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Competition between items in working
memory leads to forgetting

Jarrod A. Lewis-Peacock! & Kenneth A. Norman?

Switching attention from one thought to the next propels our mental lives forward. However,
it is unclear how this thought-juggling affects our ability to remember these thoughts.
Here we show that competition between the neural representations of pictures in working
memory can impair subsequent recognition of those pictures. We use pattern classifiers to
decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where
participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural
dynamics are predictive of performance on a surprise recognition memory test: trials that
elicit similar levels of classifier evidence for both pictures (indicating close competition) are
associated with worse memory performance than trials where participants switch decisively
from thinking about one picture to the other. This result is consistent with the non-monotonic
plasticity hypothesis, which predicts that close competition can trigger weakening of
memories that lose the competition, leading to subsequent forgetting.
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e constantly juggle our thoughts, and the activation of

representations in working memory waxes and wanes

over time according to the relevance of these
representations. How does this juggling affect our ability to
remember these items in the future? Specifically, can juggling
thoughts in working memory do lasting harm to the representa-
tions of these thoughts in long-term memory?

Previous studies exploring inhibition of return phenomena
have demonstrated that deactivating representations (of spatial
locations!?, pictures® or task sets*?) can lead to a short-term
decrease (on the order of seconds) in participants’ ability to
reactivate the previously attended representation. Here we
explore whether—in some circumstances—there might be
longer-term negative consequences of switching between
thoughts. When people switch between thoughts under time
pressure, the incoming thought and the outgoing thought will be
co-active for some period of time (as the incoming thought’s
activation is rising and the outgoing thought’s activation is
falling), resulting in competition between these thoughts. In this
study, we tested the prediction that competition between thoughts
in working memory can harm subsequent memory of these
thoughts.

This prediction follows from the non-monotonic plasticity
hypothesis®’, which posits a U-shaped relationship between
memory activation and learning, such that moderate levels of
memory activation lead to weakening of the memory, whereas
higher levels of activation lead to strengthening (see Fig. 1, top).
The non-monotonic plasticity hypothesis receives support from
neurophysiological data showing that moderate postsynaptic
depolarization leads to long-term depression (that is, synaptic
weakening) and stronger depolarization leads to long-term
potentiation (that is, synaptic strengthening)®-1%. Recently, the
non-monotonic plasticity hypothesis has also received support
from human neuroimaging studies showing a U-shaped
relationship between how strongly a representation comes to
mind (measured using electroencephalography or functional
magnetic resonance imaging (fMRI)) and the subsequent
accessibility of that representation®”!!, The non-monotonic
plasticity hypothesis makes clear predictions regarding how
competition should affect learning. Specifically, when memories
compete, the ‘winning’ memory (that is, the memory receiving
the most excitatory input) will be highly active, which should lead
to further strengthening; ‘runner up’ memories (that is, memories
receiving substantial excitatory input, but less than the winning
memory) will end up being moderately active, which should lead
to weakening of these memories; and memories that do not
compete will not be strengthened or weakened!>13,

Figure 1 shows how thought-juggling can harm memories.
Consider a situation where you are meeting a friend in an
unfamiliar city. She texts you a photograph of a coffee house
that is to be your rendezvous point. As you walk downtown,
you think about this house and search for it on each new city
block. You pull out your phone to text your friend, but discover
that your phone has died. Now you start thinking about your
friend’s face and hope that you will be able to recognize her
in a bustling downtown. According to the non-monotonic
plasticity hypothesis, subsequent memory for the coffee house
will be a function of how decisively you switch back and
forth between thinking about the coffee house and your friend’s
face. If you switch decisively, minimizing the amount of
time that the face and house compete, your house representation
will spend relatively little time in the ‘weakening zone’
that leads to forgetting (see Fig. 1); hence, subsequent memory
for the house will be relatively spared; conversely, if the house
and face are thrust into prolonged competition (such that
your house representation spends a higher amount of time in the
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Figure 1 | Hypothesized ‘plasticity curve' describing how competition
between memories drives learning. If a memory competes and clearly
wins, it ends up being highly active and is strengthened; if the memory
competes but does not win, it ends up being moderately active and is
weakened; if the memory does not compete strongly, nothing happens. The
background colour redundantly codes whether different levels of memory
activation are linked to weakening (red) or strengthening (green). The
diagram below the curve depicts different states of face/house competition
that could occur during the rendezvous example in the text. When
switching from the 'house dominance’ state on the right to the ‘face
dominance’ state on the left (or vice versa), the face and house pass
through the ‘weakening zone' of the plasticity curve where they are thrust
into close competition with each other, resulting in moderate levels of
house activity and (through this) weakening of the house memory. The
greater the amount of time that the house spends in this ‘weakening zone',
the worse subsequent memory for the house will be.

‘weakening zone’), then the house memory will be weakened,
resulting in worse subsequent memory performance.

To test this prediction, we used a paradigm in which
participants were presented with two pictures (a face and a
scene) on each trial and were instructed to remember both,
but to focus their attention on remembering the scene. Usually,
scene memory was probed after a brief delay (stay trial),
but occasionally (on one-third of the trials) a switch cue
would appear instead, indicating that the face memory would
be probed on this trial after another brief delay (switch trial).
Based on prior work using a similar paradigm!417, we
hypothesized that participants would strongly activate a
representation of the scene during the initial memory delay.
When a switch cue was presented, we hypothesized that
participants would deactivate their representation of the
scene and activate their representation of the face. Our
analysis focused on switch trials, which provide us with two
opportunities to study competitive dynamics and learning: the
pre-switch period, where participants are activating the scene
representation, and the post-switch period, where participants
are deactivating the scene representation. Stay trials were not
ideally suited for testing our ideas about how competition
affects subsequent memory; for discussion of stay trials and
results from these trials, see Supplementary Note 1 and
Supplementary Fig. 1.

The non-monotonic plasticity hypothesis predicts that close
competition between the face and scene representations during
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the pre-switch or post-switch periods should be associated with
worse subsequent memory for scenes, relative to trials where
there is less competition. To test this prediction, we used pattern
classifiers, applied to fMRI data in humans, to measure scene and
face processing in the ventral temporal cortex (see Methods)
throughout each trial'®2% we then related these neural
measurements of scene/face processing (classifier evidence) to
memory performance on a surprise recognition memory test for
the scenes at the end of the experiment?>~2°. The ventral
temporal regions that we used to measure scene/face processing
themselves serve as inputs to convergence zones (for example, in
the medial temgoral lobes) that are responsible for storing long-
term memories; this means that we can treat our scene and face
classifier evidence scores as reflecting the strength of the
excitatory inputs into memory regions. As such, we can use the
difference in scene and face classifier evidence (hereafter referred
to as scene-face evidence) to track the ‘competitive balance’
between the scene and face, and use this to predict learning. In
keeping with our theory, we find that moderate levels of scene-
face evidence during switch trials (indicating close competition)
are associated with worse subsequent recognition of scenes,
relative to higher and lower levels of scene-face evidence. This
result demonstrates, for the first time, that the manner in which
we juggle our thoughts in working memory can have lasting,
negative consequences.

Results

Behavioural results. Figure 2 shows the basic design of the
experiment, which was composed of three phases: In Phase 1,
participants performed a simple delayed-recognition task in the
scanner; data from this phase were used to train the fMRI clas-
sifier. In Phase 2, participants performed the retro-cueing stay/
switch task in the scanner. In Phase 3, participants were given a
(behavioural) recognition test for scenes from Phase 2.

For the Phase 1 task in which participants performed simple
delayed recognition of individual face and scene images, the mean
response accuracy was 85.9% (s.em. 10.0%) and the mean
response time was 511ms (s.em. 22ms), with no significant
differences between face and scene trials (both P’s>0.63,
two-tailed paired f-test). For the Phase 2 retro-cueing task in
which participants performed delayed recognition of one image
from an initial set of two, the mean response accuracy for switch
trials was 85.1% (s.em. 2.5%) and the mean response time
was 401ms (s.e.m. 13ms). Performance on the surprise
recognition test in Phase 3 is shown in Fig. 2d. The mean hit
rate for scenes previously studied in Phase 2 switch trials was
70.4% (s.e.m. 3.1%).

For all subsequent memory analyses of old items described
below, we treated Phase 3 recognition responses as a graded
measure of memory strength (sure old =1, unsure old =0.667,
unsure new = 0.333, sure new =0), in which the ‘old’ responses
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Figure 2 | Task procedures and subsequent memory performance. (a) Participants performed delayed-recognition of a face or a scene picture

during Phase 1. (b) Participants then performed retro-cued delayed recognition of one stimulus from a pair of target pictures (one face, one scene) during
Phase 2. On 2/3 of the these trials, participants were tested on the scene (Stay trials); on 1/3 of the these trials, participants were given a switch cue at the
end of the initial delay period, informing them that they would be tested on the face, not the scene (Switch trials). (¢) In Phase 3 at the end of the
experiment, participants were given a surprise memory test for scenes that were previously studied on Switch trials in Phase 2, and for new scenes.
(d) Recognition confidence judgments for old and new scenes in Phase 3. (e) Recognition memory sensitivity as assessed by receiver operating
characteristic (ROC) analysis for old scenes in Phase 3. AUC, area under the ROC curve. Error bars indicate the s.e.m., n=21.
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corresponded to remembered items and ‘new’ responses corre-
sponded to forgotten items. Recognition memory sensitivity for
scenes previously studied in Phase 2 switch trials was significantly
above chance (two-tailed t-test on area under the receiver
operating characteristic curve, #(20) =13.51, P<0.001; Fig. 2e).

Measuring working memory dynamics. Group-averaged cross-
validation results for the classifiers, trained separately on Phase 1
data for each participant, are shown in Fig. 3a. The cross-vali-
dation procedure entailed training a classifier on three blocks of
data and then applying that classifier to independent data from
the held out fourth block; the blocks were then rotated and this
procedure was repeated until all four blocks had been tested.
Face/scene decoding was well above chance. Scene evidence was
reliably higher than face evidence for scene trials, and vice versa
(both P’s<0.001), but scene and face scores were not dissociable
during rest periods (P=0.58). To analyse data from Phase 2,
classifiers were re-trained on all Phase 1 data, separately for each
subject, before being applied to that subject’s Phase 2 data.
Group-averaged classification results for switch trials (Fig. 3b)
show that scene evidence was higher than face evidence
throughout the initial delay period when participants were
anticipating a memory probe of the scene target (two-tailed
paired t-tests between 6 and 12s; all P’s<0.0036, Bonferroni
corrected for multiple time points). This relationship inverted
following the switch cue such that face evidence was higher than
scene evidence, and this difference persisted through the end of
the trial (16-28s; all P’s<0.0036). A recoded version of these data
shows that on average, the scene-minus-face difference score
(‘scene—face’) was positive during the pre-switch interval and
negative during the post-switch interval, although there was
extensive variability across trials (Fig. 3c). As noted above, we
hypothesized that the difference between the strengths of com-
peting memories would predict subsequent memory for
scenes®7>11-13,

Relating classifier evidence to subsequent memory. For the
analyses that follow, we computed average scene-face classifier
evidence on each switch trial during an interval meant to capture
pre-switch activity (4-12s, not shifting for haemodynamic lag)
and an interval meant to capture post-switch activity (16-20s,
not shifting for haemodynamic lag). The pre-switch interval was
chosen to start 4 s after the beginning of the trial (to account for
haemodynamic lag) and to end at the moment when the switch

cue appeared. The post-switch interval was chosen to start 4s
after the switch cue appeared (to account for haemodynamic lag)
and to end at the moment that the memory probe appeared.
We hypothesized that across items, there would be a non-
monotonic (U-shaped) relationship between scene-face classifier
evidence in Phase 2 and subsequent recognition memory for
scenes in Phase 3. To formally test for the non-monotonic pattern
in these data, we used the Probabilistic Curve Induction and
Testing Toolbox (P-CIT) Bayesian curve-fitting algorithm’ to
estimate the shape of the ‘plasticity curve’ relating working
memory dynamics (indexed by scene-face classifier evidence) and
subsequent memory performance for that scene. The P-CIT
algorithm approximates the posterior distribution over plasticity
curves (that is, which curves are most probable, given the neural
and behavioural data). P-CIT generates this approximation by
randomly sampling curves (piecewise-linear curves with three
segments) and then assigning each curve an importance weight
that quantifies how well the curve explains the observed
relationship between neural and behavioural data. Finally, these
importance weights are used to compute the probability of each
curve, given the neural and behavioural data. To assess evidence
for the non-monotonic plasticity hypothesis, P-CIT labels each
sampled curve as theory consistent (if it shows a U shape,
dropping below its starting point and then rising above its
minimum value) or theory inconsistent, and then computes a log
Bayes factor score that represents the log ratio of evidence for
versus against the non-monotonic plasticity hypothesis; positive
values of this score indicate a balance of evidence in support of
non-monotonic plasticity. P-CIT also computes a y>-test that
assesses how well the curve explains the data overall, regardless of
its shape; the P-value for this y2-test indicates the probability of
obtaining the observed level of predictive accuracy, under a null
model where classifier evidence is unrelated to memory behaviour
(see Supplementary Methods for additional justification of the
P-CIT approach and a detailed description of how P-CIT works).
For our main P-CIT analysis, the pre-switch interval and the
post-switch interval (for each scene item) were treated as separate
learning events whose effects were summed to model recognition
of that item. The fitted curves explained a significant amount of
variance in subsequent recognition outcomes, >=18.89,
P<0.0001. Most importantly, the curves recovered by P-CIT
revealed a U-shaped mapping between classifier evidence scores
and subsequent memory outcomes, such that moderate levels of
scene—face evidence were associated with worse subsequent
memory than higher and lower levels of scene-face evidence
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Figure 3 | Pattern classification of fMRI data. (a) Classifier evidence scores for Phase 1 data, obtained by training the classifier on all but one Phase 1 block
and testing on the remaining block. Face evidence is blue, scene evidence is red and resting-state evidence is grey (*P<0.001, face versus scene, paired
t-test). (b) Trial-averaged decoding of switch trials from Phase 2, with evidence values interpolated between discrete data points every 2s. Trial events
are diagrammed along the horizontal axis. (¢) Recoded classifier evidence scores (‘scene-face’) for switch trials overlaid on a distribution of single-trial
traces from every participant. (Error bars and ribbon thickness indicate the s.e.m. across participants, n=21; see Supplementary Figs 2 and 3 for
individual-subject versions of these plots). Note that in these plots classifier evidence scores were not shifted to account for haemodynamic lag.
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(log Bayes factor = 2.4, Fig. 4a, top). This result is predicted by
the non-monotonic plasticity hypothesis®”>11-13,

To test the probability of getting this level of theory consistency
due to chance, we estimated the null distribution by running a
version of this analysis in which the mapping between the
classifier evidence scores and the recognition data was permuted
across trials. Only 1.5% of the permuted analyses that we ran (out
of 200 total) showed log Bayes factors that matched or exceeded
the log Bayes factor of the unpermuted data, indicating that it
would be very unlikely to achieve this level of theory consistency
due to chance.

To assess the population-level reliability of the U-shaped curve
(that is, were the results driven by a small subset of participants),
we also ran a bootstrap resampling test in which we resampled
data from participants with replacement and re-computed the log
Bayes factor for the resampled data. Ninety eight per cent of these
bootstrap samples (out of 200 total) showed evidence in support
of the non-monotonic plasticity hypothesis (that is, a positive log
Bayes factor), thereby indicating a high degree of population-level
reliability in the shape of the curve (Fig. 4b).

To assess whether the predicted U-shaped relationship between
classifier evidence and memory was present in the pre-switch and
post-switch periods (considered on their own), we ran the same
P-CIT procedure described above, but separately on the pre-
switch and post-switch data. The curves recovered by P-CIT
based on pre-switch data (Fig. 4a, bottom) explained a significant
amount of variance in subsequent recognition outcomes

Pre- & post-switch b
4-12s & 16-20 s

12

(> =13.82, P<0.001) and they revealed a U-shaped mapping
between classifier evidence and memory outcomes that is
consistent with our hypothesis (log Bayes factor = 1.05). Permu-
tation tests revealed that this level of theory consistency was
unlikely to have occurred due to chance (only 3.5% of 200
permutations obtained a log Bayes factor greater than the
observed log Bayes factor). Furthermore, 96% of 200 bootstrap
samples showed evidence in support of the non-monotonic
plasticity hypothesis (that is, a positive log Bayes factor),
indicating a high degree of population-level reliability (Fig. 4b).
Moving on to the analyses of post-switch data, the curves
recovered by P-CIT based on post-switch data (Fig. 4a, bottom)
also explained a significant amount of variance in subsequent
recognition outcomes (4*=10.34, P=0.001) and they were also
U-shaped (log Bayes factor =1.81). Permutation tests revealed
that this level of theory consistency was unlikely to have occurred
due to chance (only 4.0% of 200 permutations obtained a log
Bayes factor greater than the observed log Bayes factor).
Furthermore, 96.5% of 200 bootstrap samples showed evidence
in support of the non-monotonic plasticity hypothesis (that is, a
positive log Bayes factor), indicating a high degree of population-
level reliability (Fig. 4b).

One question that arises is whether pre-switch and post-switch
processing make distinct U-shaped contributions to subsequent
memory, or whether the U-shaped curve obtained post switch (or
pre switch) is somehow an artefact of post-switch classifier
evidence and pre-switch classifier evidence being correlated.
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Figure 4 | Relating classifier evidence on switch trials to subsequent recognition memory. (a) Empirically derived estimates (generated using the

Bayesian P-CIT algorithm’) of the ‘plasticity curve' relating scene-face evidence on switch trials to Phase 3 subsequent memory strength (operationalized
as recognition confidence). Within each box, the line shows the mean of the posterior distribution over curves and the ribbon shows the 90% credible
interval (such that 90% of the curve probability mass lies within the ribbon). The horizontal axis shows scene-face classifier evidence scores rescaled so
that the minimum classifier evidence value = — 1 and the maximum classifier evidence value =1; the vertical axis represents the change in subsequent
memory strength. The box on the top shows the estimated curve when behavioural outcomes are modelled as depending on the summed effects of pre-
switch (4-12's) and post-switch (16-20s) classifier evidence. The two boxes on the bottom show the estimated plasticity curve when behavioural
outcomes are modelled as depending only on post-switch or pre-switch classifier evidence, respectively (n=21). (b) Violin plots describing the balance of
evidence (operationalized in terms of log Bayes factor) in favour of the non-monotonic plasticity hypothesis, shown separately for the three analysis
conditions. These plots show the probability density (using kernel density estimation) of the log Bayes factor derived from 200 bootstrap iterations for each
analysis condition. The height of each plot indicates the full range of the data and the white marker indicates the mean. Positive values of the log Bayes
factor correspond to evidence in favour of the non-monotonic plasticity hypothesis and negative values correspond to evidence against the hypothesis.
() Histograms of scene-face classifier evidence during pre-switch (4-12's; grey) and post-switch (16-20's; green) intervals.
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To address this point, we ran analyses with P-CIT (see
Supplementary Methods for details) to assess whether a U-shaped
curve is obtained for the post-switch data after accounting for the
predictiveness of the pre-switch data, and vice-versa. We found
that there was still a significant predictive relationship between
post-switch classifier evidence and subsequent memory after
partialing out pre-switch classifier evidence (y*=17.35,
P=0.015), and the resulting curve still had a U shape (log Bayes
factor =1.76; 98% of bootstraps had log Bayes factor>0).
Likewise, there was still a significant predictive relationship
between pre-switch classifier evidence and subsequent memory
after partialing out post-switch classifier evidence (y>=19.92,
P=10.007), and the resulting curve still had a U shape (log Bayes
factor =0.92; 91.5% of bootstraps had log Bayes factor>0).
Permutation tests revealed that these levels of theory consistency
were unlikely to have occurred due to chance. Only 3.5% of 200
permutations (for postswitch-partialing-out-preswitch) and 4.5%
of 200 permutations (for preswitch-partialing-out-postswitch)
obtained a log Bayes factor greater than the observed log Bayes
factor.

Although the curves derived by P-CIT based on the pre-switch
and post-switch intervals (separately) were both reliably
U-shaped, they had a slightly different shape (Fig. 4a, bottom).
These differences can be explained in terms of differences in the
distributions of scene-face classifier evidence scores obtained for
these intervals (Fig. 4c). The post-switch distribution is biased
towards negative values (face dominance)—the right side of this
distribution is associated with greater competition (that is,
smaller absolute differences between scene and face evidence),
which explains why the minimum value in the post-switch P-CIT
curve (that is, the value corresponding to the worst subsequent
memory performance) occurs towards the right side of this curve.
Conversely, the pre-switch distribution is biased towards positive
values (scene dominance)—the left side of this distribution is
associated with greater competition, which explains why the
minimum value in the pre-switch P-CIT curve occurs towards the
left side of the curve.

Relating classifier evidence to working memory performance.
In addition to predicting subsequent memory performance, we
also examined the relationship between working memory
dynamics during Phase 2 switch trials and performance on the
Phase 2 working memory probes (Fig. 5). Note that all of
our claims about memory being a non-monotonic function of
scene-face classifier evidence only apply to long-term memory
modification. We expected that performance on the Phase 2
probe task would be a simple linear function of classifier evidence
for the target category (on switch trials, face). Accordingly, we
used a simple logistic regression analysis to assess the strength of
the relationship between neural dynamics and performance on
Phase 2 working memory probes. To validate that the shape of
the relationship was truly linear (as predicted), we also ran P-CIT
analyses on these data.

To maintain comparability with our analyses predicting Phase
3 performance, we measured working memory dynamics during
the same time intervals in each trial (pre-switch 4-12s, post-
switch 16-20s). We also analysed classifier evidence during a
‘probe’ window (20-24s, not shifted to account for haemody-
namic lag). Factoring in haemodynamic effects, this ‘probe’
window reflects processing that occurred before and during the
onset of the probe. We expected that the predictive relationship
between neural dynamics and probe performance would be
highest for classifier measurements taken close in time to the
probe (that is, 20-24s) relative to classifier measurements taken
earlier in the trial.
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Figure 5 | Relating classifier evidence on switch trials to working
memory performance. (a) Logistic regression fit (;) of face, scene and
scene-face classifier evidence versus response accuracy on switch trials
from the Phase 2 delayed-recognition task. The left group represents switch
trials during the pre-switch interval (4-12's), the middle group represents
switch trials during the post-switch interval (16-20s) and the right group
represents switch trials during the probe interval (20-24s). Error bars are
95% bootstrap confidence intervals. (*P<0.05, 1,000 bootstrap samples,
n=21). (b) Empirically derived estimates (generated using the P-CIT
algorithm”) of the curve relating face evidence during the 20-24s probe
window and working memory accuracy, showing a positive, monotonic
relationship. The graph conventions are as described in Fig. 4.

We found that during the pre-switch and post-switch intervals,
neither face, scene, nor scene-face evidence scores were predictive
of working memory accuracy (4-12s, all P’s>0.16; 16-20s, all
P’s>0.08). During the probe period, however, stronger face
evidence scores were associated with more accurate responses to
the face probe (20-24 s, P =0.013); a similar trend was present for
the relative face-scene scores (that is, a negative trend for scene—
face; P=0.052). Lastly, follow-up analyses using P-CIT revealed
that the function relating face evidence and working memory
accuracy was monotonically increasing for the probe period

(Fig. 5b).

Discussion

The aim of the present study was to explore how juggling
thoughts in working memory can impair subsequent memory for
these thoughts. We used multivariate pattern analysis of fMRI
data to demonstrate a U-shaped relationship between scene-face
classifier evidence and subsequent memory for scenes. Compared
with items that elicited relatively high or low levels of scene-face
evidence (indicating scene or face dominance), items that elicited
a moderate level of scene-face evidence (indicating close
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competition between the scene and face) were associated with
worse subsequent memory performance. This relationship was
present when we modelled recognition outcomes based on the
sum of the effects of pre-switch and post-switch neural dynamics,
and it was also present when we looked separately at pre-switch
and post-switch dynamics. The shape of this plasticity curve
fits with the non-monotonic plasticity hypothesis®/, which
predicts that close competition between memories will result
in strengthening of the winning memory and weakening of
competing memories (see Fig. 1). With regard to scene memory,
if the scene representation wins (as indicated by a large positive
value of scene-face evidence) the hypothesis predicts that it will
be strengthened. If it clearly loses (as indicated by a large negative
value of scene-face evidence), no learning is predicted to take
place; it is specifically for intermediate values of scene-face
evidence (where the scene competes but loses) that the non-
monotonic plasticity hypothesis predicts weakening of the scene.

This study builds on other, recent neuroimaging studies that
demonstrated a link between moderate levels of processing and
memory weakening®”!1, The key novel contribution of this study
is a psychological one: the discovery that the manner in which we
juggle our thoughts in working memory can have lasting, negative
consequences on the subsequent accessibility of these thoughts.
Although other studies have shown transient effects of thought-
juggling (‘inhibition of return’ reductions in reaction time, lasting
milliseconds or seconds!™), ours is—to the best of our
knowledge—the first study to show that inefficiently switching
between thoughts in working memory can impair the subsequent
accessibility of these thoughts (relative to trials where switching is
more efficient) for at least several minutes. This finding has clear
real-world consequences. Although thought-juggling (‘multi-
tasking’) has been shown to degrade the quality of ongoing
processing®’, our study reveals that brief periods of competition
between thoughts in working memory can do lasting harm to our
ability to subsequently remember these thoughts.

Our analyses revealed significant and unique contributions to
subsequent memory performance from the neural dynamics
throughout the working memory trials. Rather than singling out
one particular phase of thought-juggling as crucial for subsequent
memory (for example, pre-switch: prioritizing one thought over
another immediately after encoding, or post-switch: switching
from one thought to another in working memory), our results
highlight the importance of thought-juggling in general. Any time
thoughts compete for neural resources in working memory, there
is an opportunity for competition-dependent weakening of their
representations in long-term memory. This finding has broad
consequences, because this type of mental activity—thought-
juggling—pervades our moment-to-moment mental lives. The
necessary and sufficient conditions for competition to arise (for
example, the relatedness of the co-activated thoughts and the
duration of the thought-juggling process in working memory) are
being tested in ongoing research.

In our experiment, there was no way to determine a priori
which conditions would lead to moderate levels of scene-face
evidence (thereby resulting in worse subsequent memory) and
which conditions would lead to high levels of scene-face evidence
(thereby resulting in better subsequent memory). The best we
could do in this situation was to use conditions that trigger a
range of scene-face values and then hope that these values
sampled a wide-enough range to trace out the distinctive U’
shape of the curve predicted by the non-monotonic plasticity
hypothesis (that is, with increasing scene-face classifier evidence
values, we should first see worse, then better subsequent memory
performance). The ranges of scene-face evidence elicited during
the post-switch and pre-switch periods were somewhat different
(scenes were relatively dominant during the pre-switch period

and faces were relatively dominant during the post-switch
period); however, in both cases there was enough variance in
scene—face evidence for the P-CIT algorithm to recover the
predicted non-monotonic curve.

Importantly, the predicted U-shaped relationship between
scene—face evidence and subsequent memory is specific to tests of
long-term memory. On short-term memory tests that can be
solved using active maintenance of the memory target, we predict
a simple positive, linear relationship between classifier evidence
for the target category and memory performance. In keeping with
this prediction, we found a monotonically increasing relationship
between target-category evidence and Phase 2 working-memory
accuracy.

Although our preferred interpretation of the present results is
that competitive neural dynamics cause weakening of the scene
memory during the Phase 2 working memory task (and thus
worse subsequent memory on the Phase 3 surprise memory test),
it may also be possible to explain our results in terms of retrieval
interference caused by learning of new associations during
Phase 2 (for discussion of interference models and their possible
application to ‘inhibitory’ memory phenomena, see ref. 28). If the
face and scene representations are co-active during Phase 2, then
(due to Hebbian synaptic plasticity) participants might form a
new association between the face and scene representations.
Later, when the scene is tested for recognition during Phase 3, the
associated face might come to mind and interfere with retrieval of
other information. The problem with this account is that it is
unclear why face retrieval during Phase 3 would actually harm
recognition judgments of the scene (to the contrary, face retrieval
constitutes evidence that the scene was studied during Phase 2—
otherwise, how would it have been associated with a face?).
Tomlinson et al?® specifically note that recognition tests are
relatively immune to this kind of interference effect, compared,
for example, with recall tests; as such, it seems unlikely that the
observed decrement in Phase 3 recognition (for scenes eliciting
moderate levels of scene-face evidence) would be attributable to
interference at retrieval.

Another alternative account relates to trial-by-trial fluctuations
in attention. According to this account, participants fail to attend
on some trials, leading to (1) poor subsequent memory and (2)
low levels of scene and face processing, which in turn will show
up as moderate (near zero) scene-face evidence (zero scene —
zero face =zero). This combination of factors could possibly
explain the observed association between moderate scene-face
evidence and poor subsequent memory. Crucially, this account
predicts that scene and face evidence should both be low on trials
leading to poor subsequent memory. We evaluated this prediction
by plotting scene and face evidence as a function of subsequent
memory (Supplementary Fig. 2). We found that contrary to the
attention hypothesis, scene and face evidence values were reliably
well above zero, even when subsequent memory was poor. This
example does, however, highlight an important caveat regarding
the use of scene-face evidence to predict subsequent memory.
Specifically, scene-face evidence can only be viewed as a measure
of competition in situations (similar to this experiment) where
participants are reliably attending to the scene and/or face,
resulting in above-floor levels of scene and/or face evidence. In
situations where attention is fluctuating more strongly, scene-face
values near zero might indicate inattention, which could lead to
poor memory for completely different reasons.

This study has focused on situations where participants are
switching between thoughts under time pressure, resulting in
coactivity (and thus competition) between incoming and out-
going thoughts. This raises the question of whether competition
of this sort is necessary to trigger forgetting. According to our
model, the answer is no. The non-monotonic plasticity hypothesis
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posits that weakening occurs when a representation is moderately
active. Competition between representations is one way to elicit
moderate activity in memory regions, but there are other ways of
eliciting moderate activity that have been shown to lead to worse
subsequent memory: for example, briefly presenting a retrieval
cue for a stored, paired associate””.

One final question is whether the learning mechanisms
described here can be used in the service of deliberate (that is,
motivated) forgetting. In our experiment, the forgetting effects
observed on the Phase 3 memory test were an incidental
byproduct of participants’ efforts to keep the appropriate stimulus
in mind (that is, activated in working memory) during Phase 2.
However, these learning mechanisms should also be operative
in situations where people are asked to forget—in particular, they
may be applicable to item-method-directed forgetting experi-
ments, in which participants are instructed to deliberately forget
certain stimuli immediately after encoding them. In this
paradigm, successful processing of a forget instruction leads to
a reduction in the availability of processing resources for
subsequent items®®3!, This suggests that the process of
intentional forgetting may not result from passive decay, but
rather from an active cognitive mechanism. The present results
suggest that one mechanism that participants could use to achieve
forgetting is to partially—but not completely—withdraw attention
from the to-be-forgotten stimulus representation, thereby placing
it in a situation where it competes with the new focus of attention
(whatever that might be) and loses. Exploring whether
participants actually do this is a future direction for our research.

In summary, we used pattern classification of fMRI data
to show, for the first time, that close competition between
representations in working memory can impair subsequent
memory for the competing items. This shows a new, previously
unappreciated ‘dark side’ to the constant thought-juggling that we
do throughout the day. Every time that we activate a representa-
tion in working memory, it is at risk of being weakened as a result
of competition with other representations. Fortunately, this
research suggests how this memory loss can be avoided. By
switching between thoughts cleanly, minimizing the amount of
time that the incoming and outgoing thoughts come into contact
with each other, we can maximize subsequent retention of these
thoughts. It is a focus of our future research to determine the
extent to which people have sufficient control over their thought-
switching behaviour to either reliably induce forgetting (by
increasing the amount of neural competition) or to reliably
promote remembering (by reducing the amount of competition).

Methods

Participants. Twenty-one participants (11 female, aged 18-29 years, all right-
handed) were recruited for this study using online scheduling software provided by
the Department of Psychology at Princeton University. Sample size was chosen
based on related studies from our lab”!!, Participants were compensated with $40
for their participation in the 2-h experiment. Written informed consent was
obtained in a manner approved by the Princeton Institutional Review Board.

Stimulus details. A large collection of face stimuli (including from www.mac-
brain.org/resources.htm>2) and scene stimuli (including from http://cvcl.mit.edu/
MM/sceneCategories.html*®) was gathered through various online and in-house
sources. A subset of these stimuli were chosen for this experiment based on
memorability ratings from a stimulus evaluation experiment conducted through
Amazon.com’s Mechanical Turk (see Supplementary Note 2). The final stimulus
set consisted of 282 grayscale images of male and female faces cropped at the neck,
and 282 grayscale images of indoor and outdoor scenes. Unique subsets of stimuli
were used for targets in each of the first two phases of the experiment and no target
stimulus was ever reused as a target or a probe in another trial within a phase. Sixty
stimuli (30 faces and 30 scenes) were set aside in each phase for use as memory
lures. The eight-picture probe display on each Phase 2 trial was constructed

by sampling randomly (with replacement across trials) from the set of lures.

The assignment of stimuli to experimental phases and (within phases) to the target
and lure conditions was done randomly for each participant.

8

Behavioural paradigm. The experiment proceeded in three phases (Fig. 2). In
Phase 1, participants performed delayed recognition of face and scene pictures.
Each trial began with a target display (1 s), followed by a fixation cross (7 s), a probe
display (2s) and a blank screen (65). All target displays consisted of one face or
scene picture that appeared in the centre of the screen. After the target disappeared,
participants were asked to maintain central fixation while they focused and sus-
tained their attention on their memory for the target in preparation for a delayed-
recognition probe. All probe displays consisted of a rapid serial visual presentation
of eight pictures (drawn from the same category as the target) in the centre of the
screen (125 ms each). The target reappeared in the probe stream on half of the trials
(in rapid serial visual presentation position 3, 4, 5 or 6, chosen randomly) and lures
were selected at random from a set of 30 face and 30 scene pictures that were never
presented as targets. We used probe streams (rather than a single probe picture) to
increase task difficulty and to encourage participants to sustain strong repre-
sentations of the target during the delay period. Within a 1-s response window after
the final probe picture, participants indicated with a yes/no button press whether
the target was included in the probe stream.

In Phase 2, participants performed delayed recognition of face and scene
pictures; here, two target pictures were presented on every trial but only one target
was relevant for the recognition probe. Each trial began with a target display (4s)
followed by a fixation cross (8s). All target displays consisted of one face and one
scene picture, one of which appeared on the top half of the screen and the other
appeared on the bottom half (the category order was counterbalanced across trials).
Participants were instructed to form a separate mental image for each picture and
not to imagine the face and scene interacting in any way. After the targets
disappeared, participants were to maintain central fixation while they focused and
sustained their attention on their memory for the scene target, in preparation for a
delayed-recognition probe of that scene. On two-thirds of trials (‘stay’ trials), the
delay-period fixation cross was followed by a probe display (2s) and then a blank
screen (6). However, on the other one-third of trials (‘switch’ trials), the fixation
cross rotated 45° and remained on the screen for an additional 8 s before the onset
of the probe display. This rotated cross served as a retro-cue for participants to
switch their focus of sustained attention away from their memory of the scene
target and towards their memory of the face target, in preparation for a delayed-
recognition probe of that face. The ratio of switch trials to stay trials was set at 1:2
rather than, for example, 1:1, to encourage participants to prioritize retention of the
scene at the beginning of every trial. The probes were configured similarly to the
Phase 1 probes, except that there were an equal number of face and scene pictures
in each probe stream (125 ms each; four faces and four scenes, randomly ordered).
For stay trials, the scene target reappeared in the probe stream in half of the trials;
the face target reappeared in the probe stream on every trial as a memory lure. For
switch trials, the face target reappeared in the probe stream in half of the trials; the
scene target never reappeared in the probe stream (we did this to avoid repetition-
based memory enhancement of the scene). On all trials, participants indicated with
a yes/no button press, within a 1-s response window after the final probe picture,
whether the appropriate target was included in the probe stream.

Finally, at the end of the experiment (in Phase 3), participants were presented
with a surprise old/new recognition memory test for the scene pictures that were
presented as targets during the Phase 2 trials. In the test, 72 previously viewed
scenes (36 from switch trials; 36 from stay trials) were randomly interleaved with
72 novel scenes. Note that all of the tested scenes from Phase 2 appeared exactly
once during that phase (at the start of the trial); if a scene also appeared in the
probe at the end of a stay trial, it was excluded from testing. Each image remained
on the screen until participants responded with one of four responses on the button
box (1: sure old; 2: unsure old; 3: unsure new; 4: sure new). This memory test was
administered inside the scanner ~ 5 min after participants completed the final trial
of the Phase 2 task. As a result, the average amount of time that elapsed between
initial exposure of a scene in Phase 2 and its subsequent exposure in Phase 3 was
~ 30 min.

Our design is deliberately asymmetric. The experiment was set up to induce
participants to focus on scenes during the pre-switching period and faces during
the post-switch period (never the other way around) during Phase 2, and during
Phase 3 we tested scene memory but not face memory. We introduced this
asymmetry because of prior evidence from our lab’ and other labs* that fMRI
pattern classifiers are more sensitive to scene processing than face processing. We
reasoned that to the extent that scenes generate a higher-fidelity neural readout,
this could give us the extra resolution required to discriminate between theory-
consistent (U-shaped) curves and theory-inconsistent curves.

fMRI data collection. The experiment was presented using Psychophysics Tool-
box Version 3 in Matlab running on a Mac Pro. The Phase 1 task was divided into
four 20-trial blocks (5 min 40 s each) with an even number of face and scene trials
in each block. The Phase 2 task was divided into six 18-trial blocks (7 min 8 s each)
with 12 stay trials and 6 switch trials in each block. Total functional scanning time
for the first two phases was 65 min 28 s. All blocks were preceded by 20 s of dummy
pulses to achieve a steady state of tissue magnetization. Between blocks, partici-
pants were given a break during which the experimenter checked that the parti-
cipant was comfortable and alert. Whole-brain images were acquired with a 3T
MRI scanner (Siemens Skyra). First, we ran a brief scout localizer scan (155) to
verify that head position was within the designated field of view and to derive

| 5:5768 | DOI: 10.1038/ncomms6768 | www.nature.com/naturecommunications

© 2014 Macmillan Publishers Limited. All rights reserved.


www.macbrain.org/resources.htm
www.macbrain.org/resources.htm
http://cvcl.mit.edu/MM/sceneCategories.html
http://cvcl.mit.edu/MM/sceneCategories.html
http://www.nature.com/naturecommunications

ARTICLE

automatic anterior commissure—posterior commissure alignment parameters for
subsequent scans. For Phases 1 and 2, we used a gradient-echo, echo-planar
sequence (repetition time = 2,000 ms, echo time = 34 ms), with automatic shim-
ming enabled, to acquire T2*-weighted data sensitive to the blood-oxygen-level
dependent signal within a 64 x 64 matrix (196 mm FoV, 34 axial slices, 3 mm?>
isotropic voxels) using integrated parallel acquisition techniques with both retro-
spective and prospective acquisition motion correction enabled. Finally, we used a
magnetization-prepared rapid gradient-echo (MPRAGE) sequence to acquire high-
resolution T1-weighted images (repetition time = 2,300 ms, echo time = 3.08 ms,
0.9 mm? isotropic voxels, 9min 0's acquisition time), while the participants per-
formed the final Phase 3 recognition test in the scanner.

fMRI preprocessing. Preprocessing of the functional data was done with the
AFNI® software package using the following preprocessing steps (in order): (1) we
corrected for slice time acquisition with 3dTshift, (2) we rotated oblique data to
cardinal direction with 3dWarp, (3) we resampled to a 3mm? gridset with
3dresample and (4) we realigned to the first volume of the Phase 1 data using rigid
body alignment with 3dvolreg. Anatomical data were aligned to the first volume of
the functional data with align_epi_anat.py. A whole-brain voxel mask was created
for each participant by combining the results of 3dAutomask (dilation = 1) across
all ten functional runs.

To create anatomically derived region-of-interest (ROI) masks for each
participant, an atlas-space transformation (AFNT’s TT_icbm452 atlas) was
computed for the anatomical data of each participant with @auto_tlrc. Then, a
ventral temporal cortex ROI was constructed for each participant by combining
voxels from the TT_Daemon atlas mask for the full, bilateral fusiform and
parahippocampal gyri and backward transforming that combined mask into the
participant’s native space and intersecting it with that participant’s whole-brain
mask. The mean number of voxels retained in this ventral temporal mask was 3,224
(s.d. =366). A feature selection analysis of variance was applied to the preprocessed
fMRI data within the ventral temporal mask to select those voxels whose activity
varied significantly (P<0.05) between face trials, scene trials and rest periods over
the course of the Phase 1 task. The mean number of voxels passing feature selection
was 969 (s.d. =216). The pattern of activity across these feature-selected voxels was
used as the input to the pattern classifier. No spatial smoothing was imposed on the
data and the data were analysed in each participant’s native space.

Multi-voxel pattern analysis. Our goal in analysing the fMRI data was to obtain
the most sensitive possible measure of face and scene processing. To accomplish
this goal, we used multi-voxel pattern analysis (MVPA!8-22) to decode face and
scene processing, based on voxels from a ventral temporal ROI (as defined in the
‘fMRI preprocessing’ section above). For additional justification of the particulars
of our MVPA approach, see Supplementary Note 3.

Pattern classifiers were trained, separately for each participant, on data from
Phase 1. Specifically, classifiers were trained on individual brain scans (acquired as
2-s intervals) from the final 6 s of the delay period in each Phase 1 trial, plus data
from the 6-s intertrial intervals. For the selected scans, one classifier was trained to
distinguish between scans corresponding to the active retention of a face and other
scans; another classifier was trained to distinguish between scans corresponding to
the active retention of a scene and other scans; and a third classifier was trained to
distinguish between periods of rest and other scans. Resting data were randomly
sampled so that within each block of trials, the classifiers were trained on the same
number of exemplars for all three categories (120 total scans each of face, scene and
rest across all four Phase 1 blocks). As is standard practice in MVPAZ2, all trial
regressors were shifted forward in time by 6 s to account for haemodynamic lag of
the blood-oxygen-level dependent signal (typically estimated as 4-8 s to peak after
event onset). We evaluated classifier training accuracy by using the method of k-
fold cross-validation on the Phase 1 data, that is, training on k — 1 blocks of data
and testing on the k™ block and then rotating and repeating until all blocks had
been classified. For each individual 2-s scan within a test block, the three classifiers
each produced an estimate (from 0 to 1) of the degree of neural evidence for the
category they were trained to detect (face, scene and rest). For decoding of the
Phase 2 data, we trained the classifiers on all four blocks of Phase 1 data and then
applied the classifiers to all six blocks of Phase 2 data to produce classification
scores for every 2-s interval throughout the Phase 2 task. In addition to the
category-specific evidence scores computed by the classifiers, we also calculated the
difference between the scene and face evidence scores (that is, ‘scene—face’) at every
time point. The continuous decoding of data from Phase 2 trials allowed for a
complete characterization of evidence for face and scene processing in each trial.

All pattern classification analyses were performed using the Princeton MVPA
Toolbox>¢ in Matlab (downloadable from http://www.pni.princeton.edu/mvpa),
using L2-penalized logistic regression. The L2 regularization term biases the
algorithm to find a solution that minimizes the sum of the squared feature weights.
Logistic regression uses a parameter (1) that determines the impact of the
regularization term. To set the penalty 1, we explored how changing the penalty
affected our ability to classify the Phase 1 data (using the cross-validation
procedure described above). We found that the function relating 4 to cross-
validation accuracy was relatively flat across a wide range of /-values (spanning

data in any way while selecting A (otherwise, we would be vulnerable to concerns
about circular analysis®” when classifying the Phase 2 data).

Relating classifier evidence to subsequent memory. Our primary analysis goal
was to evaluate the relationship between classifier evidence scores from the Phase 2
switch trials and recognition memory outcomes in Phase 3. To accomplish this
goal, we first computed (separately for each Phase 2 switch trial) the average levels
of face and scene classifier evidence both before and after the onset of the switch
cue. For the pre-switch time window, we averaged together classifier evidence
values from the entire first delay period, from 4 to 12 s of each trial (unadjusted for
haemodynamic lag). For the post-switch time window, we averaged together
classifier evidence values from 16 to 20s of each trial (unadjusted for haemody-
namic lag).

For our primary analysis, we estimated the shape of the ‘plasticity curve’ relating
scene-face classifier evidence scores and recognition memory outcomes using the
P-CIT Bayesian curve-fitting algorithm”. As noted in the Results section, P-CIT
estimates (in a continuous manner) the posterior distribution over plasticity curves;
it also allows us to compute a log Bayes factor score that represents the log ratio of
evidence for versus against the non-monotonic plasticity hypothesis. We present a
detailed description of the P-CIT analyses (as well as additional justification for
these analyses) in the Supplementary Methods.

Statistical procedures for assessing reliability. When analysing behavioural
data (without respect to neural data) and neural data (without respect to beha-
vioural data), we used standard random-effects statistics (paired t-tests, with
subjects as a random effect) to assess the reliability of our results across
participants.

For our analyses relating neural data (from Phase 2) to behaviour (in both
Phase 2 and Phase 3), we combined individual trial data from each participant into
one giant ‘supersubject’ and subsequently performed all statistical analyses on these
amalgamated data’”!!. We used this approach, chosen a priori, instead of the
conventional random-effects approach (used elsewhere in the paper) in which the
average results from each subject are used for group-level hypothesis testing. The
reason for using the supersubject approach here is that we did not collect enough
data from each individual participant to reliably estimate the relationship between
neural data and memory behaviour within each participant. This problem was
exacerbated by the fact that participants did not distribute their memory responses
evenly across memory response bins; as a result, some response bins did not
contain any observations within a particular participant and other bins only
contained a handful of observations, leading to very noisy estimates of classifier
evidence associated with that response bin (see Supplementary Figs 2 and 3 for
individual-subject data). The problem was further exacerbated by the fact that
(in our analyses relating Phase 2 neural data to Phase 3 behaviour) we were
looking for nonlinear effects, which require much more data to estimate than
linear effects.

In this experiment, each participant (N = 21) contributed 36 samples of switch-
trial data (a total of 756 trials). To assess population-level reliability of the results
(that is, were they driven by a small subset of participants) from each of our
analyses, we also ran a bootstrap test where we resampled data from participants
with replacement and re-computed the analyses for this resampled data®. The
population-level reliability of the results was reflected in the proportion of
bootstrap samples in which the effect of interest (for example, log Bayes factor > 0)
was present. If this proportion is large, it indicates that the observed curve shape
reflects a general property of the population being sampled and is not being driven
by a small subset of participants.

In summary, the ‘supersubject + bootstrap’ approach taken here (in relating
Phase 2 neural data to Phase 2 and Phase 3 behavioural data) allowed us to derive
overall estimates of brain-behaviour relationships despite having noisy and/or
incomplete data within individual subjects. It is important to emphasize that our
supersubject + bootstrap approach—such as standard random effects analyses—
permits inferences about population-level reliability of results (that is, if we
collected another sample of participants from the same population, would we get
the same effect?). The key difference between our approach and the standard
random-effects approach is that (unlike random-effects analyses) our result does
not permit inferences about whether the effect is reliably observed within
individual subjects. We did not have enough data (relative to the level of noise in
the data) to answer this question.
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