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The use of propensity score methods
with survival or time-to-event outcomes:
reporting measures of effect similar
to those used in randomized
experiments
Peter C. Austina,b,c*†

Propensity score methods are increasingly being used to estimate causal treatment effects in observational stud-
ies. In medical and epidemiological studies, outcomes are frequently time-to-event in nature. Propensity-score
methods are often applied incorrectly when estimating the effect of treatment on time-to-event outcomes. This
article describes how two different propensity score methods (matching and inverse probability of treatment
weighting) can be used to estimate the measures of effect that are frequently reported in randomized controlled
trials: (i) marginal survival curves, which describe survival in the population if all subjects were treated or if all
subjects were untreated; and (ii) marginal hazard ratios. The use of these propensity score methods allows one to
replicate the measures of effect that are commonly reported in randomized controlled trials with time-to-event
outcomes: both absolute and relative reductions in the probability of an event occurring can be determined. We
also provide guidance on variable selection for the propensity score model, highlight methods for assessing the
balance of baseline covariates between treated and untreated subjects, and describe the implementation of a
sensitivity analysis to assess the effect of unmeasured confounding variables on the estimated treatment effect
when outcomes are time-to-event in nature. The methods in the paper are illustrated by estimating the effect
of discharge statin prescribing on the risk of death in a sample of patients hospitalized with acute myocardial
infarction. In this tutorial article, we describe and illustrate all the steps necessary to conduct a comprehen-
sive analysis of the effect of treatment on time-to-event outcomes. © 2013 The authors. Statistics in Medicine
published by John Wiley & Sons, Ltd.
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1. Introduction

The Consolidated Standards of Reporting Trials (CONSORT) statement provides recommendations for
the reporting of RCTs [1]. Its intent was to alleviate problems arising from inadequate reporting of RCTs.
Among its recommendations is that, for RCTs with dichotomous outcomes, both relative and absolute
measures of treatment effect be reported. The importance of absolute measures of treatment effect to
clinical decision making has been described by a variety of authors [2–5]. In particular, reporting abso-
lute reductions in the risk of an event allows one to report the number needed to treat, an important
estimate for medical decision making [3,4].

Time-to-event outcomes occur frequently in reports of RCTs in the medical literature [6]. In keeping
with the intent of the CONSORT statement, a thorough analysis of the effect of treatment on survival in
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an RCT should include estimation of both relative and absolute measures of treatment effect. Because
randomization ensures that, on average, treatment assignment is unconfounded with baseline covariates,
outcomes can be compared directly between treatment groups. Thus, Kaplan–Meier estimates of sur-
vival functions in different treatment groups are often estimated. From these, the absolute reduction in
the probability of an event occurring within a specified duration of follow-up can be determined, as can
the number of patients needed to be treated to avoid one event occurring within a specified duration of
follow-up. Similarly, by using a Cox proportional hazards model, the investigator can obtain an unbiased
estimate of the relative change in the hazard of the event occurring because of the treatment.

Observational studies are increasingly being used to estimate the effects of treatments, exposures, and
interventions on outcomes. In observational studies, there are often systematic differences in the distribu-
tion of baseline characteristics between treated and untreated subjects. Because of this, outcomes cannot
be compared directly between treatment groups. Instead, statistical methods must be used to minimize
the effects of confounding and obtain an unbiased estimate of treatment effect. Dorn has suggested that
when designing an observational study, one should ask ‘How would the study be conducted if it were
possible to do it by controlled experimentation?’ [7]. Thus, the design of an observational study should
mimic that of a randomized experiment. A corollary to Dorn’s dictum would be that the analysis of an
observational study should reflect the analysis of a controlled experiment in a similar context.

Propensity score methods are a popular tool for the analysis of observational studies. The use of these
methods allows one to reduce the effect of the confounding that can occur because of differences in
the distribution of measured baseline characteristics between treatment groups. Similar to randomiza-
tion, propensity score methods remove the effect of confounding by comparing outcomes in treated and
untreated subjects who have a similar distribution of measured baseline covariates. Furthermore, these
methods allow one to separate the design of an observational study from the analysis of an observational
study [8]. Propensity score methods are often applied incorrectly when estimating the effect of treat-
ment on time-to-event outcomes [9,10]. Common errors include the use of inappropriate statistical tests
and the failure to correctly assess whether the specification of the propensity score model had induced
acceptable balance in baseline covariates between treated and untreated subjects. Just as the CONSORT
statement has improved the reporting of RCTs [11], our objective was to describe methods to improve
the conduct and reporting of studies that use propensity score methods to estimate the effect of treatment
on time-to-event outcomes using observational data. In particular, we describe how both absolute and
relative measures of treatment effect can be estimated.

2. Background

We provide a brief background on the potential outcomes framework, average treatment effects
(ATEs), and marginal versus conditional treatment effects. Understanding these concepts allows one
to understand differences between conventional regression adjustment and propensity score methods
and between different propensity score methods.

2.1. The potential outcomes framework

In a setting with two possible treatments, the potential outcomes framework assumes that each sub-
ject has a pair of potential outcomes: Yi (0) and Yi (1), the outcomes under the control and the active
treatment, respectively [12]. However, each subject receives only one of the treatments. Let Z denote
the treatment received (Z D 0 for control treatment versus Z D 1 for active treatment). Thus, only one
outcome, Yi , is observed for each subject: the outcome under the treatment received. In studies with
survival or time-to-event outcomes, the potential outcomes would be the survival or event times under
each of the two treatments.

2.2. Average treatment effects

For each subject, the effect of treatment is defined to be Yi (1)-Yi (0): the difference between the two
potential outcomes. The ATE is E[Yi (1)-Yi (0)], the average effect of moving an entire population from
untreated to treated [13]. A related measure of effect is the average treatment effect for the treated (ATT),
EŒY.1/�Y.0/jZ D 1�, which is the average effect of treatment on those subjects who ultimately received
the treatment [13]. Under randomization, the ATE is equal to EŒYi .1/� � EŒYi .0/� [14]. Therefore, an
unadjusted analysis in an RCT allows for unbiased estimation of the average treatment effect at the
population level.
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In an observational study, there is no reason to expect the ATE and the ATT to coincide. The choice
between estimating the ATE or the ATT will often depend on the study question. For instance, when
comparing outcomes between two different medications used to treat the same condition, one will often
be interested in the ATE, because all patients could easily receive either medication. However, when
comparing the effect of a cardiovascular rehabilitation program, the ATT may be of greater interest,
because not all eligible patients are likely to elect to participate in the program.

In survival analysis, the effect of treatment for a given subject is the difference between the two poten-
tial outcomes. Thus, the average treatment effect denotes the mean difference in survival time because of
the treatment. However, biomedical researchers are often more interested in the relative effect of treat-
ment on the hazard of the occurrence of the outcome and in the absolute difference in the probability
of the occurrence of the outcome within a specified duration of follow-up time. To reflect this prefer-
ence, we modify the definitions of the ATE and the ATT for the current study. One can conceptualize
two potentially observable survival curves, each of which is a function of the potential outcomes. These
would represent survival curves in two identical populations, except that in the first population all sub-
jects were untreated, while in the second population all subjects were treated. Two different metrics
could be used for comparing these potentially observable survival curves and thereby quantify the effect
of treatment on survival. First, one could estimate the absolute difference in the probability of the occur-
rence of the outcome between the two potentially observable survival curves. Second, one could pool the
two sets of potential outcomes and regress the hazard of the occurrence of the outcome on an indicator
variable denoting treatment status. This would allow for estimation of a relative effect of treatment on
the hazard of the occurrence of the outcome. We will, in a slight modification of terminology, refer to
these measures as measures of the ATE. One could then restrict the above analyses to the set of poten-
tial outcomes for those subjects who were ultimately treated. We will refer to the resultant measures as
measures of the ATT.

The concept of average treatment effects is important, because some propensity score methods allow
one to estimate the ATE, whereas others allow one to estimate the ATT. Understanding which estimate
of effect is of primary interest can guide the analyst in selecting the appropriate propensity score method.

2.3. Marginal versus conditional treatment effects and collapsibility

A conditional treatment effect is the average effect, at the individual level, of changing a subject’s treat-
ment status from untreated to treated. An estimate of the average effect, at the individual level, is often
attained by ‘smoothing’ the effect across all subjects in the sample. In practice, this is carried out using
a regression model in which the outcome is regressed on an indicator variable denoting treatment sta-
tus and a set of baseline covariates. When such a model has been fit, the regression coefficient for the
treatment status indicator variable denotes (possibly after an appropriate transformation) the conditional
treatment effect. For instance, after exponentiation, the regression coefficient derived from an adjusted
Cox proportional hazards regression model denotes the conditional hazard ratio: the relative change in
the hazard of the occurrence of a time-to-event outcome because of treatment. Thus, estimates of treat-
ment effects derived from regression models are conditional effects: the average effect, at the individual
level, if a subject’s status were changed from untreated to treated.

While conditional effects denote an average effect at the individual level, marginal effects denote an
effect at the population level. The marginal treatment effect is the difference in outcomes between two
populations that are identical in all respects, except that in one population everyone is treated, while in
the second population everyone is untreated. From this definition, one can see that randomized trials are
estimating marginal treatment effects.

For a specific population there are multiple conditional effects, one for each of the possible set of
covariates that are included in the regression model. In contrast to this, for a specific population, there
is only one marginal effect. However, when considering different populations, each could have its own
marginal effect. While there are multiple conditional effects, we would argue that the one derived from
the true outcomes regression model is of primary interest.

A measure of treatment effect is said to be collapsible if, in the absence of confounding, the con-
ditional and marginal measures of effect coincide [15]. Differences in means and risk differences are
collapsible, while odds and hazard ratios are not collapsible [15–17]. The relative risk is not collapsible
unless subject-specific relative risks are uniform [15]. Thus, on average, in an RCT, the crude difference
in means will coincide with the adjusted difference in means. However, this is not true for odds ratios
or hazard ratios [17]. Neuhaus and Jewell [18] demonstrated that for binary outcomes and a logistic
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regression model, the adjusted odds ratio will be systematically further from the null than the marginal
odds ratio.

Understanding the concepts of marginal and conditional estimates of treatment effect is important,
because propensity score methods estimate marginal effects, whereas conventional regression adjustment
estimates conditional effects. Knowing which measures of effect are collapsible will provide understand-
ing about the settings in which regression adjustment and propensity score methods would be expected
to result in the same estimates of treatment effect.

3. Propensity score methods and survival outcomes

The propensity score is the probability of receiving the active treatment (Z D 1 vs. Z D 0), conditional
on observed baseline covariates (X): eiDPr(Zi D1 j Xi / [19]. It is a balancing score: conditional on the
propensity score, the distribution of measured baseline covariates is expected to be the same in treated
and untreated subjects. Four different propensity score methods are used for reducing the effects of con-
founding when estimating the effects of treatment on outcomes: propensity score matching, stratification
on the propensity score, inverse probability of treatment weighting (IPTW) using the propensity score,
and covariate adjustment using the propensity score [19–21]. Similar to RCTs, propensity score methods
allow one to estimate marginal, rather than conditional measures of treatment effect [22]. The reason for
this can be clearly seen for matching, stratification, and weighting: one is comparing average outcomes
between samples of treated and untreated subjects who have the same distribution of observed baseline
covariates.

There is a lack of consensus in the literature as to which variables one should include in the propensity
score model. Rosenbaum [23] suggests that one address the issue of variable selection for the propen-
sity score model by asking ‘which covariates do you wish to balance by matching on the propensity
score’ (p. 356). To do so, we would suggest that one could imagine examining a table comparing base-
line covariates of subjects in different treatment arms of an RCT and selecting those baseline covariates
about which one would be concerned if baseline imbalance existed. This suggests that one seek to include
those variables that are prognostic of the outcome. A simulation study found that this approach to vari-
able selection worked very well in the context of propensity score matching [24]. We suggest that the
identification of potentially prognostically important covariates be based on subject-matter expertise and
a review of the existing literature, rather than on formal statistical hypothesis testing in the study sample.

3.1. Propensity score matching

Propensity score matching entails forming matched sets of treated and untreated subjects who share a
similar value of the propensity score [19, 25]. While one-to-one matching, in which pairs of treated and
untreated subjects are formed, appears to be the most common approach to propensity score matching,
other approaches are possible [26–28]. Once a matched sample has been formed, the treatment effect
can be estimated by directly comparing outcomes between treated and untreated subjects in the matched
sample.

We would argue that, in general, variance estimation should account for the matched nature of the
propensity score matched sample. Matched subjects have a similar value of the propensity score.
Rosenbaum and Rubin demonstrated that subjects with the same propensity score have the same
distribution of observed baseline covariates [19]. Thus, matched subjects will, on average, have baseline
covariates that are more similar than would two randomly selected subjects. Because baseline covariates
are related to the outcome (otherwise there would be no confounding), this implies the existence of a
within-matched set correlation in outcomes: matched subjects are likely to display a greater similarity
in outcome compared with two randomly selected subjects. We suggest that variance estimation in the
propensity score matched sample should account for the lack of independence in outcomes that has
been induced by matching. However, we acknowledge that there is not universal agreement on the need
to account for matching when estimating significance levels [29]. However, several simulation studies
have found that ignoring the paired nature of the matched sample constructed using caliper match-
ing can result in incorrect significance levels, in confidence intervals that do not have correct coverage
rates, and in estimates of standard error that overestimate the sampling variability of estimated treatment
effect [30–33].

Pair matching permits estimation of the ATT. This can be seen because one has constructed a sam-
ple of untreated subjects whose only systematic difference from the sample of treated subjects is the
absence of treatment. One can thus compare outcomes between the treated sample and a sample of
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untreated subjects that, at baseline, appears to be identical to the treated subjects. By focusing on the
effect of treatment in a sample of subjects who resemble the treated subjects, one is estimating the ATT.
Pair matching requires that the sample of untreated subjects be larger than the sample of treated subjects.
Ideally, there should be substantially more untreated subjects than treated subjects. While pair matching
only permits estimation of the ATT, full matching permits estimation of both the ATE and the ATT,
depending on how the matched sets are weighted [29].

A common implementation of pair matching is greedy nearest neighbor matching within specified
calipers of the propensity score [25]. Using this approach, a treated subject is selected. This treated sub-
ject is then matched with the untreated subject whose propensity score is closest to that of the treated
subject, subject to the constraint that the differences between their propensity scores is less than a spec-
ified maximum (the caliper distance). In practice, one often matches on the logit of the propensity score
using a caliper that is defined as a proportion of the standard deviation of the logit of the propensity score
[25].

Conventional propensity score matching allows one to estimate the ATT: one is making inferences
about the effect of treatment in the population of subjects who received treatment. This is a well-defined
population consisting of all subjects who received the treatment. A limitation to caliper matching is
the potential for incomplete matching. This occurs when some treated subjects are excluded from the
matched sample because there are no available untreated subjects within the specified caliper distance
of some of the treated subjects. When incomplete matching has occurred, one is trying to make infer-
ences about the effect of treatment in all patients who received treatment, using a subset of these treated
patients. If the unmatched treated subjects differ systematically from the matched treated subjects, it is
possible that the estimate of the ATT is biased. Frequently, the unmatched treated subjects will be those
subjects with the highest propensity score: those subjects who look like the most likely candidates for
treatment. Because matching allows one to estimate the effect of treatment in the treated subjects, it is
unclear to what population the estimate applies when some treated subjects have been excluded from
the matched sample. Unlike the entire sample of treated subjects, the sample of matched treated subjects
may be difficult to describe or define formally.

Alternatives to caliper matching include greedy nearest neighbor matching and optimal matching
[25, 34]. The former is similar to caliper matching, except that one removes the constraint that matched
subjects must have propensity scores whose differences are less than a specified maximum. Opti-
mal matching forms matched sets such that the total within-pair difference in the propensity score
is minimized.

There is likely a tradeoff between different types of bias when choosing between different methods
for pair matching. The use of nearest neighbor matching or optimal matching eliminates bias due to
incomplete matching, because all treated subjects will be included in the matched sample (assuming that
the number of untreated subjects is at least as large as the number of treated subjects). However, their
use may result in the matching of more dissimilar subjects, and thus the estimated treatment effect may
be contaminated by residual confounding. Caliper matching should result in the elimination of a greater
degree of the systematic differences between treated and untreated subjects, but may introduce bias due
to incomplete matching.

When outcomes are time-to-event in nature, Kaplan–Meier survival curves can be estimated for treated
and untreated subjects in the propensity score matched sample. The estimated survival curves allow one
to directly compare survival between treatment groups in the matched sample. On the basis of our argu-
ments previously, we would suggest that it is inappropriate to treat the sample of matched treated subjects
and the sample of matched untreated subjects as two independent samples. Thus, we think that, while
the log-rank test is frequently used for testing the equality of survival curves in propensity score matched
samples [9, 10, 35], such an approach is inappropriate, because it requires that the samples be indepen-
dent of one another [36, 37]. Instead, the stratified log-rank test can be used to compare the equality of
the survival curves in matched samples [36]. Extrapolating from studies that used Monte Carlo simu-
lations to examine the impact of not accounting for matching on other statistical tests, the use of the
log-rank test will likely result in type I error rates that are artificially low [31,32]. However, this requires
confirmation in subsequent research.

One may estimate the relative change in the hazard of the outcome by regressing survival on treatment
status by using a univariate Cox proportional hazards model. To account for the matched nature of the
sample, one can use a robust variance estimator that accounts for the clustering within matched sets [38].
Another approach that has been used is to stratify on the matched sets [39]. However, recent research has
demonstrated that, while the former approach allows for unbiased estimation of marginal hazard ratios,
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the latter approach results in biased estimation of marginal hazard ratios [30]. The former approach will
result in an estimated hazard ratio that is equivalent to that obtained by a conventional Cox proportional
hazards model that does not account for clustering and is a true marginal model. The latter approach
appears to result in a conditional estimate of effect, because one is conditioning on the matched pairs.

3.2. Inverse probability of treatment weighting using the propensity score

Inverse probability of treatment weighting uses weights based on the propensity score to create a syn-
thetic sample in which the distribution of measured baseline covariates is independent of treatment
assignment. Let Zi be an indicator variable denoting whether or not the i th subject was treated; further-
more, let ei denote the propensity score for the i th subject. Weights can be defined as wi D Zi

ei
C .1�Zi /

1�ei
.

Inverse probability of treatment weighting was first proposed by Rosenbaum [20] as a form of model-
based direct standardization. IPTW using the propensity score belongs to a larger class of models called
marginal structural models [40] that allow one to account for time-varying confounders when estimating
the effect of time-varying exposures.

Cole and Hernán [41] describe a method to estimated adjusted survival curves in the weighed sample,
while Xie and Liu [42] describe an adjusted Kaplan–Meier estimate for survival curves in the weighted
sample. The latter also proposed a modified log-rank test appropriate for use with weighted samples.
Both Cole and Hernán [41] and Joffe et al. [43] describe how regression models can be weighted by
the inverse probability of treatment to estimate causal effects of treatments. Variance estimation should
account for the weighted nature of the synthetic sample, with robust variance estimation commonly
being used to account for the sample weights. The relative change in the hazard of the outcome can be
estimated using a Cox proportional hazards model in which survival is regressed on an indicator variable
denoting treatment status.

Treated subjects with a very low propensity score or untreated subjects with a high propensity score
will have large weights. Because of the instability that can be induced by very large weights, Cole and
Hernan [41] have recommended that stabilized weights be used. Stabilized weights can be obtained
by multiplying the inverse probability of treatment weight by the marginal probability of receiving the
actual treatment received. Another alternative to address potential instability due to very large weights is
to use trimmed weights, in which weights that exceed a specified threshold are truncated to the threshold
value [44].

The weights described previously allow one to estimate the ATE, because the weights are designed to
use the overall sample as the reference population. Alternatively, using the following weights allow one
to estimate the ATT: wi D Zi C ei .1�Zi /

1�ei
[45]. With the use of these weights, treated subjects receive

a weight of 1, while untreated subjects receive a weight of ei

1�ei
. Thus, the reference population is the

sample of treated subjects: both the treated and untreated subjects are weighted so that the distribution
of baseline covariates in each of the two samples is the same as in the sample of treated subjects.

3.3. Other propensity score approaches

Stratification on the propensity score and covariate adjustment using the propensity score are the
two other propensity score methods [19]. With covariate adjustment using the propensity score, one
regresses the outcome on the propensity score and an indicator variable denoting treatment selection.
With time-to-event outcomes, a Cox proportional hazards model would be used to regress the hazard
of the occurrence of the outcome on the propensity score and an indicator variable denoting treatment
status. This approach has been shown to result in biased estimation of marginal hazard ratios [30].
Furthermore, it has also been shown to result in a biased estimate of the conditional hazard ratio
that would result from adjusting for all the prognostically important covariates in a multivariable Cox
regression model [46].

Stratification on the propensity score involves stratifying subjects into mutually exclusive subsets
based on their estimated propensity score. In practice, analysts often use five subclasses on the basis
of the quintiles of the estimated propensity score. When estimating linear treatment effects, stratum-
specific estimates of effect are obtained. These stratum-specific estimates are then pooled to obtain an
overall estimate of treatment effect. There are three ways in which one could estimate a hazard ratio
using stratification on the propensity score. First, one can estimate stratum-specific Cox regression mod-
els in which survival is regressed on treatment selection. The stratum-specific log-hazard ratios are then
pooled or averaged to obtain a pooled hazard ratio. Second, one can regress survival on an indicator
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variable denoting treatment status and a categorical variable denoting the propensity score strata. Third,
one can regress survival on an indicator variable denoting treatment status and stratify on the propen-
sity score strata, thereby allowing the baseline hazard to vary across strata. While stratification performs
well for estimating linear treatment effects [19], it results in biased estimation of marginal hazard ratios
[30]. Furthermore, one implementation of stratification has also been shown to result in a biased esti-
mate of the conditional hazard ratio that would result from adjusting for all the prognostically important
covariates in a multivariable Cox regression model [46]. It appears that each of these approaches results
in an estimate of a conditional hazard ratio, rather than a marginal hazard ratio. Further research is
required to determine how these conditional hazard ratios differ from that obtained by adjusting for the
prognostically important covariates in a conventional Cox regression model.

Because our focus is on methods that allow estimation of both marginal survival curves and marginal
hazard ratios, we do not consider these two propensity score methods further in this study.

3.4. Comparison of different propensity score methods

We provide a brief comparison of the four different propensity score methods, without restricting our
attention to estimating the effects of treatment on survival outcomes. It has been suggested that matching
and stratification may be preferable to IPTW using the propensity score and covariate adjustment using
the propensity score because the latter two directly use the estimated propensity score and may thus
be more adversely affected by misestimation or instability in the estimated propensity scores [47]. In
contrast, the former two approaches use the propensity score for stratifying or matching, but the propen-
sity score is not directly involved in estimating the treatment effect. An additional criticism of covariate
adjustment using the propensity score is that it requires the assumption that the outcomes regression
model has been correctly specified. While balance diagnostics have been described for covariate adjust-
ment using the propensity score, these diagnostics are less transparent than comparable diagnostics for
the other three approaches [48, 49]. Furthermore, matching, stratification, and weighting allow one to
separate the design of an observational study from the analysis of an observational study [8]. In a series
of Monte Carlo simulations, propensity score matching and IPTW using the propensity score were found
to induce better balance on baseline covariates compared with stratification on the propensity score and
covariate adjustment using the propensity score [50]. While conventional propensity score matching
allows one to estimate the ATE, stratification and IPTW permit estimation of either the ATE or the ATT,
depending on how the strata or subjects are weighted. Pair matching on the propensity score requires
that the number of untreated subjects be larger (and preferably substantially larger) than the number of
treated subjects. Thus, matching will not perform well when the two samples are of approximately equal
size or when the number of treated subjects is larger than the number of untreated subjects. The other
three propensity score methods do not suffer from this limitation. Finally, the relative performance of
these methods for estimating risk differences and marginal hazard ratios has been examined in greater
detail elsewhere [51].

3.5. Sensitivity analyses

The critical assumption in propensity score analyses is that of no unmeasured confounding, that one
has measured all the variables that influence treatment selection [19]. Analyses have been developed to
examine the sensitivity of the observed findings to the presence of unmeasured confounding variables
[34, 52]. The methods described in the latter reference assume that there is an unmeasured covariate
that increases the odds of treatment assignment. For each specified odds ratio for this unmeasured con-
founder, one can determine a range of significance levels or P -values for the treatment effect, had the
unmeasured confounder been accounted for. The boundaries of this range occur when the unmeasured
confounder almost perfectly predicts the outcome. Within matched samples, such sensitivity analyses
can be conducted for all sign-score tests [34]. Because the stratified log-rank test is a sign-score test
[36], this sensitivity analysis can be applied to the comparison of Kaplan–Meier survival curves in the
propensity score matched sample.

4. Case study

4.1. Data source

The sample consisted of patients hospitalized with acute myocardial infarction at 103 acute care hospitals
in Ontario, Canada between April 1, 1999 and March 31, 2001. Data on patient history, cardiac risk

1248

© 2013 The authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1242–1258



P. C. AUSTIN

factors, comorbid conditions and vascular history, vital signs, and laboratory tests were obtained by
retrospective chart review by trained cardiovascular research nurses. These data were collected as part
of the Enhanced Feedback for Effective Cardiac Treatment study [53,54].

We restricted our sample to patients who survived to hospital discharge. The exposure of interest
was whether the patient received a prescription for a statin lipid lowering agent at hospital discharge.
We excluded patients with missing data on important baseline clinical covariates. Patient records were
linked to the Registered Persons Database using encrypted health card numbers, to allow us to determine
the date of death for each patient. Patients were followed for up to 8 years post-discharge. These data
provide extended follow-up on a sample of subjects used in a prior article on propensity score meth-
ods [55]. Patients who survived to 8 years post-discharge had their survival times treated as censored
observations.

The study sample for the current case study consisted of 9107 subjects of whom 3049 (33.5%) received
a statin prescription at hospital discharge. We considered 31 baseline characteristics that are grouped in
the following categories: demographic characteristics, vital signs on admission, presenting signs and
symptoms, classical cardiac risk factors, laboratory tests, cardiac history, and comorbid medical con-
ditions. Baseline characteristics of the study sample are described in Table I. There were systematic
differences in baseline characteristics between treated and untreated patients in the overall sample, with
treated subjects tending to be younger and healthier than untreated subjects. Ten variables had standard-
ized differences that exceeded 0.10 [49]. Many researchers use a threshold of 0.1 to indicate imbalance
in baseline covariates that is of potential concern [56]. The treatment-risk paradox, in which subjects at a
decreased risk of death are more likely to receive treatment, has been previously observed and discussed
in the context of pharmacological treatment of patients with cardiovascular disease [57,58].

A propensity score model was estimated using a logistic regression model in which the treatment
status was regressed on the 31 baseline variables described previously. The relationship between each
continuous variable and the log-odds of statin prescribing was modeled using restricted cubic splines
with five knots [59].

4.2. Propensity score matching

Pairs of treated and untreated subjects were matched on the logit of the propensity score using a caliper
of width equal to 0.2 of the standard deviation of the logit of the propensity score, as this caliper has
been shown to be optimal in a range of settings [60]. Two thousand four hundred and twenty-three
(79.5%) of the 3049 treated subjects were matched to an untreated subject with a similar propensity
score. Every analysis conducted using propensity score matching should report the method by which
matched pairs were formed and the percentage of treated subjects who were included in the matched
sample. Approximately 20% of treated subjects were excluded from the matched sample constructed
using caliper-matching because no appropriate untreated subject was identified as a match. To address
potential biases because of incomplete matching, we constructed a second matched sample using optimal
matching.

4.3. Balance diagnostics

An essential component to any propensity score analysis is an assessment of the similarity of baseline
covariates between treated and untreated subjects in the matched sample or in the sample weighted by
the inverse probability of treatment. We examined balance in baseline covariates using standardized dif-
ferences. Baseline balance in the 31 covariates is summarized for each method in Table II. Baseline
characteristics of treated and untreated subjects in the matched sample constructed using caliper match-
ing are reported in Table I. In examining Tables I and II, one notes that the systematic differences between
treated and untreated subjects in the original sample have been substantially reduced or eliminated in the
matched sample. In the matched sample constructed using caliper matching, the absolute standardized
differences for the 31 baseline covariates ranged from a low of 0 to a high of 0.042. In matched sam-
ple obtained using optimal matching, the largest absolute standardized difference was 0.425 (history of
hyperlipidemia). The remaining standardized differences were all less than 0.08. In examining Table II,
one observes that differences between treatment groups have been reduced by matching or weighting
using the propensity score.

The comparisons of means and prevalences and the reporting of standardized differences can be
complemented by graphical methods of assessing balance [49]. One could compare the distribution
of continuous variables between the two treatment groups using quantile–quantile plots, nonparametric
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Table I. Comparison of baseline characteristics between treated and untreated subjects in the original sample
and in the propensity score matched sample.

Original sample Matched sample (caliper matching)

Baseline Statin: No Statin: Yes Standardized Statin: No Statin: Yes Standardized
variable (6058) (3049) difference (2449) (2449) difference

Demographic characteristics
Age 68.1 ˙ 13.8 63.4 ˙ 12.4 0.355 63.6 ˙ 12.6 63.8 ˙ 12.6 0.013
Female 2241 (37.0%) 887 (29.1%) 0.167 738 (30.5%) 736 (30.4%) 0.002

Presenting signs and symptoms
Acute congestive 316 (5.2%) 122 (4.0%) 0.057 94 (3.9%) 94 (3.9%) 0.000
heart failure/
pulmonary edema

Classic cardiac risk factors
Family history of 1763 (29.1%) 1177 (38.6%) 0.204 888 (36.6%) 896 (37.0%) 0.007
heart disease
Diabetes 1562 (25.8%) 774 (25.4%) 0.009 631 (26.0%) 612 (25.3%) 0.018
Hyperlipidemia 1138 (18.8%) 1761 (57.8%) 0.910 1115 (46.0%) 1136 (46.9%) 0.017
Hypertension 2683 (44.3%) 1453 (47.7%) 0.068 1,121 (46.3%) 1,109 (45.8%) 0.010
Current smoker 2004 (33.1%) 1070 (35.1%) 0.043 894 (36.9%) 875 (36.1%) 0.016

Cardiac history and comorbid conditions
CVA/TIA 610 (10.1%) 237 (7.8%) 0.079 181 (7.5%) 196 (8.1%) 0.023
Angina 1871 (30.9%) 1086 (35.6%) 0.101 833 (34.4%) 822 (33.9%) 0.010
Cancer 191 (3.2%) 73 (2.4%) 0.045 64 (2.6%) 60 (2.5%) 0.010
Dementia 243 (4.0%) 33 (1.1%) 0.171 26 (1.1%) 29 (1.2%) 0.012
Previous AMI 1254 (20.7%) 799 (26.2%) 0.132 566 (23.4%) 562 (23.2%) 0.004
Asthma 338 (5.6%) 166 (5.4%) 0.006 110 (4.5%) 132 (5.4%) 0.042
Depression 441 (7.3%) 192 (6.3%) 0.039 154 (6.4%) 159 (6.6%) 0.008
Hyperthyroidism 71 (1.2%) 40 (1.3%) 0.013 37 (1.5%) 28 (1.2%) 0.032
Peptic ulcer 345 (5.7%) 156 (5.1%) 0.025 127 (5.2%) 120 (5.0%) 0.013
disease
Peripheral vascular 430 (7.1%) 220 (7.2%) 0.005 187 (7.7%) 178 (7.3%) 0.014
disease
Previous coronary 433 (7.1%) 411 (13.5%) 0.220 267 (11.0%) 264 (10.9%) 0.004
revascularization
Congestive heart 275 (4.5%) 91 (3.0%) 0.079 86 (3.5%) 71 (2.9%) 0.035
failure (chronic)
Stenosis 96 (1.6%) 35 (1.1%) 0.037 21 (0.9%) 30 (1.2%) 0.036

Vital signs on admission
Systolic blood pressure 148.7 ˙ 31.6 149.3 ˙ 30.1 0.021 149.8 ˙ 30.8 149.0 ˙ 30.4 0.025
Diastolic blood pressure 83.6 ˙ 18.6 84.5 ˙ 18.0 0.047 84.4 ˙ 18.6 84.5 ˙ 18.2 0.010
Heart rate 84.6 ˙ 24.3 81.7 ˙ 23.0 0.121 81.3 ˙ 22.5 81.7 ˙ 22.5 0.020
Respiratory rate 21.2 ˙ 5.7 20.3 ˙ 4.8 0.166 20.4 ˙ 4.9 20.3 ˙ 4.9 0.005

Results of initial laboratory tests
White blood count 10.3 ˙ 4.9 10.0 ˙ 4.4 0.065 10.1 ˙ 4.4 10.1 ˙ 4.6 0.008
Hemoglobin 137.5 ˙ 19.3 140.6 ˙ 16.9 0.167 140.6 ˙ 17.4 140.5 ˙ 17.4 0.003
Sodium 138.9 ˙ 3.9 139.2 ˙ 3.3 0.079 139.2 ˙ 3.7 139.2 ˙ 3.3 0.011
Glucose 9.4 ˙ 5.1 9.2 ˙ 5.3 0.037 9.3 ˙ 5.6 9.2 ˙ 5.2 0.013
Potassium 4.1 ˙ 0.6 4.1 ˙ 0.5 0.061 4.1 ˙ 0.5 4.1 ˙ 0.5 0.023
Creatinine 105.7 ˙ 65.4 99.9 ˙ 50.0 0.096 100.4 ˙ 54.3 101.1 ˙ 54.2 0.014

CVA, cerebral vascular accident; TIA, transient ischemic attack; AMI, acute myocardial infarction. Continuous
variables are reported as means ˙ standard deviations. Dichotomous variables are reported N (%). The propensity
score matched sample was constructed greedy nearest neighbor matching on the logit of the propensity score using
calipers of width equal to 0.2 of the standard deviation of the logit of the propensity score.1250
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density plots, or empirical cumulative distribution functions. Because of space constraints, we do not
report these additional methods here. The objective of balance diagnostics is to examine whether ade-
quate balance on baseline covariates has been induced by the current specification of the propensity score
model. Adequate balance has been achieved when potentially prognostically important covariates have
been balanced between treated and untreated subjects in the matched or weighted sample. As described
by Rosenbaum and Rubin [61], one may need to iteratively modify the specification of the propensity
score model in order to induce acceptable balance on baseline covariates. It has been suggested that one
attempt to achieve balance similar to what would be expected in a similarly sized RCT [49].

When using propensity score matching, several authors have discouraged analysts from using statisti-
cal significance testing to compare baseline characteristics with the matched sample [10, 62]. However,
we should note that not all authors discourage this practice. Hansen and Bowers [63] argue that sig-
nificance testing has a role in balance assessment and have developed omnibus tests of balance for
randomized studies that can also be used with matching or stratification on the propensity score.

4.4. Estimating survival curves and absolute differences in survival using propensity score methods

Crude Kaplan–Meier survival curves for treated and untreated subjects in the full original sample are
reported in the top-left panel of Figure 1(the two survival curves were significantly different from one
another; log-rank test: P < 0.0001). Kaplan–Meier survival curves for treated and untreated subjects in
the two propensity score matched samples are described in the top-center and top-right panels of Figure 1
(stratified log-rank test: P D 0:0104 and 0.0117, respectively). Survival curves in the sample weighted
using the ATE weights and the sample weighted using the ATT weights are reported in the bottom-left
and bottom-center panels, respectively (adjusted log-rank test: P < 0.0001).

Using the estimated survival curves, one can estimate the absolute reduction in the probability of
death within 8 years of discharge because of statin prescribing. The absolute reduction in the probability
of death within 8 years due to statin prescribing was 0.039, 0.023, 0.055, and 0.018 for the matched
(caliper matching), matched (optimal matching), weighted (ATE weights), and weighted (ATT weights),
respectively. The numbers needed to treat were 26, 45, 18, and 57, respectively. While these absolute
risk reductions were for 8 years of follow-up, they could easily be computed for any duration of length
less than 8 years.

Figure 1. Kaplan–Meier survival curves obtained using different propensity score methods.
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4.5. Estimating relative survival effects using propensity score methods

In the matched sample constructed using caliper matching, a Cox model was used to regress survival
on treatment status, with a robust variance estimator used to account for the clustering within matched
sets. The estimated hazard ratio was 0.855 (95% CI: 0.779–0.939). Thus, receipt of a statin prescription
reduced the hazard of post-discharge death by 14.5%. In the matched sample obtained using optimal
matching, the estimated hazard ratio was 0.909 (95% CI: 0.834–0.991). A Cox proportional hazards
regression model was used to regress survival on treatment status in the sample weighted using the ATE
weights. A robust, sandwich-type variance estimator was used to account for the weighted nature of
the sample. The estimated hazards ratio was 0.815 (95% CI: 0.745–0.890). As a sensitivity analysis,
we repeated the previous analysis using stabilized ATE weights. The estimated hazards ratio was 0.815
(95% CI: 0.746–0.890). When the sample was weighted using the ATT weights, the estimated hazard
ratio was 0.927 (95% CI: 0.846–1.016). Thus, among treated subjects, statin prescribing reduced the
hazard of death by 7.3%.

4.6. Sensitivity to unmeasured confounders

We conducted an analysis to examine the sensitivity of our findings to the assumption of no unmea-
sured confounders. We assumed that there was an unmeasured confounding variable that increased
the odds of exposure by � . In the sample obtained using caliper matching, we excluded those
matched pairs in which the subject with the shortest observation time was a censored observa-
tion. This resulted in the retention of 1230 matched pairs. Among these pairs, there were 660
pairs in which the untreated subject died first and there were 570 pairs in which the treated sub-
ject died first. Let pC denote �=.1 C �) and p� denote 1=.1 C �). Then, the true significance
level, if one were to account for the unmeasured confounding variable, would lie in the interval�

1230P
aD660

�
1230

a

�
.pC/a.1 � pC/1230�a;

1230P
aD660

�
1230

a

�
.p�/a.1 � p�/1230�a

�
. If � D 1:05, then

the interval is (0.000344, 0.046147). Thus, if an unmeasured confounder increased the odds of expo-
sure by 5%, the effect of treatment on survival would remain statistically significant if one were able to
account for this confounder. However, if � D 1:10, then the interval is (0.00001, 0.19257). Thus, if an
unmeasured confounder increased the odds of exposure by 10% and was almost perfectly associated with
death, accounting for this unmeasured confounder could render statistically nonsignificant the effect of
treatment on survival. Thus, our study may be relatively susceptible to unmeasured confounding. We
recall that the P -value for the stratified log-rank test in the caliper-matched sample was 0.0104. Thus,
a small P -value in the primary analysis cannot be taken as an indication that the study is insensitive to
unmeasured confounders.

4.7. Conditional effects

Throughout this paper, we have focused on the estimation of marginal treatment effects. The rationale
for this focus was based on our desire to mimic the types of analyses that are conducted in RCTs with
survival outcomes. We have noted that stratification on the propensity score and covariate adjustment
using the propensity result in biased estimation of marginal hazard ratios, because they appear to be
estimating conditional measures of effect. For comparative purposes, we estimated several different con-
ditional hazard ratios so that these could be compared with the estimates of the marginal hazard ratios
obtained previously.

First, we used a Cox proportional hazards model to regress survival on an indicator variable denot-
ing treatment status and the baseline covariates listed in Table 1. The relationship between continuous
covariates and the log-hazard of death was represented using restricted cubic splines with five knots. The
estimated hazard ratio was 0.805 (95% CI: 0.739–0.977). Second, a univariate Cox proportional hazards
model that stratified on the matched pairs was fit to each of the two matched samples. The estimated
hazard ratio was 0.864 (95% CI: 0.772–0.966) in the matched sample constructed using caliper matching,
while it was 0.878 (95% CI: 0.794–0.972) in the matched sample constructed using optimal matching.
Third, Cox regression was used to regress survival on an indicator variable denoting treatment status and
the propensity score. The estimated hazard ratio was 0.856 (95% CI: 0.790–0.928). Fourth, two different
approaches to stratification on the quintiles of the propensity score were employed. In the first approach,
Cox regression was used to regress survival on an indicator variable denoting treatment status and a
categorical variable denoting the five propensity-score strata. In the second approach, a univariate Cox
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regression model was used to regress survival on an indicator variable denoting treatment status. This
model stratified on the quintiles of the propensity score, allowing the baseline hazard function to vary
across quintiles. In both cases, the estimated hazard ratio was 0.870 (95% CI: 0.802–0.945).

5. Discussion

The CONSORT statement recommends that, for RCTs with dichotomous outcomes, both relative and
absolute measures of treatment effect be reported [1]. In keeping with the intent of the CONSORT
statement, a thorough analysis of the effect of treatment on survival time in an RCT includes esti-
mation of both relative and absolute measures of treatment effect. We suggest that the estimation of
treatment effects in observational studies should reflect the analyses that would be conducted in a sim-
ilarly designed RCT. Propensity score methods permit the estimation of survival curves in treated and
untreated subjects. These marginal survival curves reflect the survival functions in the population if all
subjects were treated or if all subjects were untreated. When propensity score matching or IPTW are
used, univariate regression using a Cox proportional hazards model in which survival is regressed on an
indicator variable denoting treatment status allows one to estimate the relative reduction in the hazard
of an event occurring. Thus, an analysis using these two propensity score methods allows one to report
absolute and relative reductions in the likelihood of the occurrence of an event, measures of effect similar
to those that would be reported in an RCT. We summarize our recommendations for the use of propensity
score methods with time-to-event outcomes in Table III.

We have discouraged the use of propensity score methods that appear to result in conditional esti-
mates of treatment effect. This should not be taken as a suggestion that conditional measures of effect
are of less interest than marginal measures of effect. Instead, there are three motivations for this empha-
sis. First, propensity score methods are intended to provide estimates of marginal treatment effect [22].
Second, both stratification on the propensity score and covariate adjustment using the propensity score
can result in biased estimation of the conditional hazard ratio that would be obtained by adjusting for all
prognostically important covariates [30]. Third, we have focused on methods that allow for the estima-
tion of treatment effects that are reported in RCTs. In RCTs, regression adjustment of the outcome on
treatment status alone allows for the estimation of marginal hazard ratios. As a consequence, we have
discouraged the use of stratification on the propensity score and covariate adjustment using the propen-
sity score to estimate hazard ratios. The amplification of the magnitude of the estimated treatment effect
when a conditional estimate is reported compared to the marginal effect can have important impacts on

Table III. Recommendations for the use of propensity score methods with time-to-event outcomes.

Inverse probability of treatment weighting
Objectives Propensity score matching (pair matching) using the propensity score

Estimand ATT ATE or ATT depending on the weights
selected

Balance assessment Compare distribution of baseline covariates
between treated and untreated subjects in
the matched sample.

Compare distribution of baseline covariates
between treated and untreated subjects in the
sample weighted by the inverse probability
of treatment.

Estimate and report
survival curves

Estimate Kaplan–Meier survival curves
in treated and untreated subjects in the
matched sample. Use stratified log-rank
test to compare survival curves (stratify on
matched sets).

Estimate adjusted Kaplan–Meier survival
curves in the weighted sample. Use adjusted
log-rank test to compare survival curves.

Estimate and report
absolute reduction in
the probability of an
event occurring

From the estimated survival curves, esti-
mate the absolute difference in the probabil-
ity of an event occurring within a specified
duration of follow-up.

From the estimated marginal survival
curves, estimate the absolute difference in
probability of an event occurring within a
specified duration of follow-up.

Estimate relative
change in the hazard
of an event occurring

Use Cox proportional hazards model in the
matched sample. Regress survival on an
indicator variable for treatment selection.
Use a robust variance estimator.

Use Cox proportional hazards model in the
weighted sample. Regress survival on an
indicator variable for treatment selection.
Use a robust variance estimator.

ATT, average treatment effect for the treated; ATE, average treatment effect.
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medical decision making and policy decisions. For instance, when interpreting the impact of treatment
or exposure at the population level, use of conditional estimates can result in overestimates of the ben-
efits of treatments or of the harms of exposures. This may result in subsequent misuse of resources. As
previously noted, there are multiple conditional effects for a given population. The conditional hazard
ratio obtained by adjusting for the propensity score may differ from the conditional hazard ratio obtained
by directly adjusting for the covariates that are associated with the outcome (this was observed to occur
in some of our secondary analyses examining estimation of conditional hazard ratios) [46]. It is unclear
how the conditional hazard ratios obtained using covariate adjustment using the propensity score or
stratification on the propensity score are related to the primary conditional hazard ratio of interest. Fur-
ther research is required to address this issue. We suspect that in many settings, the primary conditional
hazard ratio of interest may be best approximated by regressing the outcome on an indicator variable
denoting treatment status and on all measured covariates (assuming a set of a moderate number of
covariates) and by using flexible smoothing methods to relate continuous covariates to the log-hazard of
the outcome.

When estimating the effect of treatment on survival outcomes, we recommend that researchers use
either propensity score matching or inverse probability of treatment weighting using the propensity
score. There are advantages and limitations of each of these two methods. An advantage to matching
is that it may be perceived to be more transparent than weighting, which relies on the creation of a
synthetic weighted sample. Furthermore, weighting may be more sensitive to misspecification of the
propensity score [47]. A disadvantage to conventional matching is that one is restricted to estimating
the ATT, whereas weighting allows estimation of either the ATE or the ATT, depending on the weights
selected. Depending on the context of the study, one of these may be more useful and informative than
the other. In some settings, researchers may want to report both measures of effect. Recent research has
shown that weighting and matching eliminate systematic differences between treated and untreated sub-
jects to an approximately equivalent degree [50]. An advantage to propensity score weighting is that this
method is a subclass of a more general family of models, Marginal Structural Models, that allow one
to account for time-varying exposures and time-varying confounders. Thus, weighting generalizes to an
approach that allows one to examine more complex study designs and research questions. However, it
should be noted that Lu has extended conventional propensity score methods to settings in which treat-
ment is time varying and is not necessarily fixed at baseline [64]. A potential limitation of matching is
that, ideally, it requires a pool of potential controls that is at least as large as the set of treated subjects. In
some research contexts, the number of treated subjects may exceed the number of untreated subjects. To
conclude our comparison of matching and weighting, we would argue that, in general, neither approach
is clearly superior to the other, and that the relative strengths and limitations of each approach need to
be considered when selecting a method. In some settings, one approach may have clear advantages over
the other.

As noted previously, there are tradeoffs in choosing between caliper matching and optimal match-
ing. Caliper matching should result in the elimination of a greater degree of the systematic differences
between treated and untreated subjects, but may introduce bias due to incomplete matching. In our pri-
mary matched analysis (in which approximately 20% of treated subjects were excluded) the estimated
hazard ratio was 0.855, whereas it was 0.909 in the analysis that used optimal matching in which all
treated subjects were included. It is instructive to compare the panels for these analyses in Figure 1. The
survival curves estimated in the sample constructed using optimal matching are very similar to the sur-
vival curves obtained using weighting using the ATT weights. However, the survival curve for untreated
subjects in the matched sample constructed using caliper matching is different from the two correspond-
ing curves obtained using the other two methods. In particular, survival was modestly worse for untreated
subjects in the caliper-matched sample compared with the untreated subjects in the optimally matched
sample and in the sample weighted using the ATT weights. It appears that the use of caliper matching
resulted in the comparison of the survival of treated subjects with that of control or untreated subjects
with worse prognosis compared with when the other two methods for estimating the ATT were used.
These analyses suggest that the results obtained using caliper matching may be subject to more bias
compared with the results from the other two ATT analyses.

The CONSORT statement has improved the reporting of RCTs [11]. Adherence to the methods
described in the current paper will improve the conduct and reporting of studies that use propensity score
methods to estimate the effect of treatment on time-to-event outcomes. When outcomes are time-to-event
in nature, we encourage the use of propensity score matching or inverse probability of treatment weight-
ing using the propensity score for the following reasons. First, they permit one to estimate marginal
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survival functions for treated and untreated populations. From these survival functions, one can compute
the absolute reduction in the probability of an event occurring within a specified duration of follow-up.
Second, each of these methods permits estimation of marginal hazard ratios, which allow one to quan-
tify the relative reduction in the hazard of an event occurring in a treated population compared with an
untreated population. Use of these methods will allow one to mimic the reporting of RCTs, by permitting
the reporting of both absolute and relative measures of effects in observational studies.
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