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The pulmonary airways are continuously exposed to bacteria. As
a first line of defense against infection, the airway surface liquid
(ASL) contains a complex mixture of antimicrobial factors that kill
inhaled and aspirated bacteria. The composition of ASL is critical for
antimicrobial effectiveness. For example, in cystic fibrosis an abnor-
mally acidic ASL inhibits antimicrobial activity. Here, we tested the
effect of pH on the activity of an ASL defensin, human β-defensin-3
(hBD-3), and the cathelicidin-related peptide, LL-37. We found that
reducing pH from 8.0 to 6.8 reduced the ability of both peptides to
kill Staphylococcus aureus. An acidic pH also attenuated LL-37 killing
of Pseudomonas aeruginosa. In addition, we discovered synergism
between hBD-3 and LL-37 in killing S. aureus. LL-37 and lysozyme
were also synergistic. Importantly, an acidic pH reduced the syner-
gistic effects of combinations of ASL antibacterials. These results
indicate that an acidic pH reduces the activity of individual ASL
antimicrobials, impairs synergism between them, and thus may dis-
rupt an important airway host defense mechanism.
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Many organisms defend against infection by producing
antimicrobials at the interface with the environment (1–4).

In the mammalian respiratory system, the interface between the
environment and the organism is a thin layer of airway surface
liquid (ASL). To maintain sterile lungs and protect against
bombardment with bacteria, mammalian lungs have evolved
multiple protective mechanisms, one of which is antimicrobials
in ASL that rapidly kill inhaled and aspirated bacteria (5–9).
ASL antimicrobial activity arises from a complex mixture of

antimicrobial peptides, proteins, and lipids that vary in size,
structure, and abundance (10, 11). Many share cationic and hy-
drophobic features that render them amphipathic (2, 12–17). Two
effectors of innate host defense are the defensins, which have
β-sheet structures and three disulfide bonds, and the cathelicidins,
which have linear α-helical structures (2, 3, 15, 18). Human
β-defensin-3 (hBD-3) (19, 20) and the cathelicidin LL-37 (21–23)
have broad antimicrobial spectrums, including activity against
Staphylococcus aureus and Pseudomonas aeruginosa. At neutral
pH, they are cationic and kill bacteria by disrupting the phos-
pholipid membrane and dissipating the electrochemical gradient
(4). Both hBD-3 and LL-37 retain activity under physiological
ionic strength, and they both rapidly kill bacteria (19–23).
Several previous genetic studies highlighted the potential role

of defensins as antimicrobials (24). Some suggested that poly-
morphisms in the defensin gene cluster modulate the phenotype
of cystic fibrosis (CF) airway disease, including an association
with chronic P. aeruginosa infection (25–27). In addition, a ge-
netic variant in the promoter region of a defensin gene cluster
was associated with reduced hBD-1 and hBD-3 transcript levels
and a higher risk of persistent S. aureus nasal colonization in
a cohort of healthy individuals (28). However, two reports did
not identify an association, perhaps because the populations
studied had different genetic backgrounds (29, 30). Polymor-
phisms in defensin genes are also associated with infections

outside the lung (31–33). Also consistent with an important role
in defense is the observation that airway insults and disease can
increase defensin gene expression (34–36).
We recently obtained additional evidence for the contribution

of ASL antimicrobials to host defense. Studying a porcine model
of cystic fibrosis (CF) (37, 38), we found that loss of cystic fibrosis
transmembrane conductance regulator (CFTR) anion channels
reduced HCO3

− secretion and decreased ASL pH (39, 40), results
consistent with earlier findings in human airway epithelia (41–44).
Importantly, the abnormally acidic pH partially inhibited bacte-
rial killing by ASL (40). Those findings identified a host defense
defect that may predispose CF airways to bacterial infection. We
also reported that an acidic pH inhibited two ASL antimicrobials,
lysozyme and lactoferrin (40). However, those experiments were
performed with a low ionic strength that is optimal for antimi-
crobial activity. Thus, although lysozyme and lactoferrin may
contribute to the inhibitory effect of an acidic ASL pH, other
antimicrobial factors may make a greater contribution.
With this background, we tested the hypothesis that at a more

physiological ionic strength, a reduced pHwould inhibit the activity of
hBD-3 and LL-37. A previous study showed the effect of a low ionic
strength on synergism between antimicrobials (45). Therefore, here
we also tested the hypothesis that hBD-3 and LL-37 exhibit synergism
in killing bacteria and that a reduced pH would inhibit synergism.

Results
hBD-3 and LL-37 Killing of S. aureus Is Concentration-Dependent and
Relatively Insensitive to Ionic Strength. We investigated antimicro-
bial activity using S. aureus because it is one of the first bacteria to
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infect CF lungs (46–48). To assay bacterial viability, we used an
S. aureus strain that expresses a bacterial luciferase (S. aureus
Xen29) (49); the bioluminescence is energy-dependent, and light
output correlates well with counts of colony-forming units (8). To
avoid confounding effects arising from bacterial growth, we used
minimal bacterial growth conditions—1% tryptic soy broth (TSB)
medium (8). By assaying light output, we were able to obtain real-
time measurements of microbial viability in a 96-well plate format.
To assess the sensitivity of antibacterial activity to ionic strength,

we tested hBD-3 and LL-37 in solutions with an ionic strength of
either 25 or 125 mM (addition of 100 mM NaCl). We also studied
lysozyme, lactoferrin, and hBD-2. At a low ionic strength, all five
antimicrobials reduced S. aureus luminescence intensity (Fig. 1). At
125 mM ionic strength, hBD-3 and LL-37 retained substantial
activity. However, the higher ionic strength attenuated the activity
of lysozyme and hBD-2, and lactoferrin had only moderate activity
at either ionic strength. Thus, in further studies, we investigated
hBD-3 and LL-37 activity using the higher ionic strength.
As the concentration of hBD-3 increased, it killed S. aureus

more rapidly (Fig. 2A), and 30 min after addition, greater hBD-3
concentrations caused greater reductions in luminescence (Fig.
2B). The estimated IC50 for hBD-3 was 2.7 μg/mL [95% confi-
dence interval (CI) 2.6–2.9].

An Acidic pH Inhibits hBD-3 and LL-37 Activity Against S. aureus. We
tested the effect of pH on hBD-3 killing of S. aureus. At pH 8.0,
hBD-3 rapidly killed the bacteria, so that by 1.5 min, lumines-
cence fell by ∼95% (CI 1.44–1.62) (Fig. 3A). Lowering pH to
more acidic values progressively slowed hBD-3 killing; at pH 6.4,

∼50% of the S. aureus bacteria were still viable 60 min after
adding hBD-3.
To test the effect of pH on the potency of hBD-3 against

S. aureus, we measured the reduction in luminescence with in-
creasing hBD-3 concentrations at three different pH values.
At pH 8.0, ∼0.2 μg/mL hBD-3 reduced luminescence intensity
by 50% (IC50) (Fig. 3B). At pH 7.4, the IC50 for hBD-3 was
∼2.9 μg/mL. As pH was reduced to 6.8, the potency of hBD-3 fell
further. The relative potency of hBD-3 against S. aureus at pH
6.8, 7.4, and 8.0 was ∼1:5:75.
We also tested the hypothesis that a reduced pH would inhibit

LL-37 killing of S. aureus. Fig. 3C shows that reducing the pH
from 8.0 to 6.8 decreased the speed and extent of killing. How-
ever, in comparison with hBD-3, LL-37 activity was affected to
a lesser extent as pH fell from 8.0 to 7.4 and 6.8 (Fig. 3 C and D).

An Acidic pH Has Little Effect on hBD-3 Activity Against P. aeruginosa.
Although reducing the pH decreased the anti-staphylococcal ac-
tivity of both hBD-3 and LL-37, individual antimicrobials can have
distinct abilities to kill various bacteria. Therefore, we tested the
effect of these two antimicrobial peptides on P. aeruginosa, an im-
portant pathogen as CF airway disease progresses (47, 50). LL-37
was much more potent at killing P. aeruginosa than S. aureus
(1 μg/mL in Fig. 4A vs. 100 μg/mL for S. aureus in Fig. 3C). As
with S. aureus, an acidic pH attenuated LL-37 killing of
P. aeruginosa (Fig. 4A). hBD-3 was less potent at killing
P. aeruginosa than S. aureus (1 and 5 μg/mL in Fig. 4 B and C vs.
1 μg/mL in Fig. 3D). However, in contrast to S. aureus, an acidic
pH had minimal effects on hBD-3 anti-pseudomonal activity
(Fig. 4 B and C).

An Acidic pH Attenuates the Synergistic Activity of hBD-3, LL-37, and
Lysozyme Against S. aureus. Although overlapping activities of
multiple different ASL antimicrobials could defend the airways,
synergism between antimicrobials could further enhance killing.
We previously showed that a low ionic strength induced syner-
gism between lysozyme, lactoferrin, and secretory leukocyte
peptidase inhibitor in killing Escherichia coli (45). Therefore,
we tested for synergistic interactions between antimicrobials at
a higher ionic strength and examined the effect of pH.
We asked whether pH affected the speed of killing by hBD-3

and LL-37 when they were combined. Compared with hBD-3
and LL-37 used alone at pH 8.0, the combination of half the
concentrations of hBD-3 and LL-37 reduced S. aureus lumines-
cence more rapidly (Fig. 5 A–C). At pH 7.4, the difference in
speed of killing between the combination and the individual
peptides was more marked, but at pH 6.8 the time-dependent
advantage of the combination was minimal.
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Fig. 1. Antimicrobial activity of ASL factors at low and high ionic strength.
Data are relative luminescence (in RLU) of S. aureus (Xen-29) as a percentage
of control (no added antimicrobial and same buffer conditions) at an ionic
strength of 25 mM (1% TSB, 10 mM potassium phosphate buffer: open circles)
and at an ionic strength of 125 mM (1% TSB, 10 mM potassium phosphate
buffer and 100 mM NaCl: closed circles) both at pH 7.4. (A) hBD-3 (5 μg/mL).
(B) LL-37 (50 μg/mL). (C) Lysozyme (1 mg/mL). (D) Lactoferrin (1 mg/mL). (E)
hBD-2 (50 μg/mL). Data are mean ± SEM; some error bars are hidden by
symbols. Results are from a single experiment in triplicate. Each experiment
was repeated at least three times with similar results.
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Fig. 2. Antimicrobial activity of hBD-3 is both time- and dose-dependent.
(A) S. aureus luminescence as percentage of control measured over time at
indicated concentrations of hBD-3 in μg/mL. (B) S. aureus luminescence with
increasing concentrations of hBD-3 measured 30 min after addition. Data are
mean ± SEM; some error bars are hidden by symbols. Results are from
a single experiment in triplicate. Each experiment was repeated at least
three times with similar results.
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We also varied the ratio of two antimicrobial peptides/
proteins, measured S. aureus luminescence, and plotted lumines-
cence as a function of the fraction of each peptide in the mixture.
A concave-down curve indicates synergism, a straight line indi-
cates additivity, and a concave-up curve indicates antagonism (51,
52). Fig. 6A shows that LL-37 and hBD-3 had a synergistic effect
on S. aureus killing at pH 8.0 and 7.4 that was eliminated at pH
6.8. We observed similar behavior with the combination of LL-37
and lysozyme (Fig. 6B). Although lysozyme and hBD-3 did not
exhibit synergistic interactions, their combined effect was additive
in killing S. aureus at pH 8.0 and 7.4. At pH 6.8, lysozyme and
hBD-3 showed an antagonistic interaction (Fig. 6C).
We also examined a triple combination of LL-37, hBD-3, and

lysozyme. At pH 8.0, there was a strong synergistic interaction
(Fig. 7A). However, as pH fell, the synergistic interactions were
attenuated (Fig. 7 B and C). We also tested this triple combi-
nation with higher concentrations of each factor and found that
reducing pH attenuated synergism, suggesting that inhibition
does not depend on the maximal concentrations of each factor
(Fig. S1).

Discussion
Our results suggest that hBD-3 and LL-37 have antibacterial
activity as individual peptides and have an even greater effect
through their synergistic interactions. The data also indicate that
a reduced pH inhibits their individual and synergistic actions and
could therefore impair airway defense.
The concentrations of hBD-3 and LL-37 that were effective

against S. aureus (∼2 μg/mL for hBD-3 and ∼100 μg/mL for LL-
37) and P. aeruginosa (∼5 μg/mL for hBD-3 and ∼1 μg/mL for
LL-37) are in the range of their expected ASL concentrations
(0.5–5 μg/mL for hBD-3 and 25–160 μg/mL for LL-37) (10, 19,
53–56). However, our results suggest that synergistic interactions
may be even more important than activity of individual agents.

Thus, peptides and proteins that only kill bacteria at concen-
trations greater than those in ASL might still make important
synergistic contributions to antibacterial defense. Likewise, agents
that show little antibacterial activity at relatively physiological
ionic strength might contribute to host defense when combined
with other antimicrobials. An example is lysozyme, which has
a relatively high ASL concentration (250–500 μg/mL) (10),
but which our data and earlier work (8) show has minimal
anti-S. aureus activity as ionic strength increases toward phys-
iological values. Nevertheless, here we found that lysozyme had
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Fig. 3. Effect of pH on antimicrobial activity of hBD-3 and LL-37 against
S. aureus. (A) Effect of 3 μg/mL hBD-3 on S. aureus (Xen-29) luminescence
measured over time at indicated pH. (B) Effect of hBD-3 concentration on
S. aureus luminescence at three different pH values; measurements weremade
5 min after addition. At pH 7.4, the IC50 for hBD-3 was 2.7 μg/mL, 95% CI (2.4–
2.9). (C) Effect of 100 μg/mL LL-37 on S. aureus luminescence. (D) Effect of 1 μg/mL
hBD-3 on S. aureus luminescence. Data are relative luminescence (in RLU) as
a percentage of control S. aureus (Xen-29) that had no added antimicrobial
but had same pH buffer conditions. Data are mean ± SEM; some error bars
are hidden by symbols. Results are from a single experiment in triplicate.
Each experiment was repeated at least three times with similar results.
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Fig. 4. Effect of pH on antimicrobial activity of hBD-3 and LL-37 against
P. aeruginosa. Data are P. aeruginosa luminescence (in RLU). (A) LL-37 (1 μg/mL).
(B) hBD-3 (1 μg/mL). (C) hBD-3 (5 μg/mL). Data are mean ± SEM; some error bars
are hidden by symbols. Results are from a single experiment in triplicate. Each
experiment was repeated at least three times with similar results.
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Fig. 5. Effect of pH on antimicrobial activity of hBD-3 and LL-37 in combi-
nation. Data are S. aureus (Xen-29) luminescence. Combination of 50 μg/mL
of LL-37 and 0.5 μg/mL of hBD-3 at (A) pH 7.4, (B) pH 6.8, and (C) pH 8.0. Data
are mean ± SEM; some error bars are hidden by symbols. Results are from
a single experiment in triplicate. Each experiment was repeated at least
three times with similar results. Graphs corresponding to the effect of in-
dividual factors in Fig. 4 A and B are replotted in A, B, and C for comparison.
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synergistic effects when combined with LL-37 or with LL-37
plus hBD-3 at high ionic strength.
The reported absolute values of ASL pH depend on several

factors, including the method of assay; whether it is measured in
vivo, ex vivo, in submucosal gland secretions, or in cultured
epithelia; whether it is assayed in newborns or inflamed airways;
and perhaps the host species (40, 42–44, 57, 58). There is also
considerable within-study variation. The reported range of pH in
non-CF is from ∼6.8 to 7.8. However, and importantly, pH of CF
ASL is consistently reported as lower than pH of non-CF ASL.
Thus, the pH values that we tested are in the reported ranges
for ASL.
The antimicrobial activity of cationic amphipathic peptides

such as hBD-3 and LL-37 depends on electrostatic interactions
between cationic domains of the peptide and the negatively
charged head groups of phospholipids in the bacterial plasma
membrane. The cationic peptides insert into and disrupt the
bacterial plasma membrane (59, 60). Insight into how a more
alkaline pH might increase activity comes from NMR experi-
ments with synthetic, histidine-rich peptides and lipid bilayers
(61, 62). Those studies indicate that the peptide assumes a posi-
tion parallel to the lipid bilayer, weakening the membrane before
insertion and then inserting and disrupting the membrane. At
alkaline pH, the peptide carries a lower positive charge and thus
inserts into the membrane more quickly. ASL cationic peptides
may interact with the bacterial membrane in a similar fashion
with corresponding effects of alkaline pH. Synergistic effects may
occur when one peptide in a conformation parallel to the bac-
terial membrane facilitates insertion of other peptides (63). We
speculate that such an effect might account for synergistic activity
between hBD-3 and LL-37 as well as synergism for the combi-
nation of LL-37 and lysozyme; in addition to its enzymatic ac-
tivity, lysozyme has nonenzymatic antibacterial activity dependent
on its cationic and hydrophobic domains that disrupt bacterial
plasma membranes (64–66). A possibility that we cannot exclude
is that variations in pH might render S. aureus and P. aeruginosa
more or less susceptible to antimicrobial factors. In addition, it is
possible that pH might modulate the inhibitory effect of hBD-3

on S. aureus cell-wall biosynthesis. Previous studies found that the
bactericidal activity of several defensins involves perturbation of
cell-wall biosynthesis by binding to lipid II (67–71).
Our study has several advantages: we studied more than one

ASL peptide/protein, the antimicrobials were used at concen-
trations similar to those found in ASL, we used pH values in the
physiological range, the buffers had a high ionic strength, and
S. aureus and P. aeruginosa have relevance to CF lung disease.
Our study also has limitations. Bacterial inocula in vivo will
usually be smaller than we used, and thus we may have under-
estimated the potency of antimicrobials (72, 73). Unidentified
factors in ASL might enhance or attenuate the activity of anti-
microbials; those would have been missing from our prepara-
tions. ASL antimicrobials may bind to mucin or other factors
that alter their antibacterial activity. ASL contains more peptide,
protein, and lipid antimicrobials than we studied, and thus our
preparation does not reproduce the complex mixture of in-
dividual factors and their synergism.
In cultured human and porcine airway epithelia, in vitro studies

of airways, and in vivo studies in newborn piglets and neonatal
humans, CF ASL is abnormally acidic (40, 42–44), consistent with
the loss of CFTR-dependent HCO3

− transport (39, 41). However,
in older children and adults with CF, the effect of genotype in
ASL pH is more variable (44, 58, 74). Whether inflammation,
remodeling, infection, and/or age are factors that might circum-
vent the loss of CFTR anion channels and increase ASL pH in CF
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Fig. 6. Effect of pH on antimicrobial activity of combination of lysozyme,
HBD-3, and LL-37. S. aureus (Xen-29) luminescence (in RLU) with varying
ratios of two antimicrobial peptides. The x axis shows a ratio of antimicrobial
peptides; from left to right there is an increasing ratio of one antimicrobial
and a decreasing ratio of the other. (A) LL-37 and hBD-3 in combination
(8 min incubation). (B) LL-37 and lysozyme in combination (30-min in-
cubation). (C) Lysozyme and hBD-3 in combination (30-min incubation).
Maximal combination (1.0) was 1 μg/mL for hBD-3, 100 μg/mL for LL-37, and
1 mg/mL for lysozyme. Data are mean ± SEM; some error bars are hidden by
symbols. Results are from a single experiment in triplicate. Each experiment
was repeated at least three times with similar results.
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Fig. 7. Ternary surface plot of the effect of pH antimicrobial activity on the
combination of lysozyme, hBD-3, and LL-37. Data are S. aureus (Xen-29) lu-
minescence (vertical axis, in RLU). The surface plot color and curvature cor-
respond to changes in relative luminescence. Red and concave indicate less
luminescence and low bacteria viability; blue and flat indicate more lumi-
nescence and high bacteria viability. Relative luminescence with each anti-
microbial factor alone is indicated at top of each vertical axis in blue font.
(Horizontal triangular axis indicates ratio of antimicrobial factors in triple
combination). Maximal concentrations (1.0 on the axes) were 1 μg/mL for
hBD-3, 100 μg/mL for LL-37, and 1 mg/mL for lysozyme. Data are shown at
different times for each pH. (A) pH 8.0 after 2-min incubation. (B) pH 7.4
after 8-min incubation. (C) pH 6.8 after 30-min incubation. Results are an
average of three experiments, each done in triplicate. Similar results were
obtained with higher concentrations of antimicrobials (Fig. S1).
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is unknown. However, we speculate that changes in ASL pHmight
contribute, in part, to variations in the species of bacteria that
infect CF airways. For example, S. aureus is commonly cultured
early and P. aeruginosa is cultured later in the course of CF airway
disease in humans and pigs (46, 47, 75). Interestingly, a reduced
pH impaired hBD-3 killing of S. aureus, but had minor effects on
killing of P. aeruginosa. Although a reduced ASL pH might be
important for initiating S. aureus infection at the onset of CF lung
disease, the variety of ASL antimicrobials, their varied properties,
and interactions between them leave much uncertainty.
In addition to CF, ASL pH may be abnormally reduced in

asthma (76), chronic obstructive pulmonary disease (77), and
acute respiratory distress syndrome (78). Acidic conditions can
also be found at sites of infection outside airways, including in
peritoneal fluid, pleural fluid, cerebral spinal fluid, and ab-
scesses. In addition to inhibiting antimicrobial peptides and
proteins, an acidic pH can reduce the efficacy of pharmaceutical
antibiotics (79, 80). These observations suggest that an acidic pH
might impair the effectiveness of antimicrobial defenses and
antibiotics under several conditions.
Thus, perhaps raising pH might aid prevention and treatment

of bacterial infection at multiple sites in addition to CF airways.

Materials and Methods
Materials and Bacteria.ASL antimicrobial factors included recombinant human
lysozyme (Sigma-Aldrich), iron-unsaturated human milk lactoferrin (Sigma-
Aldrich), recombinant human β-defensin-2 hBD-2 (Peprotech), recombinant
human β-defensin-3 hBD-3 (Peprotech), and human LL-37 (Anaspec). Lyso-
zyme and lactoferrin were dissolved in double-deionized water. Cationic
peptides were dissolved in acidified water (0.01% acetic acid) that contained
0.1% BSA.

We used S. aureus Xen-29 (Caliper LifeSciences Bioware) and P. aeruginosa
PA103. S. aureus Xen-29 was derived from S. aureus 12600, a pleural fluid
isolate, which is also designated as NCTC8532. S. aureus Xen-29 possesses a
stable copy of the modified Photorhabdus luminescens luxABCDE operon at
a single integration site on the bacterial chromosome. For maintenance of
luminescence, the bacteria were grown in TSB in the presence of kanamycin
(10 μg/mL). We also used P. aeruginosa, modified to express the lux operon
on a pUCP19lux plasmid and grown in Tryptic Soy Broth in the presence of
carbenicillin (40 μg/mL) to maintain selection.

Antimicrobial peptide activity was tested in a buffer composed of TSB
[casein peptone 17 g/L, soya peptone 3 g/L, NaCl 5 g/L, K2HPO4 2.5 g/L, glucose

2.5 g/L; 1% for S. aureus and 5% (vol/vol) for P. aeruginosa] and supple-
mented with 10 mM potassium phosphate buffer with pH adjusted by
varying the ratio of monobasic to dibasic phosphate. The ionic strength of
this solution is calculated at 25 mM (8). Where indicated, 100 mM NaCl was
added to the final buffer to achieve an ionic strength of 125 mM.

Luminescence Antibacterial Assay. Bacteria were grown overnight at 37 °C in
medium described above, diluted 1:100, and grown to exponential phase.
Bacteria were harvested by centrifugation and suspended in the 1% or 5%
TSB buffer at the indicated pH and ionic strength. Bacteria (5 × 104 cfu) were
incubated with antimicrobial factors in a 96-well plates (Optiplate; Packard
Instruments) in a total volume of 120 μL. Luminescence was measured with
a luminometer (Spectra Max L, Molecular Devices) and reported as relative
light units (RLU). A previous study determined that reductions in lumines-
cence have an excellent correlation with a decrease in cfu (8). All experi-
ments included control bacteria that did not receive antimicrobials but were
incubated in buffer of identical ionic strength and pH. Data are shown as
relative luminescence as a percentage of control (RLU percentage of con-
trol). Exposure of bacteria to the various pH values did not cause bacterial
death (Fig. S2).

Testing Combinations of Antimicrobials. Experiments testing combinations of
antimicrobials are often done using a checkerboard assay, and interactions
are analyzed using isobolograms (81). In this study, we followed a more
general approach (51, 52, 82) for several reasons. First, some factors (lyso-
zyme) were completely inhibited at high ionic strength. Therefore, a full
dose–response and IC50 calculations to design a checkerboard experiment
were not possible. Second, preliminary studies showed that these antimi-
crobial factors kill bacteria at different rates. Third, we wanted to study
more than two factors in combination and the effect of pH on the combi-
nation (83).

Statistical Analyses. For dose–response curves in Figs. 2B and 3B, we used
a Hill equation. For time-kill curves in Fig. 3A, we used a one-phase decay
equation. For ternary surface plots in Fig. 7, we used ternplot (a MATLAB plugin
by Carl Sandrock).
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