mother sporocysts that give
rise to daughter sporocysts, which migrate to the snail hepatopan-
creas, where production of the final larval stage, the cercariae,
takes place (13). The prepatent period lasts about 3 to 10 weeks,
depending on several factors, such as the miracidial dose or tem-
perature (13, 141). Infection by avian schistosomes may lead to
alterations of the snail internal defense system (IDS), metabolism,
and endocrine functions. Such alterations have been studied
widely in L. stagnalis, the intermediate host of T. szidati (142–145).

The snail IDS is based solely on innate immune mechanisms
composed of humoral and cellular limbs. Lectins are essential hu-
moral components, whereas hemocytes represent the main effec-
tor cells (146, 147). Both limbs of the L. stagnalis IDS appear to be
activated and then suppressed during early and late stages, respec-
tively, of a T. szidati infection (143). In vitro, hemocytes failed to
encapsulate and destroy T. szidati sporocysts (148). It has been
suggested that parasite excretory-secretory products participate in
the modulation of hemocyte activities (149). Disruption of hemo-
cyte signaling pathways, such as protein kinase C (PKC) and ex-
tracellular signal-regulated kinase (ERK) pathways, may also
influence hemocyte activities (150–152). For example, carbohy-
drates known to be present on larval surfaces of T. szidati and T.
regenti, such as D-galactose and L-fucose (153–156), affected he-

mocyte PKC and ERK signaling in L. stagnalis, which suggests an
immunosuppressive role (157, 158). However, experiments inves-
tigating the direct effect of Trichobilharzia larvae on hemocyte
signaling have not been performed. Alterations of humoral de-
fense components also occur during infections by avian schisto-
somes, and at least two molecules, molluscan defense molecule
(MDM) and granularin, have been investigated in this respect
(159, 160). Both molecules, produced in L. stagnalis by granular
cells of connective tissue, are related to phagocytic activity of he-
mocytes. MDM enhances phagocytosis of hemocytes, and the ex-
pression of a corresponding gene for MDM is downregulated in L.
stagnalis infected with T. szidati (159, 161). In contrast, treatment
of hemocytes with granularin decreases phagocytic activity, and
the encoding gene is upregulated in parasitized snails (160, 161).

In the snail host, avian schistosomes also interfere with metab-
olism, such as causing abnormal body growth, and endocrine
functions, such as causing a reduction of egg laying (161). In L.
stagnalis, these processes are regulated by neuroendocrine cells in
the central nervous system (CNS) (162, 163). Trichobilharzia szi-
dati releases an undescribed substance that induces the snail host
to produce schistosomin (a peptide of 8.7 kDa consisting of 79
amino acids) from its connective tissue and hemocytes (145).
Schistosomin acts as a neuropeptide that interferes with some
hormones, such as calfluxin, a neuropeptide that stimulates the
influx of Ca2� into the mitochondria of albumen gland cells (164,
165). As a consequence, ovulation and egg laying are inhibited in
the snail. Excitability of neuroendocrine cells (light green cells
[LGCs]) responsible for growth (162) increases in response to
schistosomin (166). As a result, the body size of infected snails
may become considerably larger than that of uninfected snails
(142, 161). Other neuropeptides (FMRFamide-related peptides)
are also upregulated during infection of L. stagnalis by T. szidati,
and these peptides, via inhibition of neuroendocrine cells, may be
responsible for the suppression of snail metabolism and repro-
duction (167). All these changes in infected snails may provide
energy resources and space that can be exploited by the schisto-
somes for development (145, 161).

The survival rate of infected snails releasing schistosome cer-
cariae as the agent of cercarial dermatitis varies among species. A
limited number of studies have focused on survival rates of avian
schistosome-infected versus uninfected snails. As an example,
90% of L. stagnalis snails infected experimentally with a single
miracidium of T. ocellata (North American isolate) were alive at
28 weeks of age (three infected snails were alive for 19 months),
whereas all uninfected snails were dead (168). In contrast, L. stag-
nalis or Planorbarius corneus snails naturally infected with T. szi-
dati or Bilharziella polonica, respectively, lived a shorter time, on
average, than the corresponding uninfected individuals (169,
170).

VERTEBRATE HOST FINDING AND PENETRATION

Cercariae emerging from the snail intermediate host are the infec-
tive stage to the definitive host and are also the stage responsible
for causing cercarial dermatitis. A cercaria is a multicellular larva
comprised of an oblong body and a slender tail that is bifurcated
(furcocercous) at the posterior end (Fig. 2). Cercariae of schisto-
somes leave their snail hosts actively. For this purpose, they em-
ploy a pair of specialized unicellular escape glands that are obvious
in mature cercariae within sporocysts. Once the cercariae have
emerged, only their ducts lined by microtubules are visible, sug-
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gesting a release of granular gland content likely containing histo-
lytic enzymes during their migration through the snail tissue
(171).

Once in the water, schistosome cercariae express a complex
pattern of behaviors that is composed of movement cycles that are
repeated in defined frequencies (172). In general, they express
negative geotaxy and positive phototaxy, which result in the con-
centration of cercariae just beneath the water surface, where ap-
propriate definitive hosts may occur (173). Surface tension of the
water enables clinging of cercariae via their ventral sucker (acetab-
ulum) (173). This resting phase is interrupted by phases of active
swimming (173). The effect of light on the behavior of swimming
cercariae was studied in detail for Trichobilharzia szidati. Cercar-
iae are able to react to a moving shadow stimulus (produced by a
potential host) by a burst of forward swimming (body first) away
from the source of light, to deeper levels, where they can encoun-
ter the feet of duck definitive hosts. A shadow stimulus applied in
the active phase inhibits swimming and prolongs the following
passive phase (173). Two types of photoreceptors, located near the
dorsal surface of the body, were described for this species: a pair of
lens-covered pigment cup ocelli and a special type of unpig-
mented, rhabdomeric photoreceptors, composed of three cells ar-
ranged in a three-dimensional (3-D) configuration. The lens-cov-

ered pigment cup ocelli probably serve to detect the direction of
incoming light and to control the direction of swimming in rela-
tion to a light source, while the unpigmented photoreceptors serve
as monitors for light intensity (174). The pigmented ocelli are also
present in other genera of avian (Bilharziella, Dendritobilharzia,
Gigantobilharzia, and Austrobilharzia) and mammalian (Schisto-
somatium and Heterobilharzia) schistosomes but are absent in
Schistosoma.

Moving shadows also trigger a readiness for cercarial attach-
ment to substrates, further stimulated by thermal and chemical
host cues (172). As for the latter signals, compounds in the host
skin (ceramides and cholesterol) stimulate enduring contact of
cercariae of T. szidati with the host skin (173, 175). There is vari-
ability among schistosome species in responses to light, shadow,
physical, and chemical cues, such that for different species, some
of the signals may not work or may include some additional ones,
such as touch, water turbulence, and/or additional chemical com-
pounds (172, 176). The variation among the different avian schis-
tosome species reflects the diversity in biology and ecology of
schistosomes and their adaptations to the spectra of avian hosts
(172, 176).

Invasion of the bird or mammal skin is initiated by the cercar-
iae receiving the proper signal. Surprisingly, there were few differ-
ences between the avian T. szidati and human S. mansoni organ-
isms in their pattern of invasive behavior toward living human
skin; most cercariae did not penetrate the skin immediately after
attachment but performed a leech-like creeping which lasted 0 to
80 s for T. szidati and 15 s to 5.58 min for S. mansoni (177). Such
behavior guided the cercariae to skin wrinkles or hair follicles,
where most penetration sites were located (178) (Fig. 3). Penetra-
tion behavior and production of secretions stimulate neighboring
cercariae to use the same entry site on the skin (177, 178). Invasion
of the skin is facilitated by secretions of cercarial penetration
glands released from openings at the apex of the muscular head
organ by spasmodic contractions of cercarial body musculature
(179). The head organ performs concurrent thrust movements
against the skin surface while the cercaria is firmly attached by the
ventral sucker (176, 178, 180). Signals for skin invasion seem to be
universal for schistosomes—fatty acids, especially polyunsatu-
rated fatty acids containing 18 carbons and two or three cis double
bonds (linoleic and linolenic acids), which are bound in cell mem-
branes and occur as free molecules on the surface of human and
bird skin (176).

For T. szidati, the tail is shed within 0 to 105 s after the onset of
penetration, sometimes during creeping. This shedding seems to
be generated at least partially by contractions of a muscular collar
at the body-tail junction, which plays a role in the closure of the
cercarial hind body after tail shedding. Cercarial penetration oc-
curs in a nearly surface-parallel direction, while the spined ventral
sucker supports squeezing of the cercarial body into the opening
in the skin caused by histolytic gland secretions. Full penetration
of living human skin was achieved within a mean of 4 min (83 s to
13.3 min), which was significantly faster than the case for the
human parasite S. mansoni (6.58 min, on average) (177). Faster
penetration of avian schistosome cercariae might be a conse-
quence of these parasites’ adaptation to lower concentrations of
fatty acids in duck skin; therefore, reaction to higher concentra-
tions in human skin may induce faster invasion (177, 178). An-
other explanation may be that different histolytic enzymes are
used for penetration (see below). Skin penetration success rates

FIG 2 Furcocercaria of Trichobilharzia regenti with protruded acetabulum
(arrow), lateral view. Bar, 200 �m. (Courtesy of J. Bulantová, reproduced with
permission.)
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may vary greatly. In experiments with T. szidati and human vol-
unteers, the highest penetration success rate was 49% underneath
the forearm (181).

The ultrastructure and chemical composition of avian schisto-
some cercarial penetration glands and their secretions have been
poorly studied relative to the case for human schistosomes (Schis-
tosoma). In fact, most of our knowledge is based on only two
species of Trichobilharzia. There are five pairs of unicellular pen-
etration glands: three pairs are located behind the ventral sucker
(postacetabular glands), and two pairs are located around the ven-
tral sucker (circumacetabular or preacetabular glands). These
glands are filled with secretory vesicles that are released through
the gland processes at the surface of the head organ. A 3-D model
of T. regenti acetabular glands shows that they occupy more than
one-fourth of the cercarial body volume (postacetabular glands,
ca. 15%; and circumacetabular glands, ca. 12%). Differences were
observed in the appearance of granular material/secretory vesicles
contained in the glands, pH value, and the ability to bind various
dyes and fluorescent markers (180, 182).

In T. szidati, proteolytic activity was detected in cercarial gland
secretions induced by linoleic acid. This activity was linked with
an orthologue of a chymotrypsin-like serine peptidase, named
cercarial elastase and characterized from S. mansoni and S. haema-
tobium cercariae. A protein on blots of T. szidati cercarial secre-
tions as well as in histological sections of penetration glands im-
munologically cross-reacted with antibodies against elastases of S.
mansoni and S. haematobium (183, 184). However, in another
study, the reaction of antibodies raised against elastase of S. man-
soni was observed neither with the penetration glands of T. szidati
nor with the cercarial secretions on Western blots (180). In con-
trast, high activities of cysteine peptidases were noticed in induced
cercarial secretions and homogenates for T. szidati and T. regenti
(180, 185). In addition, the presence of cercarial elastase in the
latter species was not confirmed by screening of a cDNA library
(186). On the other hand, a papain-like cysteine peptidase, termed
cathepsin B2, was found in the postacetabular penetration glands
of T. regenti. This enzyme was shown to cleave proteins of the host
skin, similar to the case with S. japonicum (187, 188). Its expres-
sion was even higher in intravertebrate stages (schistosomula and
adults), suggesting that there are multiple roles of this enzyme
during the life cycle (189). It seems that the use of particular pep-
tidase families for skin penetration and tissue invasion is diverse
among schistosomes (190) and may confer host specificity.

In the postacetabular penetration glands of T. szidati and T.
regenti cercariae, a lectin(s) specific for �-1,3- and �-1,4-linked
saccharide chains and their sulfated derivatives is present, though
its biological function is still unknown (180, 191). It is interesting
that there are high concentrations of calcium in the circumac-
etabular glands of both species (180). Several hypotheses suggest
that the role(s) of calcium in the glands (including those of S.
mansoni) may be to regulate gland peptidase activity, stimulate
glycocalyx removal, interact with connective tissue proteoglycans,
regulate host blood coagulation, or polymerize the adhesive sub-
stance from postacetabular glands. However, none of these hy-
potheses (except for a regulation of peptidase activity) has been
confirmed adequately (180, 192, 193). Following contact with the
host skin or a linoleic acid-coated surface (L. Mikeš, unpublished
data), cercariae start to expel small amounts of gland content dur-
ing the creeping movement, which is “printed” as the cercariae
touch the surface—these “kissing marks” are made of a sticky
substance. In S. mansoni, this substance is a product of the posta-
cetabular glands and is composed of neutral and acidic mucosub-
stances (194). This product might serve adhesive or enzyme-di-
rective functions. Similar material is produced by cercariae of
Trichobilharzia spp. yet differs in chemical composition (180).
Finally, the production of three types of eicosanoids by T. szidati
cercariae is stimulated by linoleate (195). Eicosanoids may have a
role in host invasion (vasodilatation), and their involvement in
immune evasion was proven by the inhibition of superoxide pro-
duction by human neutrophils (195).

During cercarial penetration, dramatic changes of surface
structures and metabolism lead to the transformation of the cer-
caria to a schistosomulum. The thick glycocalyx that served as a
protective layer for the free-living cercaria is shed, as its carbohy-
drate-rich composition is a target of the host complement cascade.
In the schistosome species studied so far, the glycocalyx is mark-
edly rich in fucose residues (154, 196–198). There is an obvious
loss of saccharide moieties at the surfaces of transformed schisto-
somula of T. szidati and T. regenti, leading to reduced immunore-
activity and attractiveness for fucose-specific lectins (154, 155,
199, 200). Also, similar to the case for human schistosomes and
members of other families of blood flukes, the trilaminar surface
membrane of the outer cercarial tegument gradually changes to
the doubled heptalaminar membrane of the schistosomulum,
which has a protective function against the host immune system
(199). In T. regenti stimulated by linoleate in vitro, shedding of the

FIG 3 Scanning electron micrographs of cercariae of Trichobilharzia regenti penetrating the skin of a duck leg. (A) An individual larva entering the skin; the tail
is still preserved. (B) Tails of three cercariae penetrating the skin in a group. Bars, 100 �m. (Courtesy of J. Bulantová, reproduced with permission.)
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glycocalyx starts at the anterior of the cercaria, surrounding the
openings of penetration glands (J. Chaloupecká and L. Mikeš,
unpublished data). Sticky products of the glands adhere to the
surface of the body, and as the cercaria crawls forward, the glyco-
calyx, with the gland products, is shed in a sleeve-like manner,
until it is detached at the end of the hind body (Fig. 4). Trans-
formed cercariae/schistosomula then lose their osmotic resistance
toward water and become dependent on isosmotic conditions of
the host (Chaloupecká and Mikeš, unpublished data). Whether
any compounds of gland secretions take part directly (e.g., enzy-
matically) in the process of glycocalyx shedding is still unclear.

It should be mentioned that cercariae of avian schistosomes
readily penetrate other (soft) tissues, and peroral infections of
birds (definitive hosts) and mice (accidental hosts) with cercariae
of T. regenti and T. szidati have been confirmed (L. Kolářová, K.
Blažová, V. Pech, and P. Horák, unpublished data). This phenom-
enon is also known for mammalian schistosomes of the genus
Schistosoma (201–203). It is not clear, however, how much these
peroral infections contribute to the transmission of schistosomes
under natural conditions. Due to the features of the esophageal
mucosa, the penetration of Trichobilharzia cercariae does not re-
quire the penetration glands to be emptied completely, and their
tails may be preserved for some time. The stimuli triggering this
penetration behavior remain unknown.

PATHOGENICITY OF AND IMMUNE REACTIONS AGAINST
AVIAN SCHISTOSOMES

Survival and Migration in Avian Hosts

Once the cercariae have transformed into schistosomula and
reached their final location, it is not clear how long avian schisto-
somes live in their definitive hosts. For example, in experimental
infections of ducks, adults of Trichobilharzia parocellata were
found at 86 days postinfection (p.i.) (204). Whereas experimental
infections with T. szidati and T. regenti last for about 3 to 5 weeks
(13, 205), the adult worms of a Canadian isolate of T. ocellata were
found in the liver at 370 days p.i. (206). Data describing the schis-
tosome life span and length of time for egg release in a bird host
will be necessary in considering the epidemiology of dermatitis.
Nonetheless, avian schistosomes have a preference for two major

habitats within the avian host: the visceral venous system (mesen-
teric, renal, cloacal, and portal vessels) and the nasal passages (ex-
cept for Dendritobilharzia, which is found in the arterial system)
(13).

Migration and localization have been characterized for a few
visceral schistosomes and only one (T. regenti) of the eight nasal
schistosomes (205, 207). Visceral schistosomes in birds have a
migration pattern similar to those of Schistosoma spp. in mam-
mals. After skin penetration, schistosomula of T. szidati navigate
toward deeper skin layers by following dark and higher concen-
trations of D-glucose and L-arginine (208, 209). Once a blood cap-
illary is found, the worms penetrate it and migrate to the heart and
lungs. In the lungs, the worms enter free air space and then reenter
the blood system (206, 210). Finally, visceral blood vessels (usually
portal and mesenteric veins) are the preferred habitat (13). How-
ever, there are at least two exceptions, as follows: (i) the adults of T.
szidati/T. ocellata leave the blood system and enter the layers of the
host intestinal wall and mucosa (206, 211) and (ii) Dendritobilhar-
zia pulverulenta prefers the arterial system of its hosts, where it is
found in the lower dorsal aorta and the femoral arteries (212). For
the nasal schistosome T. regenti, migration is dramatically differ-
ent. Schistosomula leave the skin and then seek and penetrate
peripheral nerves (Fig. 5) to migrate to the spinal cord and brain of
their host. From there, the adult worms appear intra- and ex-
travascularly in the nasal mucosa (207).

Pathology Caused by Visceral Species in Birds and
Mammals

Most pathological studies of avian schistosomes in the avian host
have been detailed for experimental birds, though there are a few
reports from wild birds. As for accidental mammalian hosts, only
experimental infections have been evaluated. The schistosomula
migrate through the heart and lungs of birds and mammals, and
only in the avian host do they reach their final destination. Migra-
tion through host lungs has been shown to cause damage (16, 210,
213). Infections of duck and mouse lungs by T. szidati are accom-
panied by hemorrhages in the periphery of the lungs (210). Mi-
gration of schistosomula in the lungs of ducks leads to formation
of lymphocytic lesions and an influx of macrophages, heterophils,

FIG 4 Living Trichobilharzia regenti cercaria in vitro, shedding its glycocalyx upon stimulation by linoleate. The sticky products of the penetration glands, stained
with lithium carmine, adhere to the surface of the body, and as the cercaria crawls forward by periodical constrictions (A) and extensions (B), the glycocalyx and
bound secretions are removed from the surface in a sleeve-like manner. Arrows indicate detached sleeve-like remnants of glycocalyx and gland products. Bar, 100
�m. (Courtesy of J. Chaloupecká, reproduced with permission.)
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and eosinophils into the afflicted tissue (210). However, in mouse
lungs, schistosomula do not evoke a specific inflammatory reac-
tion; only alveolar congestion and edema are observed (210).
Damage to the lung tissue in general, and formation of alveolar
congestion in particular, might be caused by schistosomula that
leave the blood system and localize extravascularly in the alveolar
walls. Their inability to reenter the blood system might be linked
to their relative size and loss of orientation in a noncompatible
mouse host (210). Similarly, migrations to mammalian lungs and
accompanied hemorrhages have been observed in hamsters,
guinea pigs, rabbits, and rhesus monkeys experimentally exposed
to three species of Trichobilharzia (213). Pulmonary infections of
chickens and pigeons with the marine schistosome Ornithobilhar-
zia canaliculata led to the development of lesions in the arterial
and venous vascular systems (lymphocytic endarteritis, periarteri-
tis, and segmental proliferation of the vascular endothelium), hy-
perplasia of smooth muscles in tertiary bronchi, and thickening of
alveolar septa. Cellular infiltrates consisted mainly of histiocytes,
heterophils, and lymphocytes (16). In contrast to the case with
visceral schistosomes, infections of duck and mouse lungs with the
nasal species T. regenti probably represent an ectopic localization
of schistosomula (207, 214, 215).

As for patent infections (exclusively in birds), major pathology
is caused by granulomas around eggs and only partly by adult

worms. Obliterative endophlebitis caused by adult schistosomes
(probably Trichobilharzia filiformis) in the intestinal veins of mute
swans (Cygnus olor) has been recorded (216). The intestinal sur-
face showed various stages of villous atrophy with intestinal mu-
cosal lesions, associated with infiltration of the lamina propria of
the jejunum and ileum by lymphocytes and plasma cells and by a
smaller number of heterophils and eosinophils. Eggs were ob-
served multifocally in the lamina propria of the small and large
intestines, and their presence triggered mild to severe granuloma-
tous reactions (216). Eggs laid by the adult worms of Austrobilhar-
zia variglandis in experimentally infected chickens caused edema,
cellular infiltration, and hyperplasia of smooth muscle of the mus-
cularis externa of the intestine. Around the eggs, mononuclear
cells formed early granulomas with a few eosinophils and hetero-
phils, followed by accumulation of giant and epithelioid cells
(217).

Similarly, examination of Atlantic brant geese (Branta bernicla
hrota) infected with Trichobilharzia sp. (probably Anserobilharzia
brantae, based on current taxonomy) revealed the development of
granulomas around eggs located in the colon (218). Granulomas
were also observed in the duodenum and small intestine of pi-
geons infected with Ornithobilharzia canaliculata (16). Three spe-
cies of ducks infected with T. physellae showed no associated tissue
reaction in the vicinity of adults located in mesenteric veins, but a
granulomatous reaction around the eggs was detected occasion-
ally in the mucosa and submucosa of the intestine (219). On the
other hand, the most serious lesions and fibroplasia of the portal
triads and adjacent parenchyma were observed in the livers of
those ducks and were attributed to mature T. physellae (219). In
the case of pigeons infected with O. canaliculata, granulomatous
lesions surrounding collapsed eggs were observed in the liver pa-
renchyma (16). Intestinal pathology may be accompanied by poor
nutritional conditions, as noticed in pigeons infected with O.
canaliculata (16). Exceptionally, a more serious manifestation of
the infection in naturally infected wild ducks was reported where
the adults and eggs of T. physellae caused partial to complete pa-
ralysis of the cervical, wing, and leg muscles, foul-smelling diar-
rhea, and half-closed pasted eyelids (219).

Pathology Caused by Nasal Species in Birds and Mice

Histological examination of the nasal tissue of birds showed the
extra- and intravascular locations of adult worms of T. regenti
(220), with their first appearance on day 13 p.i. (205). Immature
eggs appeared from day 15 p.i., and at day 19 p.i., eggs were fully
developed and observed extravascularly in the nasal mucosa, with
the maximum number of eggs seen on day 22 p.i. (221). The area
surrounding the eggs was infiltrated by numerous eosinophils,
heterophils, histiocytes, and multinucleated giant cells and a few
plasma cells and mononucleated cells (220). The formation of
granulomas around the eggs was noted from day 22 p.i. (221).
Miracidia that hatched directly in the host tissue were surrounded
by lymphocytes, eosinophils, and heterophils, without granuloma
formation (221). While an infected bird is drinking/feeding, only
the miracidia leave the tissue to enter the water, which represents
an exceptional mode of transmission among schistosomes (205).
The presence of adults only did not initiate an influx of immune
cells to their vicinity, but the presence of large worms and eggs
caused the development of focal hemorrhages throughout the na-
sal mucosa (207, 221). Probably the more devastating aspect of the
pathology of this species is the effect on the CNS of hosts (birds

FIG 5 Cercaria of Trichobilharzia regenti in vitro, penetrating a peripheral
nerve isolated from a duck. The tail is already detached, and the head organ
burrows into the nerve. Bar, 200 �m. (Courtesy of J. Bulantová, reproduced
with permission.)
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and experimental mammals). As stated above, cercariae penetrate
the skin and migrate to the nasal passages via the CNS rather than
the circulatory system.

CNS infections of ducks and mice by T. regenti may lead to the
development of various transient or permanent neuromotor
symptoms, such as weak to severe leg paralysis and balance/orien-
tation disorders (207, 214, 215). In avian hosts, schistosomula in
the CNS initiated an accumulation of inflammatory cells, such as
eosinophils and heterophils, that represented the most abundant
cell infiltrates, yet minimal damage to nervous system cells was
detected (220). In a few cases, however, damage to the CNS was
observed in birds with visceral schistosomes. For example, gran-
ulomatous encephalitis in mute swans, caused by Dendritobilhar-
zia sp., has been described (222, 223). Schistosome eggs found in
the cerebrums and cerebellums of naturally infected swans were
surrounded by giant cells, macrophages, lymphocytes, and, to a
lesser extent, heterophils and fibroblasts (223). The presence of
Dendritobilharzia eggs in the CNS represents an ectopic localiza-
tion.

Because of the pathology caused by T. regenti, and thus the
implications for human health, most experimental work has been
done in mice rather than birds. For up to 3 days p.i., migration of
schistosomula through the murine nervous tissue did not evoke
inflammation or tissue damage, and all detected parasites were
intact (215, 224). A host reaction to the infection was visible on
days 6 and 7 p.i. The presence of parasites led to the accumulation
of immune cells, predominantly microglia, macrophages, and
neutrophils and, to a lesser extent, CD3� lymphocytes (215, 224).

Proliferating astrocytes formed “glial scars” at the sites of previ-
ously migrating schistosomula (215). Ongoing infection was as-
sociated with a more intense inflammatory reaction in white and
gray matter of the spinal cord. Microglia, macrophages, neutro-
phils, eosinophils, and CD3� lymphocytes participated in the for-
mation of inflammatory lesions surrounding the disintegrating
schistosomula, and damage to the axons was detected (215) (Fig.
6). The localization of schistosomula outside the solid tissue, in
the subarachnoidal space of the spinal cord and the brain and in
the cavity of the 4th ventricle of the brain, led neither to damage
nor to inflammation of the adjacent nervous tissue (215). It seems
that schistosomula located in the cavities of CNS were able to
delay destruction by the immune cells. Nevertheless, most of the
worms were eliminated by 21 days p.i. (215). Challenge infections
triggered a strong immune response, which efficiently and rapidly
eliminated the schistosomes (215, 224).

In immunodeficient SCID mice, primary infections as well as
reinfections did not evoke a significant skin reaction, and the
schistosomula often escaped from the skin to the CNS (224),
where migrating schistosomula caused axonal damage and an in-
flux of immune cells (215). In comparison to the case with immu-
nocompetent mice, the schistosomula survived longer in the CNS,
probably due to the absence of T and B lymphocytes (215, 224),
cells that may represent important effectors in destruction of
schistosomula. Larger numbers of schistosomula in the CNS and
their extended time of migration via nervous tissue resulted in a
higher rate of occurrence of paralysis of immunodeficient SCID
mice (215).

FIG 6 Destruction of a schistosomulum (arrows) in the thoracic part of the spinal cord of a BALB/c mouse at 21 days p.i. (longitudinal sections). (A and B)
Inflammatory lesion consisting of CD3� lymphocytes (dark spots) (A) and microglia cells (brown-stained ramified cells) (B) that were detected by use of
anti-mouse CD3� and anti-mouse Iba-1 antibodies, respectively. Nuclei of other cells were stained blue by hematoxylin. (C and D) Tissue around the
schistosomulum contains damaged axons. Axonal damage was accompanied by formation of spheroids (asterisks) in the site of axonal disruption and was
visualized immunohistochemically by use of anti-mouse nonphosphorylated and phosphorylated neurofilament antibodies (SMI-311 and SMI-312, respec-
tively) (C) and anti-mouse �-amyloid precursor protein antibodies (D). Bars, 100 �m (A and B) and 50 �m (C and D). (The figure was created by L.
Lichtenbergová.)
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The above-mentioned damage to the nervous tissues of birds
and mice demonstrates that not only the eggs but also the other
stages of schistosomes are responsible for major pathology. In this
particular case, just the schistosomula (migrating juveniles) of T.
regenti can be regarded as the most pathogenic stage of the para-
site.

Skin Immune Response and Cercarial Dermatitis

Skin immune reactions of birds to the penetration of avian schis-
tosome cercariae are insufficiently described. In any case, birds do
respond to penetrating cercariae, as shown in a histological obser-
vation of chicken skin infected by Ornithobilharzia canaliculata.
Severe infiltrations of the dermis by histiocytes and heterophils
and aggregation of lymphocytes around dilated capillaries in the
dermis were recorded (16). Dead and destructed schistosomula
surrounded by heterophils and histiocytes were found in the epi-
dermises of chickens at 12 h p.i. At 24 h p.i., lymphocytes, histio-
cytes, and heterophils still persisted in the dermis, but the number
of immune cells decreased (16).

Immunohistopathology of cercarial dermatitis in humans rec-
ognized three phases of cellular responses (leucocytic, lympho-
cytic, and histiocytic) against Trichobilharzia larvae (225). How-
ever, because studies on humans are rarely performed (112, 225,
226), a mouse model was established to provide more-detailed
studies on immunohistopathology. Primary infection of mice
with T. regenti causes an acute inflammatory reaction with edema
and vasodilatation (227). Parasites located in the dermis are sur-
rounded by large inflammatory cellular foci that are formed by
neutrophils, macrophages, mast cells, major histocompatibility
complex class II (MHC II) antigen-presenting cells, and a small
number of CD4� lymphocytes (227). Repeated infections cause
perivasculitis, folliculitis, and substantially more influx of the
same cell types that are noted after primary infection (227). Ex-
tensive skin inflammation leads to the formation of large abscesses
and subsequently to dermal and epidermal necrosis. Sites of pre-
vious cercarial penetration are characterized by intraepidermal
pustulae and parakeratosis (227).

In vitro culture of skin biopsy specimens from primary mouse
infections by T. regenti revealed a release of the acute-phase cyto-
kines interleukin-1� (IL-1�) and IL-6 and an increased produc-
tion of IL-12 (227). Larger amounts of IL-12 correlated with ele-
vated production of gamma interferon (IFN-�) in the cell culture
supernatant (antigen-stimulated lymphocytes) from the skin
draining lymph nodes (227). IFN-� and IL-12 are associated with
Th1 cell differentiation, and IL-1� and IL-6 are important in Th17
polarization (228). Although the role of Th17 in host tissue im-
munopathology has been described for some infections by hel-
minths (e.g., human schistosomes) (228), participation of Th17
cells in the processes associated with skin penetration by avian
schistosomes needs to be clarified.

Reinfections of mice with T. regenti were accompanied by
edema that developed as a consequence of local vascular permea-
bility caused by histamine released from activated mast cells (227).
Histamine has a regulatory function in the Th1 and Th2 polariza-
tion of the immune response (229). Mast cells also rapidly released
a large amount of IL-4, which has been detected in the superna-
tants of skin biopsy specimens from T. regenti-reinfected mice
(227). Like mast cells, basophils degranulate and release IL-4 as a
response to the presence of T. regenti antigens (230). Elevation of
total serum IgE levels implies that histamine and IL-4 production

by mast cells and basophils occurs in an IgE-dependent manner
(227, 230). Dominance of the Th2 response was also supported by
an elevation of antigen-specific IgG1 antibodies and a decrease of
IgG2b antibodies (Th1 associated) in the sera of mice reinfected
with T. regenti (230). Cercarial dermatitis in reinfected mice is
therefore Th2 polarized, with a response comprised of an early
type I hypersensitivity reaction and late-phase skin inflammation
(227).

It has been shown in several cases that mammals (including
humans) are unsuitable hosts for avian schistosomes, such that
the worms cannot mature and reproduce (except for Austrobilhar-
zia variglandis, which is able to reach sexual maturity in the lungs
of Meriones unguiculatus gerbils [231]). Nevertheless, cercarial
dermatitis is probably not the only interaction of avian schisto-
somes and mammals. Dermatitis develops as an immune (aller-
gic) reaction of the already sensitized person; it represents a pow-
erful protection of the body against worms in the skin. However,
in a naive (nonsensitized) or immunodeficient experimental host,
at least some worms survive, leave the skin, and migrate through-
out the body (213, 232). Mild to severe consequences of such
migration may appear (see above); most importantly, T. regenti is
neurotropic and can cause damage to the central nervous system
(155, 207, 214, 215, 220, 224). To date, no information about
migration of avian schistosomes in human bodies is available. It
therefore seems that laboratory animals (mice, rats, etc.) are in-
dispensable for assessing all risks associated with infections of
mammals (humans) by avian schistosomes.

DETECTION AND IDENTIFICATION OF AVIAN
SCHISTOSOMES

Prior to or during the dermatitis season, especially following a
dermatitis outbreak, a standard protocol for the detection of
schistosome cercariae involves the collection of and screening for
cercarial emergence in snails. Usually, in a laboratory, individual
snails are placed in a beaker/small wells with clean water and ex-
posed to a lamp to stimulate shedding of cercariae. Subsequently,
cercariae are collected and identified under a light microscope. If
no cercariae emerge from the snails, there are three options: the
snails can be dissected to find the schistosomes, the snail tissue can
be pooled and molecular techniques applied to detect a schisto-
some infection, and/or additional snails can be collected from
affected and surrounding areas (233, 234). Detection of microor-
ganisms directly from water samples is developing rapidly, but
among schistosomes, these techniques have been optimized for
human schistosomes (235, 236). Methods thus far to detect avian
schistosomes, Trichobilharzia in particular (237, 238), involve
concentrating the cercariae from a water sample and using a PCR
assay to detect a single cercaria in plankton (0.5 g) and snail tissues
(0.25 g) (239). Using definitive host-seeking behavior, cercariae
can be lured to a trap that contains linoleic acid, a known stimulus
for cercarial penetration (240). Irrespective of a dermatitis out-
break, identifying which adult worms can be found in the habitat
can be completed by examination of feces for eggs by using sedi-
mentation/flotation (241) or Kato-Katz fecal smear methods
(242) and/or postmortem examination of the arterial/venous sys-
tem, nasals, liver, or kidney of the host. For nasal schistosome
species, lavage of the nasal cavity of birds represents a method of
choice. After rinsing out the nasal cavity with saline or water, freely
moving miracidia (and partly the liberated eggs) can be detected
in the wash fluid (13). The above-described examination of snails
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and birds for avian schistosomes is thoroughly summarized in
reference 243.

Examination of water or the snail or bird host is important for
species delineation. Not only is there a highly diverse population
of schistosomes, especially avian schistosomes, that are responsi-
ble for dermatitis, but these species differ markedly in their mor-
phology and pathogenicity in birds and experimental animals (12,
13). Identification of schistosomes, particularly avian schisto-
somes, is challenging. Traditional methods using morphology
(adults mostly, but also eggs and cercariae) are usually not suffi-
cient to separate species, particularly within a genus, as these char-
acteristics can be missing or minute, and their recognition often
depends on the experience of the observer. However, some char-
acteristics have been found to be informative for rough species
identification, such as the position of internal organs and tegu-
ment spination of adults (13), morphology of eggs (244), or dis-
tribution of sensory papillae on cercariae (68, 198).

In addition to the morphological features, there are some non-
morphological criteria that can be used to differentiate species, for
example, the behavior of cercariae (245), compatibility with the
snail hosts, and organ/tissue affinity of adults in birds (135). If eggs
and adults from a host are examined, it is not always clear which
adults/eggs are conspecific or which match cercariae from snails
unless experimental trials are conducted. Experimental infections
with cercariae from snails to obtain adult worms for morpholog-
ical assessment are ideal, but these are time-consuming and often
yield low prevalences of infection. Because of the reported species,
morphological, and pathogenic diversity of avian schistosomes
(12, 13), from an epidemiological perspective on dermatitis, there
is a need for species delineation and host use, and molecular tech-
niques have proven a necessary and excellent tool for more rapid
identifications (63, 70, 135). Such techniques have allowed us to
genetically connect larval stages from snails to adult stages from
birds, greatly advancing the epizootology and epidemiology of
avian schistosomes in particular (10, 40, 123).

Molecular identification of an avian schistosome provides
clues to the host source and biology and possible targets for con-
trol. There have been steady efforts and testing of markers that
have revealed some consistency and validity for species identifica-
tion of schistosomes (123, 246, 247). Molecular phylogenetics has
had a major impact on the taxonomy and discovery of new lin-
eages of avian schistosomes, particularly the major etiological
agents of cercarial dermatitis, i.e., species of Trichobilharzia (10,
40, 63, 67, 69, 70, 121–123, 125, 129, 135, 248–251). Most of the
effort has been conducted using three gene regions. To date, the
nuclear ribosomal DNA D1-D2 regions of 28S, the internal tran-
scribed spacer (ITS) region, and the mitochondrial cox1 gene have
been tested as molecular markers for systematics (40, 63, 67, 69,
70, 105, 123, 248, 249, 251), epidemiology (252), and diagnostics
(121, 253). Sequencing of gene regions such as the nuclear ITS
region and the mitochondrial cox1 gene not only has linked life
cycle stages but also has suggested that our recognition of the
diversity of avian schistosomes continues to grow (10, 12, 40, 65–
67, 69, 70, 105, 129, 133, 135).

While the molecular identification of avian schistosomes is still
in the early stages, these markers have thus far proved successful in
attributing most samples to a known species. At the level of (infr-
a)populations, genetic diversity of T. szidati cercariae from 7 snails
collected at 3 localities in Russia was recently shown by use of
randomly amplified polymorphic DNA (RAPD) (254). At this

time, neither microsatellite markers nor next-generation sequenc-
ing protocols have been developed that would allow detection of
specific populations or host strains. The development of genome-
wide sequencing protocols for population genetic analyses would
greatly aid in identifying the epidemiological determinants of cer-
carial dermatitis outbreaks. Although genetic identifications have
provided a framework for circumscribing species and for rapid
detection, caution must be exercised, since genetic identification
alone is not sufficient in the absence of data on disease dynamics
and morphology (255, 256). A species designation should ideally
reflect all data available, i.e., host species, location, and morpho-
logical characteristics of adult worms and eggs. In addition, com-
parative molecular analyses must be performed to obtain reliable
and convincing results of species identification.

Most importantly, specimens and other data, e.g., genetic data,
should be archived in a permanent museum collection or an ar-
chivable Web-based database for data resulting from a specimen,
such as the sequence archive GenBank. Voucher samples of any
life cycle stage of these schistosomes (or any parasite and host)
should be preserved and deposited in a permanent museum col-
lection (257–259). This is imperative for several reasons: the most
important is for the question that has not yet been asked. In the
event that the parasite sample does not match known species or
has odd features, further work may be necessary. Access to images
and measurements, plus an additional sample(s), will be used in
further sequencing. Moreover, documentation of any species of
schistosome coming through a clinic is an important record that
can contribute to epidemiological studies, especially if it is associ-
ated with people affected by dermatitis.

CLINICAL FEATURES, DIAGNOSIS, TREATMENT, AND
PROPHYLAXIS OF HUMAN INFECTIONS

As for the clinical symptoms and signs, penetration of avian schis-
tosome cercariae into mammalian (human) skin may initiate an
immediate prickling sensation that persists for approximately 1 h
(4, 260). The development and intensity of the subsequent allergic
reaction depend on the number and duration of previous cercarial
contacts, as well as individual susceptibility (4, 7, 260). The pri-
mary contact with cercariae may lead to either an imperceptible
(7, 261) or mild skin reaction, with the development of small and
transient macules, maculopapules, or inconspicuous papules of
about 1 to 2 mm after 0.5 to 2 days p.i. A delayed reaction in the
form of small papules can be observed in some persons as late as 8
days p.i. (7, 238).

Repeated infections cause a more pronounced cutaneous reac-
tion followed by diffuse edema and development of erythematous
papules or papulovesicles (4, 261). More specifically, the first tran-
sitory macules (up to 10 mm) and primary itching can appear as
soon as 4 to 20 min after exposure. Thereafter (1 to 15 h p.i.),
macules are replaced by papules (about 3 to 8 mm), and an intense
itching (secondary itching) is experienced. In addition, erythema
and edema may occur in the afflicted area for a few days. Vesicles
of about 1 to 8 mm may form on papules at 2 to 3 days p.i. and may
rupture as a result of scratching. As a consequence, bacterial su-
perinfection may result in formation of pustules. Papules usually
regress and disappear at 4 to 10 days p.i., leaving a pigmented spot
(about 1 to 4 mm) on the skin for weeks (7, 225, 238); however, in
some cases, the symptoms may persist for about 20 days p.i. (7,
238, 262, 263). Every macula/papula is a reaction against the pen-
etrating cercaria(e) and thus represents the part of the body in
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direct contact with cercariae (Fig. 7). An attack by many cercariae
may be accompanied by generalized reactions, such as limb and
lymph node swelling, nausea, diarrhea, and fever (7, 238).

Diagnosis is rather problematic. Skin reactions to cercariae
from freshwater or marine environments may resemble insect
bites, bacterial dermatitis, contact dermatitis, or skin reactions
against nematocysts of larval cnidarians (sea anemones, thimble
jellyfish, etc.) (7). Anamnestic data (suggesting recent contact
with water reservoirs) and maculopapular skin eruption on the
body parts that were in contact with water are important indica-
tors. Direct proof of schistosome infection may be shown by skin
biopsy of the papulae no later than 48 h p.i. Individual papulae
should be excised/shaved off under local anesthesia, put in Bouin’s
fixative, cut into 10-�m sections, and stained with hematoxylin-
eosin (225, 226). As for basic laboratory tests, increased eosinophil
counts and elevated levels of total IgE may indicate an attack by
avian schistosomes (7, 230, 238). Specific immunological/serolog-
ical assays (skin test, “Cercarienhüllenreaktion” [a precipitation
reaction surrounding the cercarial body in the presence of a spe-
cific antibody], indirect fluorescent-antibody test [IFAT], en-
zyme-linked immunosorbent assay [ELISA], and complement
fixation test) to detect penetration by avian schistosomes are not
sufficiently specific or sensitive (7, 238). Exceptionally, some re-
action has been obtained with sera of dermatitis patients and a
heterologous antigen—Schistosoma mansoni cercariae— used in
Cercarienhüllenreaktion and IFAT (263, 264). Selection of a reli-
able (recombinant) antigen or primer for serological or DNA-
based tests, respectively, is in progress (our unpublished data).

Therapy for afflicted areas includes only symptomatic (not
causal) treatment of the condition in the form of soothing agents.
For example, water chestnut planters in India use mustard oil to

relieve the itching and rash in mild cases of dermatitis (265). In
serious cases, application of systemic antihistamines (tablets or
gels, e.g., hydroxyzine) or mild corticosteroids (e.g., 0.1% triam-
cinolon cream or 1% hydrocortisone ointment) may be consid-
ered (7, 226, 262, 266).

There are several recommendations to protect individuals.
Wearing rubber waders or gloves or neoprene diving suits is 100%
reliable, although not always appropriate or realistic. Upon con-
tact with cercariae in water, the number of penetrating larvae can
be reduced if action is taken within seconds to a few minutes (see
the part on vertebrate host penetration above). For example, thor-
ough toweling and exposure of skin to the sun are recommended
for bathers immediately after leaving water. In the case of an acci-
dental exposure in the laboratory, skin can be washed with 70%
ethanol or warm water (as much as one can tolerate) and soap
(our personal experience). Several chemicals have been tested as
barriers to cercarial penetration. For example, LipoDEET, a long-
acting liposome formulation of DEET (N,N-diethyl-m-tolua-
mide), a common, safe, and available insect repellent, has been
used successfully to prevent penetration of S. mansoni (267).
However, a cream formulation of DEET was poorly effective
against T. szidati penetrating living human skin (181). Two other
formulations were effective: (i) SafeSea lotion against jellyfish
stings, where the effective compound may be H1-antihistamine
diphenhydramine; and (ii) niclosamide in a dosage as low as 0.1%
in water-resistant sunscreens. We hypothesize that sunscreens
based on plant oils (nonmedicated) will trigger cercarial penetra-
tion due to a high content of unsaturated fatty acids. In this regard,
a negative effect in terms of human protection was observed for
dimethicones (polydimethylsiloxanes and silicone oils), which are
common ingredients in many skin care products (181).

FIG 7 Development of cercarial dermatitis on the dorsal (1) and ventral (2) parts of the left hand of a sensitized volunteer infected experimentally by
Trichobilharzia szidati (the whole hand was immersed into a beaker containing water with cercariae). Images were taken at 1 (A), 2 (B), 3 (C), and 4 (D) days
postexposure. Formation of macules (A) and papules with vesicles (B to D) can be seen. No penetration/reaction was recorded for the palm. Noticeable swelling
of the hand is shown mainly in panel B1. (The figure was created by H. Kulíková and P. Horák.)
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ECOLOGICAL FACTORS INFLUENCING THE OCCURRENCE OF
AVIAN SCHISTOSOMES AND CERCARIAL DERMATITIS

Due to climate changes and land alterations, the seasonal window
for parasite transmission may become longer, in addition to
changes in the behavioral and physiological patterns of parasite
hosts. For example, the accelerated growth of both snail and trem-
atode larval populations (71) or changes in phenology of aquatic
migratory birds to sedentary (268–270) can increase chances for
outbreaks of cercarial dermatitis in both space and time.

Global Warming and Eutrophication

At least in temperate climates, schistosome cercariae occur seasonally
once the ambient temperature is high enough for snail activity and
thus cercarial emergence (271). Also, snails infected during late sum-
mer can survive through the winter season and serve as a source of
cercariae in spring (13, 272, 273). Global warming is predicted to have
a positive effect on trematode intramolluscan stages, because their
development is strongly temperature dependent, leading to increased
cercarial emission rates. For example, a shorter prepatent period in
relation to higher temperatures was demonstrated in experimental
infections with T. szidati (141, 274). A slight rise in temperature will
increase developmental rates and transmission success (number of
cercariae available to find the definitive host). For example, a 5-fold
increase in cercarial emergence with a 10°C increase in temperature
was recorded for Trichobilharzia sp. from Radix peregra (275). In
addition, a link has been suggested between the rise of 0.8°C within
the last century and the increased frequency of cercarial dermatitis
and Trichobilharzia prevalence at higher latitudes in Europe (9, 276).
What does not change is the life span of cercariae, which is limited to
the restricted source of reserve glycogen (cercariae do not take up any
food). In this regard, temperature strongly affects cercarial survival.
For example, the half-life of T. szidati was 16 h at 16°C but only 7.8
h at 25°C (169), and the life span of Trichobilharzia arcuata was 72
h at 4°C but only 48 h at 26°C (277). Infected snails change their
thermal microhabitat selection, e.g., Lymnaea stagnalis infected with
T. szidati prefers a colder water temperature than that preferred by
uninfected snails (19.97°C versus 25°C). This may be an adaptation
for either the snail or the schistosome, because at these temperatures
larval development is slower and the rate of cercarial emission is
lower, leading to less tissue damage in the snail (169, 170).

Eutrophication promotes excessive plant growth and decay,
causing alterations in the dynamics of freshwater communities
and thus leading to an increased risk of acquiring cercarial derma-
titis (11, 278–280). Greater biomass of primary producers is asso-
ciated with faster development and growth of snails due to the
increase in food availability (280–282). Dense snail populations
may increase the probability that a miracidium will find a snail
and lead to a higher prevalence of infection. In addition, aquatic
birds are attracted to such nutrient-rich environments, also con-
tributing to an increase in parasite transmission (283). Using data
from a mark-recapture study of L. stagnalis in eutrophic fish-
ponds, rapid trematode recruitment into the snail populations
was demonstrated (284). Maximum annual rates of colonization/
recruitment for T. szidati were shown to reach up to 300%, such
that the odds of trematode establishment in an individual snail
were 3 times per year versus once in 10 years in other, mainly
marine trematode-snail systems (284, 285).

Large snail populations with a high prevalence of avian schisto-
somes have been reported for several localities in Europe (71,

286–288), North America (289, 290), and Australia (291). Usu-
ally, natural preserves support diverse and abundant populations
of potential hosts of schistosomes, so these areas may serve as hot
spots for outbreaks of cercarial dermatitis. Although eutrophica-
tion contributes to infection risk, cases of cercarial dermatitis or
findings of avian schistosomes have also been reported from oli-
gotrophic or mesotrophic systems (8). In addition, other abiotic
and biotic factors and human-induced habitat alterations may
influence the occurrence of schistosomes and cercarial dermatitis,
such as altered hydrology conditions with water-level fluctuation,
ice cover, acidification, or dam constructions (268, 292, 293), an-
thropogenic pollutants (268, 294–297), biodiversity change in
terms of introducing nonindigenous species that may affect en-
demic parasites (298), host susceptibility or resistance (9), preda-
tion upon trematode free-swimming larval stages by fish and
other aquatic animals (295, 299, 300), or interspecific competition
of parasites within the same snail host (301–303).

Recreational Activities and Cercarial Dermatitis

The data in the literature suggest that lakes represent high-risk
areas for cercarial dermatitis, as they are attractive for a large num-
ber of people, usually for recreational purposes (8). Cercarial der-
matitis develops as a result of sensitization of the human immune
system (232, 260), and repeated exposures to cercariae influence
the occurrence and intensity of subsequent infections. For exam-
ple, longer exposure in water increases cercarial penetration via
frequent water visits and more time spent in shallow water (4,
304–306). While gender does not influence the risk of infection (4,
304, 305, 307), some studies found a higher risk among children of
less than 15 years of age, since they tend to spend more time in
shallow water (280, 308, 309). There are rare cases of nonsensitive
individuals that may be due to host desensitization (310) or indi-
vidual nonsusceptibility/nonattractivity to cercariae (4, 311).

Locally, the highest risk of infection usually occurs in shallow,
warm, and vegetation-rich shore areas, where the snails accumu-
late and release cercariae (308, 309). Cercariae of avian schisto-
somes are concentrated just beneath the water surface (see the
information on host finding), so swimming in deeper water may
reduce the infection probability (280). However, snail preferences
for habitat differ: Lymnaea stagnalis is found mostly in patches of
aquatic vegetation, feeding on periphyton; Radix spp. accumulate
in vegetation-free areas, on stones or muddy sediments; and phy-
sid snails prefer detritus as a source of food (312, 313). In addition,
cercariae of avian schistosomes can be transported by wind and
water currents for several kilometers (2, 304, 305). Therefore, tak-
ing the local situation into account is essential for risk assessment,
because conditions unsuitable for one snail species may provide
an ideal habitat for another.

Season and time of day were shown to have considerable effects.
Most cases of cercarial dermatitis correlate with high air and water
temperatures during the summer months, when schistosome devel-
opment in snails is amplified and emission rates of cercariae are stim-
ulated by sunlight (4, 11, 279, 280, 304, 305, 309, 314). Production
can reach several thousands of cercariae/snail/day (169, 300, 315),
and these emission rates may even counterbalance the loss of cercarial
capability to survive and infect hosts at high temperatures (see
above). Irrespective of the season, outbreaks of cercarial dermatitis
have been reported in geothermally heated lakes and ponds in Iceland
(71). Time of day proved to be another risk factor. Production of
schistosome cercariae is usually discontinuous—particular species
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may differ in circadian rhythms of cercarial release. This is usually
attributed to the peak activity of the preferred definitive hosts. Thus,
Trichobilharzia and some other genera infecting aquatic birds leave
the snail host during the light period of the day, mainly in the morn-
ing hours (2, 4, 280, 305). Increased illumination, temperature, and
snail locomotory activity trigger cercarial emergence (169, 211, 316,
317). Patterns of cercarial emergence can be changed almost imme-
diately by reversing the dark-light regimen, suggesting that light has a
decisive influence on the direction of the process (317, 318). The
number of cercariae released from snails may vary greatly depending
on the parasite/host species and the phase (age) of infection; large
species of snails represent a higher risk, as more cercariae are pro-
duced per snail and released into the environment (10, 275, 315). This
may also explain why some species of avian schistosomes that use
smaller species of snails are not often detected during an outbreak.

Control Measures Related to the Ecology of Avian
Schistosomes

In order to reduce the risk of cercarial dermatitis, either water use
during peak cercarial emergence should be avoided or the life
cycle of avian schistosomes should be interrupted. Interruption of
the schistosome life cycle has been tried on a number of occasions.
One option is to reduce the prevalence of adult avian schistosomes
in birds by eliminating ducks from high-risk areas. However, pub-
lic acceptance of regular hunting or repelling of birds (ducks) at
recreational lakes during summer months is uncertain. Another
option is to treat birds with the antihelminthic drug praziquantel.
Birds are captured in the field by use of modified dive traps and
subsequently treated with praziquantel and then released. Recap-
ture results showed a significant reduction of infections in mal-
lards (319–321). Furthermore, in the subsequent year, there was a
marked decline in prevalence of avian schistosomes in snails
(320). However, treatment of the entire duck population is time-
consuming and labor-intensive.

Reduction or elimination of snail populations is another strat-
egy of cercarial dermatitis control by interrupting the life cycle. In
the past, application of commercial molluscicides, such as niclos-
amide or copper sulfate, was common (319). However, repeated
and unlimited treatments had a deleterious effect on animal com-
munities. In addition, after repeated exposures, some snails may
become resistant to copper sulfate or avoid the treatment by bur-
rowing into the mud (322, 323). Manual collection of snails (309,
324) or destruction of their habitats by local removal of littoral
vegetation (2) represents a less harmful approach to snail control.
Large-scale destruction of snail populations by use of heavy ma-
chines along the shores of Annecy Lake (France) and Cultus Lake
(Canada) led to substantial reductions of cercarial dermatitis (2).
As for the biological control of snail populations, use of mollus-
civorous fish or prawns as natural snail predators is promising for
long-term control (325–328), although it represents a risk for na-
tive flora and fauna if nonindigenous organisms are introduced.

Free-swimming miracidia and cercariae may represent a prom-
ising target for life cycle interruption. Snail finding and recogni-
tion by miracidia are based markedly on recognition of host mol-
ecules called miraxones (see the information on intramolluscan
development), which led to a proposal to use miracidial traps
containing miraxones (329). Unfortunately, due to the high level
of diversity of avian schistosomes and presumed variability of
snail recognition (139), this proposal proved unrealistic. Simi-
larly, cercarial traps based on species-specific host-finding behav-

ior (see the information on vertebrate host finding) might provide
local protection (330). For example, fatty acid-stimulated trans-
formation to the schistosomulum stage could be initiated in these
traps, leading to the loss of resistance against a hypo-osmotic wa-
ter environment (178, 331, 332). As far as trophic interactions of
organisms are concerned, predation by small aquatic animals may
represent a promising means of biological control. Schistosome
miracidia and cercariae may serve as prey for larval aquatic insects,
crustaceans, oligochaetes, shrimps, and fish (271, 333–338). In
particular, the annelid Chaetogaster limnaei sensu lato, living com-
mensally or parasitically on the shell surface or in the mantle and
pulmonary cavities of freshwater snails, may act as an efficient
predator and prevent penetration of miracidia (339, 340) or feed
on cercariae as they are released from the snail (341, 342).

Finally, competitive interactions among trematode larval com-
munities within an individual snail can substantially influence es-
tablishment and survival of schistosome intramolluscan stages. In
terms of interspecific interactions, particular species of trema-
todes can be dominant, usually by producing competitively ag-
gressive rediae, or subordinate because they have less aggressive
sporocysts and no redial stage. Schistosomes belong to the latter
group, and their sporocysts are eliminated via the predatory inter-
actions of redia-producing trematodes, e.g., echinostomes (301,
343). Yet schistosomes may exert a dominant effect in some cases.
The avian schistosome Trichobilharzia brevis persists in coinfec-
tions with two dominant echinostomes, Echinostoma audyi and
Hypoderaeum dingeri (343), and can cause developmental sup-
pression of the latter species. The nonpredatory exclusion of H.
dingeri by T. brevis has also been shown experimentally (344).
Intertrematode competition was recently identified as an impor-
tant determinant in transmission of avian schistosomes. For ex-
ample, competitive exclusion was estimated to result in an 18.0%
reduction of Trichobilharzia szidati in Lymnaea stagnalis (345).
Interestingly, T. szidati may represent a subordinate species, yet it
frequently cooccurs in snails with other trematodes. Therefore, T.
szidati may be either an obligate secondary invader of snails with a
compromised immune system or a schistosome that can coexist in
double infections, as was demonstrated for other species of
Trichobilharzia and Austrobilharzia (302, 343, 346).

PERSPECTIVES

The more we know about avian schistosome diversity and distri-
bution, the better we are positioned to understand their evolu-
tionary history and potential for the future dynamics of dermatitis
outbreaks. These days, we have practical means for their identifi-
cation and can better gauge the likelihood that some of these spe-
cies may emerge in new contexts to cause unexpected problems.
An effort to describe the avian schistosome species diversity in
their hosts in the circumpolar regions, where most migratory
birds spend the summer (and young birds become infected),
seems to be a critical component to understanding the epidemi-
ology of cercarial dermatitis. In addition, the condition itself and
the host-parasite interaction require further characterization at
the molecular level. At least three examples of future applications
can be mentioned. (i) A more detailed knowledge of cercarial
penetration mechanisms may help in the prevention of dermatitis
by introducing new formulations containing inhibitory mole-
cules. (ii) Characterization of biologically active secretions pro-
duced by avian schistosomes may help us to understand the mo-
lecular basis of tissue pathology in avian and mammalian hosts.
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(iii) Newly designed primers or carefully selected antigens may be
developed for reliable antibody- or DNA-based diagnostic tools.
Such tools may be used to screen people or animals with health
problems following recent water contact to assess the risk associ-
ated with exposure to cercariae of avian schistosomes.
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187. Dolečková K, Kašný M, Mikeš L, Cartwright J, Jedelský P, Schneider
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Trichobilharzia regenti: host immune response in the pathogenesis of
neuroinfection in mice. Exp Parasitol 128:328 –335. http://dx.doi.org/10
.1016/j.exppara.2011.04.006.

216. van Bolhuis GH, Rijks JM, Dorrestein GM, Rudolfová J, van Dijk M,
Kuiken T. 2004. Obliterative endophlebitis in mute swans (Cygnus olor)
caused by Trichobilharzia sp. (Digenea: Schistosomatidae) infection. Vet
Pathol 41:658 – 665. http://dx.doi.org/10.1354/vp.41-6-658.

217. Wood LM, Bacha WJ, Jr. 1983. Distribution of eggs and the host re-
sponse in chickens infected with Austrobilharzia variglandis (Trema-
toda). J Parasitol 69:682– 688. http://dx.doi.org/10.2307/3281141.

218. Wojcinski ZW, Barker IK, Hunter DB, Lumsden H. 1987. An outbreak
of schistosomiasis in Atlantic brant geese, Branta bernicla hrota. J Wildl
Dis 23:248 –255. http://dx.doi.org/10.7589/0090-3558-23.2.248.

219. Pence DB, Rhodes MJ. 1982. Trichobilharzia physellae (Digenea: Schis-
tosomatidae) from endemic waterfowl on the high plains of Texas. J
Wildl Dis 18:69 –74. http://dx.doi.org/10.7589/0090-3558-18.1.69.
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224. Kouřilová P, Syrůček M, Kolářová L. 2004. The severity of mouse
pathologies caused by the bird schistosome Trichobilharzia regenti in
relation to host immune status. Parasitol Res 93:8 –16. http://dx.doi.org
/10.1007/s00436-004-1079-7.

225. Haemmerli U. 1953. Schistosomen-Dermatitis am Zürichsee. Dermato-
logica 107:301–341.

226. Tremaine AM, Whittemore DE, Gewirtzman AJ, Bartlett BL, Mendoza
N, Rapini RP, Tyring SK. 2009. An unusual case of swimmer’s itch. J Am
Acad Dermatol 60:174 –176. http://dx.doi.org/10.1016/j.jaad.2008.07
.060.
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