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Mathematical models of natural systems are abstractions of much
more complicated processes. Developing informative and realistic
models of such systems typically involves suitable statistical in-
ference methods, domain expertise, and a modicum of luck. Except
for cases where physical principles provide sufficient guidance, it
will also be generally possible to come up with a large number of
potential models that are compatible with a given natural system
and any finite amount of data generated from experiments on
that system. Here we develop a computational framework to
systematically evaluate potentially vast sets of candidate differ-
ential equation models in light of experimental and prior knowl-
edge about biological systems. This topological sensitivity analysis
enables us to evaluate quantitatively the dependence of model
inferences and predictions on the assumed model structures. Fail-
ure to consider the impact of structural uncertainty introduces
biases into the analysis and potentially gives rise to misleading
conclusions.

robustness analysis | biological networks | network inference |
dynamical systems

Using simple models to study complex systems has become
standard practice in different fields, including systems bio-

logy, ecology, and economics. Although we know and accept that
such models do not fully capture the complexity of the un-
derlying systems, they can nevertheless provide meaningful pre-
dictions and insights (1). A successful model is one that captures
the key features of the system while omitting extraneous details
that hinder interpretation and understanding. Constructing such
a model is usually a nontrivial task involving stages of refinement
and improvement.
When dealing with models that are (necessarily and by design)

gross oversimplifications of the reality they represent, it is im-
portant that we are aware of their limitations and do not seek to
overinterpret them. This is particularly true when modeling
complex systems for which there are only limited or incomplete
observations. In such cases, we expect there to be numerous
models that would be supported by the observed data, many
(perhaps most) of which we may not yet have identified. The
literature is awash with papers in which a single model is pro-
posed and fitted to a dataset, and conclusions drawn without any
consideration of (i) possible alternative models that might de-
scribe the observed behavior and known facts equally well (or
even better); or (ii) whether the conclusions drawn from differ-
ent models (still consistent with current observations) would
agree with one another.
We propose an approach to assess the impact of uncertainty in

model structure on our conclusions. Our approach is distinct
from—and complementary to—existing methods designed to
address structural uncertainty, including model selection, model
averaging, and ensemble modeling (2–9). Analogous to para-
metric sensitivity analysis (PSA), which assesses the sensitivity of
a model’s behavior to changes in parameter values, we consider
the sensitivity of a model’s output to changes in its inherent
structural assumptions. PSA techniques can usually be classified
as (i) local analyses, in which we identify a single “optimal”
vector of parameter values, and then quantify the degree to
which small perturbations to these values change our conclusions
or predictions; or (ii) global analyses, where we consider an

ensemble of parameter vectors (e.g., samples from the posterior
distribution in the Bayesian formalism) and quantify the corre-
sponding variability in the model’s output. Although several
approaches fall within these categories (10–12), all implicitly
condition on a particular model architecture. Here we present
a method for performing sensitivity analyses for ordinary dif-
ferential equation (ODE) models where the architecture of these
models is not perfectly known, which is likely to be the case for
all realistic complex systems. We do this by considering network
representations of our models, and assessing the sensitivity of
our inferences to the network topology. We refer to our ap-
proach as topological sensitivity analysis (TSA).
Here we illustrate TSA in the context of parameter inference,

but we could also apply our method to study other conclusions
drawn from ODE models (e.g., model forecasts or steady-state
analyses). When we use experimental data to infer parameters
associated with a specific model it is critical to assess the un-
certainty associated with our parameter estimates (13), particularly
if we wish to relate model parameters to physical (e.g., reaction
rate) constants in the real world. Too often this uncertainty is es-
timated only by considering the variation in a parameter estimate
conditional on a particular model, while ignoring the component of
uncertainty that stems from potential model misspecification. The
latter can, in principle, be considered within model selection or
averaging frameworks, where several distinct models are proposed
and weighted according to their ability to fit the observed data (2–
5). However, the models tend to be limited to a small, often di-
verse, group that act as exemplars for each competing hypothesis
but ignore similar model structures that could represent the same
hypotheses. Moreover, we know that model selection results can be
sensitive to the particular experiments performed (14).

Significance

Mathematical models are widely used to study natural sys-
tems. They allow us to test and generate hypotheses, and help
us to understand the processes underlying the observed be-
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derstand the impact of assumptions made when using a par-
ticular model. Here we provide a method to assess how
uncertainty about the structure of a natural system affects the
conclusions we can draw from mathematical models of its dy-
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parameters. We show how solely considering the latter source
of uncertainty can result in misleading conclusions and in-
correct model inferences.
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We assume that an initial model, together with parameters or
plausible parameter ranges, has been proposed to describe the
dynamics of a given system. This model may have been con-
structed based on expert knowledge of the system, selected from
previous studies, or (particularly in the case of large systems)
proposed automatically using network inference algorithms (15–
19), for example. Using TSA, we aim to identify how reliant any
conclusions and inferences are on the particular set of structural
assumptions made in this initial candidate model. We do this by
identifying alterations to model topology that maintain consis-
tency with the observed dynamics and test how these changes
impact the conclusions we draw (Fig. 1). Analogous to PSA we
may perform local or global analyses—by testing a small set of
“close” models with minor structural changes, or performing
large-scale searches of diverse model topologies, respectively. To
do this we require efficient techniques for exploring the space of
network topologies and, for each topology, inferring the param-
eters of the corresponding ODE models.
Even for networks with relatively few nodes (corresponding to

ODE models involving few interacting entities), the number of
possible topologies can be enormous. Searching this “model
space” presents formidable computational challenges. We use
here a gradient-matching parameter inference approach that
exploits the fact that the nth node, xn, in our network repre-
sentation is conditionally independent of all other nodes given its
regulating parents, PaðxnÞ (20–26). The exploration of network
topologies is then reduced to the much simpler problem of
considering, independently for each n, the possible parent sets of
xn in an approach that is straightforwardly parallelized.
We use biological examples to illustrate local and global searches

of model spaces to identify alternative model structures that are
consistent with available data. In some cases we find that even
minor structural uncertainty in model topology can render our
conclusions—here parameter inferences—unreliable and make
PSA results positively misleading. However, other inferences are

robust across diverse compatible model structures, allowing us to
be more confident in assigning scientific meaning to the inferred
parameter values.

Model Structures
We consider systems consisting of N interacting variables that
can be modeled using ODEs of the form

_xðtÞ= fðxðtÞ; t; θÞ; [1]

where xðtÞ= ½x1ðtÞ; . . . ; xNðtÞ�, xnðtÞ is the value of the nth variable
at time t, _xðtÞ is the derivative of xðtÞ with respect to t, and θ is the
vector of model parameters. The rate of change of the nth variable
over time is described by the nth component of the vector _xðtÞ,

_xnðtÞ= fnðxðtÞ; t; θÞ: [2]

Typically, fn will only act on a (relatively small) subset of the
variables xðtÞ; we represent our systems as networks, in which
nodes correspond to variables and a directed edge is drawn from xm
to xn if the rate of change of xn depends upon xm. The set of parents
of xn, PaðxnÞ⊆ fx1; . . . ; xNg, is therefore the collection of variables
on which fn acts. The parent set, C= fPaðxnÞgNn=1; provides a com-
plete description of the system’s network representation.

Defining the Model Search Space
To specify the space of possible ODE models we need to define
(i) the set of network topologies, and (ii) the corresponding
ODE model(s) that can be represented by each network topol-
ogy. Exploring large model spaces is, of course, challenging due
to the number of possible topologies. However, because each
network is completely defined by the parent set C, it is sufficient
to consider (for each species n independently) the possible
parents of xn, PaðxnÞ to fully explore the space of networks.
Considering the regulation of each species independently in
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Fig. 1. Overview of TSA applied to parameter inference. (A) Model space includes our initial candidate model and a series of altered topologies that are
consistent with our chosen rules (e.g., all two-edge, three-node networks, where nodes indicate species and directed edges show interactions). One
topology may correspond to one or several ODE models depending on the parametric forms we choose to represent interactions. (B) We test each ODE
model to see whether it can generate dynamics consistent with our candidate model and the available experimental data. For TSA, we select a group of
these compatible models and compare the conclusions we would draw using each of them. (C ) Associated with each model m is a parameter space Θm

(gray); using Bayesian methods we can infer the joint posterior parameter distribution (dashed contours) for a particular model and dataset. (D) In some
cases, equivalent parameters will be present in several selected models (e.g., θ1, which is associated with the same interaction in models a–c). We can
compare the marginal posterior distribution inferred using each model for a common parameter to test whether our inferences are robust to topo-
logical changes, or rely on one specific set of model assumptions (i.e., sensitive). Different models may result in marginal distributions that differ in
position and/or shape for equivalent parameters, but we cannot tell from this alone which model better represents reality—this requires model se-
lection approaches (2–4).
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this way can reduce the search space sufficiently to make an
exhaustive search feasible (Fig. S1A). Further simplification,
such as assuming that each parent set PaðxnÞ is restricted to
a relatively small size as in refs. 23–25, may also be helpful.
To move from a network representation to an ODE model

requires a set of rules that translate interactions (network edges)
into parameterized mathematical functions. These rules are neces-
sarily context- and model-specific and may allow a single network
topology to represent multiple different ODEmodels. For example,
we could permit several types of interaction (e.g., activation and
inhibition), each represented by a different mathematical function,
or several methods to model the combined effect of multiple
interactions (e.g., synergistic and additive). Such rules allow us to
map from each possible parent set PaðxnÞ to the possible functional
forms of the corresponding differential equations,

_xnðtÞ= fnðPaðxnÞ; t; θÞ: [3]

To test whether a particular ODE model can generate the desired
dynamic behavior, we require the associated model parameters θ.
Crucially, to enable large-scale searches we need a method to infer
the parameters of each ODE derivative component independently.
Gradient-matching parameter inference approaches (26–28) avoid
the need to simulate from the complete coupled ODE system (Eq.
1); instead, parameters are optimized using data-derived estimates
of _xðtÞ and xðtÞ, and minimizing the discrepancy between two gra-
dient estimates— _xnðtÞ and fnðPaðxnÞ; t; θÞ—in a process which can
be applied to each derivative component independently (Fig. S1B).
Here we use Gaussian process (GP) regression, a nonparametric
Bayesian method for nonlinear regression (28–31), to obtain data-
derived estimates of _xðtÞ and xðtÞ (see SI Materials and Methods
for details).

Constructing and Ranking ODE Models
Given an initial parameterized candidate model, we use the fol-
lowing method to identify and rank realistic alternative models:

i) Simulate time course data (at times t= t1; . . . ; tT) for each
species in the system using the initial candidate model.

ii) Define rules to construct possible ODE models for the reg-
ulation of each species xn. We consider the maximum num-
ber of parents allowed per species; possible parametric
forms to represent interactions; and how to model combina-
torial regulation if a node has several parents. The form of
the initial candidate model can guide these rules.

iii) Estimate state variables x̂nðtÞ and corresponding derivativesb_xnðtÞ for all species in the system using GP regression and the
simulated time course data (generated in step i).

iv) For each species n:

a) Consider all possible parent sets to construct all possible
models of the form _xnðtÞ= fnðPaðxnÞ; t; θÞ, according to
the rules defined in step ii.

b) Infer parameters θ for each test model using gradient-
matching parameter inference and GP-derived estimates
for b_xnðtÞ and x̂ðtÞ. We estimate θ by minimizing,

distance=
XtT
t=t1

�b_xnðtÞ− fnðx̂ðtÞ; t; θÞ
�2
: [4]

c) Rank models using the distance calculated in step iv(b)
or an alternative metric, e.g., Akaike’s Information Cri-
terion adapted for small samples (AICc) (2).

v) Combine the componentwise models _xnðtÞ to obtain com-
plete ODE models _xðtÞ.

Selected models are then used to explore how uncertainty in
model structure impacts our inferences and/or predictions.

Results
We first outline how to generate alternative models which gen-
erate dynamics consistent with the initial candidate model. We
then use synthetic and experimental datasets to demonstrate how
we can use selected models to test the robustness of our inferred
conclusions (here, parameter estimates) to altered model assump-
tions. We include examples using both optimization and Bayesian
approaches to parameter inference. ODE models were constructed
as described inMaterials and Methods. SI Materials and Methods lists
the parameter values and initial conditions used for simulations
from the initial candidate models.

Automated Model Generation and Ranking. To illustrate, we assume
a five-species gene regulatory network, model A (Fig. 2), has been
proposed to model a hypothetical system. We suppose that this
network corresponds to an ODE model for which parameters
(including initial conditions) have already been estimated (see SI
Materials and Methods for values). We take this as our initial
candidate model, and use GP regression to estimate species
concentrations x̂nðtÞ and corresponding derivatives b_xnðtÞ from
simulated trajectories (Fig. 3). For n= 1; . . . ; 5, we define 33
possible componentwise models of the form _xnðtÞ= fnðPaðxnÞ; t; θÞ
to describe the regulation of each species by allowing up to two
regulating parents per gene, no self-regulation, and two types of
interaction. For each putative parental set PaðxnÞ, we test all per-
mutations of interaction types—e.g., if Paðx1Þ= fx2; x3g we consider
Paðx1Þ= fx+2 ; x+3 g, fx−2 ; x−3 g, fx−2 ; x+3 g, or fx+2 ; x−3 g, where the super-
script indicates activation (+) or inhibition (−). We rank these
models using the distance (Eq. 4) obtained during gradient-
matching parameter inference (Fig. S2A), and combine selected
componentwise models to create coupled ODE models describing
the network dynamics (Fig. 3). Crucially, this combination step
does not require further parameter estimation so, by evaluating
the 33× 5= 165 possible component equations for _xnðtÞ, we can
easily—and rapidly—construct and rank all 335 = 3:9× 107 com-
plete ODE systems, _xðtÞ. If we have information about the system
dynamics under multiple experimental conditions we can consider
this when ranking our complete models (SI Results and Fig. S2).

Global TSA of Optimization-Based Parameter Estimation. Once we
have identified alternative ODE models with comparable dy-
namics to our initial model, we can use these to explore how
dependent our inferences are on the structural assumptions in-
herent to a particular model. We illustrate this in the context of
maximum likelihood parameter estimation, using a synthetic dataset
simulated from a competitive population dynamics model, model B
(Fig. 2), which we also take as the initial candidate.
As in the previous example, we assume that model B corre-

sponds to an ODE model of a hypothetical system for which
parameters have previously been estimated (SI Materials and
Methods). We additionally assume that we have an experimental
dataset DB, which, for this synthetic example, is generated by
adding noise to values simulated from the candidate model (SI
Materials and Methods). Thus, in this illustrative example, the
candidate model is also the “true” (data-generating) model. We

A B C

Fig. 2. Model topologies for synthetic datasets: model A represents
a gene regulatory network, and models B and C represent population
dynamics models.
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first perform an exhaustive search to identify models with con-
sistent dynamics to our initial candidate. We allow a maximum of
3 parent species, no self-regulation, and a single type of in-
teraction resulting in 7:6× 105 possible complete ODE models.
To illustrate results, we select for the present analysis the top 10
models, ranked by AICc values (Fig. 4A). The models ranked
2nd–10th all contain the interactions present in the true model
(ranked first), but have one or two additional “incorrect” edges.
Next we can assess the variability in the conclusions (here,

maximum likelihood parameter estimates) that we obtain from
the candidate models when fitting them to a noisy dataset, DB.
We assess uncertainties in the estimated values using a para-
metric bootstrap (22) (Fig. 4B and Fig. S3). Most distributions are
consistent across the models, but network topology has a signif-
icant impact on some parameters. For example, with seven
models (including the true model) the distributions for para-
meter r3 are centered close to 0.5 (which we know to be the true
value for this synthetic example) with little variation; however,
models containing an incorrect interaction from species 4 to 3
(models 5, 6, and 10) result in broader distributions centered
around a higher value.
Thus, even models that include all of the true interactions can still

lead to misleading conclusions about biophysical parameters if ad-
ditional incorrect interactions are also present. If we solely rely on
parameter uncertainty and sensitivity analyses, without considering
the impact of potential structural misspecifications in our model, we
are therefore likely to overestimate the precision of our results.

Local TSA of Bayesian Parameter Inference. Instead of an exhaus-
tive, global search, we may instead perform a local analysis by
only considering models with minor structural modifications
relative to the candidate model. This could be appropriate if we
have a clear idea about key interactions, and consider large
deviations from this topology to be biologically irrelevant, or for
larger complex systems where exhaustive search becomes com-
putationally infeasible. To illustrate this we use a synthetic
dataset DC (Fig. S4), simulated from a population dynamics
model, model C (Fig. 2), which we also take as the initial can-
didate. We then consider the set of 20 close models that differ by
addition or deletion of a single network edge. For each model we
obtain samples from the posterior parameter distribution using
two Bayesian approaches: nested sampling (32, 33) and the Me-
tropolis–Hastings algorithm (34, 35). As well as generating pos-
terior samples, nested sampling provides an estimate of the
evidence (marginal likelihood) for each model, allowing us to
rank them (Table S1). We select the five alternative models with

evidence greater than or equal to the true model and compare the
estimated posterior distributions.
In most cases the univariate marginal posterior distributions are

broadly conserved across the selected models (Fig. S5), but in a few
cases the shape and/or location of these distributions vary with
a slightly different model (e.g., in Fig. S5, see parameters r5 and a51
in model 18, or a23 in model 8). As well as the values of individual
parameters, we may also be interested in the dependencies be-
tween parameters. In particular, the related concepts of sloppiness
and identifiability in biological models have recently received much
attention—in the context of possible biological significance and for
optimal experimental design (12, 36–39). Fig. 5 shows bivariate
scatter plots illustrating the dependencies between particular pa-
rameter pairs for each of the selected models.
Again, whereas some dependencies are robust to varying

model topology (e.g., the negative dependence between param-
eters a51 and a54 is observed in all cases), sometimes even small
alterations to model topology significantly alter our conclusions
about parameter dependencies—with a single edge missing from
the true network, we may either infer a strong dependency (e.g.,
r2 and a23 in model 8) that is absent in the true system, or miss
a true dependency (e.g., r3 and a34 in model 12). Of course, in
this example we know the true model, but these results serve to
illustrate how drawing conclusions about the underlying system
based on inferences drawn from a single model may be mis-
leading. When dealing with simplified representations of reality
we believe the approach outlined here is a useful, even essential,
way to determine which results strongly rely on model assump-
tions and which ones are robust to structural modification and
may therefore more likely be biologically relevant rather than an
artifact resulting from a specific single model topology.
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TSA of a Model of Yeast Gene Expression Dynamics. We use time-
resolved gene expression data for cell-cycle regulated genes in
Saccharomyces cerevisiae (40). Following Lu et al. (41), we used
their D-NetWeaver algorithm (19) to construct an initial candi-
date ODE model describing gene expression dynamics (Fig. S7).
The resulting network comprises 41 nodes (corresponding to
gene clusters) and 148 directed edges (regulatory interactions).
The system size precludes an exhaustive search of alternative
topologies, so we performed a local analysis in which we sampled
models with 1–30 random edges rewired (relative to the initial
candidate) and identified those with comparable dynamics using
gradient matching.
In total we sampled 3:5× 105 rewired models and selected 7

models for comparison with our initial candidate (see SI Results
for details). We obtained maximum likelihood estimates for the
189 parameters associated with each model by fitting to the mean
clustered gene expression profiles, and compared estimates for
parameters common to all selected models. Fig. 6 illustrates the
variety of estimated values we obtained for four parameters
(results for all common parameters are shown in Fig. S8).
Many estimated parameter values are consistent across these

models (i.e., robust to topological changes). However, Fig. 6
shows one example where the sign of an edge-associated pa-
rameter (p22) varies with model choice, suggesting we cannot
reliably infer the nature of this regulatory interaction (activating
or inhibitory). Relying solely on estimates of parameter un-
certainty that condition on a chosen model structure (e.g., the
confidence intervals estimated here) but ignoring the potential
impact of structural uncertainty could lead us to draw unreliable
conclusions about the true network. TSA provides us with a way
to assess the latter component of uncertainty, and thus gain
confidence in results which are consistent among the selected
models while identifying less reliable inferences.

Discussion
For mechanistic mathematical modeling to be useful, we must as-
sess the robustness of conclusions drawn from our models. This is
particularly important in fields such as systems biology, where we
usually rely on (knowingly) oversimplified representations of the
true complex systems (7, 43, 44). To gain meaningful insights into
the real underlying processes, we must acknowledge that our

conclusions are conditional on the chosen model architecture, and
understand the impact of changing these model assumptions. Fre-
quently, once a model has been selected, researchers only consider
uncertainty at the level of model parameters but ignore the con-
tribution of potential (and likely) structural misspecifications. One
reason for this is that it has been difficult to explore a diverse range
of models in a computationally efficient manner.
Here we describe a rapid, parallelizable method to automatically

generate models consistent with the observed dynamics of a bio-
logical system. Constraints on the parametric forms of these models
are selected for the system of interest, to ensure that proposed
models are plausible given the types of interactions believed to be
possible. Within computational limitations we can consider any
number of possible parametric forms to describe the dynamics and
interactions within a network, and investigate different rules for
combinatorial regulation. This permits an extensive search of local
or global model space for alternative, dynamically consistent mod-
els. These can then be used to test the sensitivity of inferences to the
structural assumptions inherent to a specific model.
We demonstrate how our approach, TSA, may be used to

explore the impact of changes to our model upon the conclusions
that we draw, in the particular context of parameter inference.
Whereas Bayesian analysis and bootstrapping approaches are
often used to assess parameter variability (and identifiability), it
is important to remember that these assessments condition upon
a single, specific model. Even minor changes in the model
structure can significantly alter the conclusions that we draw (in
our case, the values and dependencies of the inferred para-
meters). Even if, for one particular model, the parameter values
are very tightly constrained (and thus, for that model, we feel we
have “high confidence” in the parameter values), it does not
follow that the same will be true for other feasible models. If our
parameters have a real, biophysical interpretation, we therefore
need to be very careful not to assert that we know the true values
of these quantities in the underlying system, just because––for
a given model––we can pin them down with relative certainty.
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Fig. 5. Comparison of nested sampling inference results for the best close
models and the true model. Data simulated from the true model (model C) as-
suming additive Gaussian noise are used to infer posterior parameter dis-
tributions for the true model and 20 close models (those differing from the true
model by addition or deletion of a single interaction); we assumed uniform prior
distributions for all parameters (0:1≤ rn ≤ 2,0:1≤ ank ≤ 5). Models with estimated
evidence greater than or equal to the true model are then compared. Example
bivariate scatter plots are shown for three parameter pairs for these models;
each circle shows a posterior sample, with color corresponding to the likelihood
value. Model 18 does not include an interaction from species 5 to species 4,
hence there is no plot. See Fig. S6 for additional results.

Fig. 6. Comparison of parameter estimation results for eight alternative
ODE models fitted to the data of ref. 40. Results for four parameters are
shown; further estimates are given in Fig. S8. Estimated values are shown
by circles, with error bars indicating 95% credible intervals estimated us-
ing a Laplace approximation (42); estimates for equivalent parameters in
different models are joined by a line to aid comparison. The selected
models are ordered by the number of rewired edges relative to the initial
candidate model (at x = 0). Estimated values for many model parameters
are robust to altered model topology (e.g., p9 and p78), but some are
more sensitive (e.g., estimates for p29 are consistent in sign but not
magnitude, whereas p22 estimates span positive and negative values in
the selected models).
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Considering the sensitivity of model behavior to both parameter
and structural variation enables us to identify inferences that are
robust to possible errors in our model. We can therefore be more
confident about using these inferences to draw scientifically
meaningful conclusions.

Materials and Methods
Models for Synthetic Gene Regulatory Networks. We use the model A structure
(Fig. 2) and ODE modeling format described in ref. 45. Transcription
regulation is modeled using equations of the form _xnðtÞ= sn − γnxn +P

k∈PaðxnÞβnkfnk , where xnðtÞ is species nmRNA concentration, sn and γn are basal
synthesis and degradation rates, respectively, and the sum accounts for reg-
ulatory interactions influencing gene n (assuming additive combinatorial
regulation) (45). An interaction from species k to species n is modeled using
a strength parameter βnk and a Hill function fnk (with associated parameters
θnk and mnk). The latter takes the form f+nk = xkðtÞmnk=ðθmnk

nk + xkðtÞmnk Þ, for
activating interactions or f−nk =1=ð1+ ðxkðtÞ=θnkÞmnk Þ for inhibitory regulation.

Models for Competitive Population Dynamics. Population sizes xn of N
species competing for finite resources are modeled by (46) _xnðtÞ= rnxnðtÞ

ð1−PN
k=1ankxkðtÞÞ, where rn is the inherent growth rate of species n and

ank represents the influence of species k on species n. Here ann = 1, rn > 0,
and ank ≥ 0 for all n.

Models for Yeast Gene Expression Data. We used D-NetWeaver (19) to con-
struct an initial candidate model for the 613 complete α-factor synchronized
gene-expression profiles in ref. 40. As in ref. 41, genes were clustered into 41
groups based on expression profile similarities, and a linear ODE model
inferred to describe regulatory interactions between these clusters with
the form _xðtÞ=AxðtÞ+b, where xðtÞ= ½x1ðtÞ, . . . ,xNðtÞ�T , xnðtÞ is the mean
expression level of genes in cluster n at time t, A is a connectivity matrix
with entry aij ≠ 0 indicating a directed interaction from cluster j to cluster i
(with aij > 0 and aij < 0 indicating activation or inhibition, respectively),
b= ½b1, . . . ,bN �T is a vector of constant terms, and N is the total number
of clusters.
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