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Anti-N-methyl D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder that associates with prominent

memory and behavioural deficits. Patients’ antibodies react with the N-terminal domain of the GluN1 (previously known as NR1)

subunit of NMDAR causing in cultured neurons a selective and reversible internalization of cell-surface receptors. These effects and

the frequent response to immunotherapy have suggested an antibody-mediated pathogenesis, but to date there is no animal model

showing that patients’ antibodies cause memory and behavioural deficits. To develop such a model, C57BL6/J mice underwent

placement of ventricular catheters connected to osmotic pumps that delivered a continuous infusion of patients’ or control cere-

brospinal fluid (flow rate 0.25ml/h, 14 days). During and after the infusion period standardized tests were applied, including tasks to

assess memory (novel object recognition in open field and V-maze paradigms), anhedonic behaviours (sucrose preference test),

depressive-like behaviours (tail suspension, forced swimming tests), anxiety (black and white, elevated plus maze tests), aggressive-

ness (resident-intruder test), and locomotor activity (horizontal and vertical). Animals sacrificed at Days 5, 13, 18, 26 and 46 were

examined for brain-bound antibodies and the antibody effects on total and synaptic NMDAR clusters and protein concentration

using confocal microscopy and immunoblot analysis. These experiments showed that animals infused with patients’ cerebrospinal

fluid, but not control cerebrospinal fluid, developed progressive memory deficits, and anhedonic and depressive-like behaviours,

without affecting other behavioural or locomotor tasks. Memory deficits gradually worsened until Day 18 (4 days after the infusion

stopped) and all symptoms resolved over the next week. Accompanying brain tissue studies showed progressive increase of brain-

bound human antibodies, predominantly in the hippocampus (maximal on Days 13–18), that after acid extraction and character-

ization with GluN1-expressing human embryonic kidney cells were confirmed to be against the NMDAR. Confocal microscopy and

immunoblot analysis of the hippocampus showed progressive decrease of the density of total and synaptic NMDAR clusters and

total NMDAR protein concentration (maximal on Day 18), without affecting the post-synaptic density protein 95 (PSD95) and

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. These effects occurred in parallel with memory and other

behavioural deficits and gradually improved after Day 18, with reversibility of symptoms accompanied by a decrease of brain-bound

antibodies and restoration of NMDAR levels. Overall, these findings establish a link between memory and behavioural deficits and

antibody-mediated reduction of NMDAR, provide the biological basis by which removal of antibodies and antibody-producing cells

improve neurological function, and offer a model for testing experimental therapies in this and similar disorders.
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Introduction
Memory, learning, and behaviour depend on the proper

function of the excitatory glutamate N-methyl D-aspartate

receptor (NMDAR) and a-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid receptor (AMPAR) and underly-

ing mechanisms of synaptic plasticity (Lau and Zukin,

2007; Shepherd and Huganir, 2007). The critical role of

NMDAR in these functions has been shown in animal

models in which the NMDAR are altered genetically

(Mohn et al., 1999; Belforte et al., 2010) or pharmacologic-

ally (Jentsch and Roth, 1999; Mouri et al., 2007). In

humans this evidence comes from more indirect

observations such as studies investigating the effects of

phencyclidine or ketamine (non-competitive antagonists of

NMDAR that cause psychosis) (Weiner et al., 2000;

Gunduz-Bruce, 2009), and brain tissue studies of patients

with schizophrenia or Alzheimer’s disease in which several

molecular pathways that modulate glutamate receptor traf-

ficking or function are affected (Snyder et al., 2005; Hahn

et al., 2006). In 2007 we identified a novel disorder (anti-

NMDAR encephalitis) that occurs with highly specific anti-

bodies against extracellular epitopes located at the amino

terminal domain of the GluN1 subunit of NMDAR

(Dalmau et al., 2007; Gleichman et al., 2012). The result-

ing syndrome resembles the spectrum of symptoms that

occurs in genetic or pharmacologic models of NMDAR

hypofunction, including memory loss and neuropsychiatric

alterations ranging from psychosis to coma (Dalmau et al.,

2008; Irani et al., 2010; Viaccoz et al., 2014). Regardless of

the type of presentation, most patients develop severe prob-

lems forming new memories and amnesia of the disease.

Symptoms are usually accompanied by systemic and intra-

thecal synthesis of antibodies, the latter likely produced by

plasma cells contained in brain inflammatory infiltrates

(Dalmau et al., 2008; Martinez-Hernandez et al., 2011).

These long-lived plasma cells and persistent antibody syn-

thesis may explain the lengthy symptoms of most patients

(average hospitalization �3 months) (Dalmau et al.,

2008). Yet, despite the severity and duration of the disease,

80% of the patients have substantial recovery after

immunotherapy (accompanied by removal of an underlying

tumour, usually an ovarian teratoma, when appropriate),

or sometimes spontaneously (Iizuka et al., 2008; Titulaer

et al., 2013).

Investigations on the potential pathogenic role of patients’

antibodies using cultured neurons showed that the antibodies

caused crosslinking and selective internalization of NMDARs

that correlated with the antibody titres, and these effects were

reversible after removing the antibodies (Hughes et al., 2010;

Mikasova et al., 2012). In contrast, patients’ antibodies did not

alter the localization or expression of other synaptic proteins,

number of synapses, dendritic spines, dendritic complexity, or

cell survival (Hughes et al., 2010). In parallel experiments, the

density of NMDAR was also significantly reduced in the

hippocampus of rats infused with patients’ antibodies, a

finding comparable to that observed in the hippocampus of

autopsied patients (Hughes et al., 2010). Overall, these studies

suggested an antibody-mediated pathogenesis, but the demon-

stration that patients’ antibodies caused symptoms remained

pending. Modelling symptoms and showing that these correl-

ate with antibody-mediated reduction of NMDAR would

prove the pathogenicity of patients’ antibodies, support the

use of treatments directed toward decreasing the levels of

antibodies or antibody-producing cells, and help to investigate

experimental therapies in this and similar disorders. We report

here such a model using continuous 14-day cerebroventricular

infusion of patients’ CSF in mice. The aims were to determine

(i) if patients’ antibodies altered memory and behaviour; (ii)

whether mice symptoms correlated with brain antibody-bind-

ing and reduction of NMDAR; and (iii) whether the clinical

and molecular alterations recovered after stopping the anti-

body infusion.

Materials and methods

Animals

Male C57BL6/J mice (Charles River), 8–10 weeks old (25–30 g)
were housed in cages of five until 1 week before surgery when
they were housed individually. The room was maintained at a
controlled temperature (21 � 1�C) and humidity (55 � 10%)
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with illumination at 12-h cycles; food and water were available
ad libitum. All experiments were performed during the light
phase, and animals were habituated to the experimental room
for 1 week before starting the tests. All procedures were
conducted in accordance with standard ethical guidelines
(European Communities Directive 86/609/EU) and approved
by the local ethical committees: Comitè Ètic d’Experimentació
Animal, Institut Municipal d’Assistència Sanitària (Universitat
Pompeu Fabra), and Institutional Animal Care and Use
Committee (University of Pennsylvania).

Patients’ CSF samples

CSF from 25 patients with high titre NMDAR antibodies (all
41:320) were pooled and used for cerebroventricular infusion.
CSF from 25 subjects without NMDAR antibodies (11 with
normal pressure hydrocephalus and 14 with non-inflammatory
CNS disorders) were similarly pooled and used as controls.
Before loading the osmotic pumps (discussed below), the
pooled CSF samples from patients and controls were dialyzed
(Slide-A-Lyzer 7K, Thermo) against sterile phosphate-buffered
saline (PBS) overnight at 4�C, and the concentration of total
IgG normalized to the CSF physiologic concentration of 2 mg/
dl. All mice received the same pooled CSF either from patients
or controls. Studies were approved by the institutional review
board of Hospital Clı́nic and Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de
Barcelona.

Surgery, placement of ventricular
catheters and osmotic pumps

Cerebroventricular infusion of CSF was performed using
osmotic pumps (model 1002, Alzet) with the following char-
acteristics: volume 100ml, flow rate 0.25 ml/h, and duration 14
days. Twenty-four hours before surgery, two osmotic pumps
per animal were each loaded with 100ml of patient or control
CSF. The pumps were then connected to a 0.28 mm IM
(internal diameter) polyethylene tube (C314CT, PlasticsOne)
and left overnight in sterile PBS at 37�C. The next day, mice
were deeply anaesthetized by intraperitoneal injection of a
mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg)
along with subcutaneous administration of the analgesic
meloxicam (1 mg/kg). Mice were then placed in a stereotaxic
frame, and a bilateral catheter (PlasticsOne, model 3280PD-
2.0/SP) was inserted into the ventricles (0.02 mm anterior and
1.00 mm lateral from bregma, depth 0.22 mm) and secured
with dental cement. Each arm of the catheter was connected
to one osmotic pump, which was subcutaneously implanted on
the back of the mice. Appropriate ventricular placement of the
catheters was assessed in randomly selected mice injecting
methylene blue through the catheters (Fig. 1A–C).

Cognitive tasks

All behavioural tasks were performed by researchers blinded to
experimental conditions using standardized tests reported by
us (Maldonado et al., 1970; Filliol et al., 2000; Berrendero
et al., 2005; Bura et al., 2007, 2010, 2013; Aso et al., 2008;
Puighermanal et al., 2009; Burokas et al., 2012; Llorente-
Berzal et al., 2013) and others (Porsolt et al., 1977; Crawley

and Goodwin, 1980; Handley and Mithani, 1984; Steru et al.,
1985; Konig et al., 1996; Caille et al., 1999; Strekalova et al.,
2006; Taglialatela et al., 2009; Ennaceur, 2010) and following
the schedule summarized in Fig. 1D. The tasks were aimed to
assess memory (novel object recognition in open field and
V-maze), anhedonic behaviours (sucrose preference test),
depressive-like behaviours (tail suspension, and forced swim-
ming tests), anxiety (black and white and elevated plus maze
tests), aggressiveness (resident-intruder test) and locomotor ac-
tivity (horizontal and vertical activity assessment). A brief de-
scription of each task is provided in the Supplementary
material.

Brain tissue processing

To determine the effects of patients’ antibodies on mouse
brain, animals were sacrificed at the indicated time points
(Fig. 1D, Days 5, 13, 18, 26 and 46) with CO2. Brains were
harvested, sagittally split, and transferred to ice-cold PBS. Half
of the brain was fixed by immersion in 4% paraformaldehyde
(PFA) for 1 h at 4�C, cryoprotected with 40% sucrose for 48 h
at 4�C, embedded with freezing media, and snap-frozen with
isopentane chilled with liquid nitrogen. The other half-brain
was used for dissection of hippocampus and cerebellum for
IgG and protein extraction (see below).

Immunohistochemistry and quanti-
tative peroxidase staining

For determination of antibodies bound to brain tissue using
immunoperoxidase staining, 7-mm thick tissue sections were
sequentially incubated with 0.25% H2O2 for 10 min at 4�C,
5% goat serum for 15 min at room temperature, biotinylated
goat anti-human IgG (1:2000, Vector labs) overnight at 4�C,
and the reactivity developed using avidin-biotin-peroxidase
and diaminobenzidine. Sections were mildly counterstained
with haematoxylin, and results photographed under a Leica
DMD108 microscope. Images were prepared creating a mask
for diaminobenzidine colour, converting the mask to greyscale
intensities, and inverting the pixels using Adobe Photoshop
CS6 package. Hippocampal, frontal cortex, striatum and cere-
bellar regions were manually outlined; intensity and area were
quantified in two serial sections using the public domain Fiji
ImageJ software (http://fiji.sc/Fiji). Values were divided by area
and normalized to the group with the highest mean (defined as
100%, patients’ CSF treated animals sacrificed at Day 18).

Immunofluorescence and confocal
microscopy with brain tissue

For determination of antibodies bound to brain tissue using
immunofluorescence, 5 mm-thick tissue sections were blocked
with 5% goat serum and 1% bovine serum albumin for
60 min at room temperature, and incubated overnight at 4�C
with Alexa Fluor� 488 goat anti-human IgG (A11013, diluted
1:1000, Molecular Probes/ Life Technologies). Slides were then
mounted with ProLong� Gold (P36930, Molecular Probes)
and results scanned under a LSM710 Zeiss confocal micro-
scope. Sections from all animals were analysed in parallel.
Quantification of fluorescent intensity in areas of CA1, CA3
and dentate gyrus was done using Fiji ImageJ software.

96 | BRAIN 2015: 138; 94–109 J. Planagumà et al.
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Background was subtracted and intensity divided by area.
Mean intensity of IgG immunostaining in animals treated
with patients’ CSF and sacrificed at Day 18 was defined
as 100%.

To determine the effects of patients’ antibodies on total
and synaptic NMDAR clusters and PSD95,
non-permeabilized 5-mm thick sections were blocked with
5% goat serum and 1% bovine serum albumin as above,
incubated with human CSF antibodies for 2 h at room tem-
perature, washed with PBS, permeabilized with TritonTM

X-100 0.3% for 10 min at room temperature, and incubated
with rabbit polyclonal antibody against PSD95 (diluted 1:250,
Clone 18258 Abcam) overnight at 4�C. Next day, the slides
were washed and incubated with the corresponding secondary
antibodies, Alexa Fluor� 594 goat anti-human IgG and Alexa
Fluor� 488 goat anti-rabbit IgG (A-11014, A-11008, both
diluted 1:1000, Molecular Probes) for 1 h at room tempera-
ture. Slides were mounted as above and results scanned with a
confocal microscope (Zeiss LSM710) with EC-Plan
NEOFLUAR CS �100/1.3 NA oil objective. Standardized
z-stacks including 50 optical images were acquired from five
different, equally spaced areas of CA1, CA3 and dentate gyrus
of hippocampus using sequential scanning, 1024 � 1024 lat-
eral resolution, and Nyquist optimized z-sampling frequency.
Images were deconvolved with 20 iterations using theoretical
point spread functions and maximum likelihood estimation

algorithms of Huygens Essential software (Scientific Volume
Imaging). For cluster density analysis a spot detection algo-
rithm from Imaris suite 7.6.4 (Bitplane) was used based on
automatic segmentation of the images to spots (Banovic
et al., 2010). Density of clusters was expressed as spots/mm3.
Three-dimensional colocalization of clusters (e.g. NMDAR and
PSD95) was done using a spot co-localization algorithm im-
plemented in Imaris suite 7.6.4. Synaptic localization was
defined as co-localization of NMDAR or AMPAR with
post-synaptic PSD95. Synaptic cluster density was expressed
as colocalized spots/mm3. For each animal, five identical
image stacks in each hippocampal area (CA1, CA2 and den-
tate gyrus) were acquired and the mean densities calculated for
total and synaptic NMDAR and AMPAR. Densities were nor-
malized to the mean density of control CSF treated animals
(100%). For the AMPAR the antibody used was guinea pig
GluA1 antibody (1:100, clone AGP-009, Alomone), and as
secondary antibody Alexa Fluor� 594 goat anti-guinea pig
IgG (A11076, 1:1000, Molecular Probes).

The presence of apoptosis, cellular infiltrates, and comple-
ment was assessed in the hippocampal region (CA3) in mice
sacrificed on Day 18 and corresponding controls. Apoptosis
was determined by standard terminal deoxynucleotidyl trans-
ferase mediated biotinylated UTP nick end labelling (TUNEL)
using the TACS 2TdT-Fluor in situ apoptosis detection kit
(Trevigen), and immunolabelling of cleaved caspase 3 (1:200,

Figure 1 Experimental design and placement of ventricular catheters. (A) Representative coronal mouse brain section with catheter

placement. Scale bar = 2 mm. (B and C) Coronal and sagittal mouse brain sections demonstrating cerebroventricular diffusion of methylene blue

after ventricular infusion. Scale bars = 2 mm. (D) Schedule of cognitive testing and animal sacrifice. At Day 0, catheters and osmotic pumps were

placed and bilateral ventricular infusion of patients’ or control CSF started. Infusion lasted for 14 days. Memory [novel object recognition (NOR)],

anhedonia [sucrose preference test (ANH)], depressive-like behaviour [tail suspension test (TST) and forced swimming test (FST)], anxiety [black

and white test (BW) and elevated plus maze test (EPM)], aggressiveness [resident intruder test (RI)] and locomotor activity (LOC) were assessed

blinded to treatment at the indicated days. The novel object recognition was assessed in open field and V-maze paradigms in two different cohorts

of mice. Animals were habituated for 1 to 4 days before surgery (baseline) to novel object recognition, anhedonia, and locomotor activity. Red

arrowheads indicate the days of sacrifice for studies of effects of antibodies in brain.
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#9661 Cell Signalling, Technologies) using a goat anti-rabbit
Alexa Fluor� 488 as secondary antibody (1:1000 Molecular
Probes). The presence of complement was assessed using rabbit
anti-mouse C5b-9 (1:500, Abcam) and Alexa Fluor� 488 goat
anti-rabbit IgG (1:500, #A11008, Molecular Probes).
Immunolabelling for T and B lymphocytes was done using
rabbit anti-mouse CD3 (1:1000, #ab16669 Abcam) followed
by secondary antibody goat anti-rabbit Alexa Fluor� 488
(1:1000, Molecular Probes), and rat anti-CD45R (1/10000,
#ab64100) followed by goat anti-rat Alexa Fluor� 594
(1/1000, #A-11007 Molecular Probes). Results were scanned
with a confocal microscope Zeiss LSM710.

Extraction of human IgG bound to
mice brain

Under a dissection microscope (Zeiss stereomicroscope, Stemi
2000), the hippocampus and cerebellum were isolated,
weighed, snap-frozen, and stored at �80�C. Tissue (10 mg)
was homogenized in 0.5 ml ice-cold PBS with protease inhibi-
tors (Sigma-Aldrich) and centrifuged at 16 000g for 5 min. All
steps were performed at 4�C. Washing was repeated four times
to remove unbound IgG. The last wash was done in 100 ml and
the supernatant saved as pre-extraction fraction. To extract the
specifically bound antibodies, the pellet was solubilized for
5 min in acid (86 ml 0.1 M Na-citrate buffer pH 2.7), centri-
fuged at 16 000g for 5 min, and the supernatant neutralized
with 14 ml 1.5 M Tris pH 8.8, and used to determine the
presence of NMDAR (GluN1) antibodies (see below).

Immunofluorescence with HEK293
cells expressing GluN1

The presence of GluN1 antibodies in IgG extracts from brain
was determined using a HEK293 cell-based assay expressing
GluN1, as reported (Dalmau et al., 2008). After fixation with
4% paraformaldehyde and permeabilization with 0.3%
TritonTM X-100, cells were blocked with 1% bovine serum
albumin for 90 min, and incubated with undiluted acid-
extracted IgG or pre-extraction fraction from brain of infused
mice, at 4�C overnight. The next day, cells were washed and
incubated with a mouse monoclonal antibody against a non-
competing GluN1 epitope located at amino acid 660-811
(1:20 000; clone MAB363, Millipore) for 1 h at room tempera-
ture, followed by the corresponding Alexa Fluor� secondary
antibodies (A11013, A11032, both diluted 1:1000, Molecular
Probes) for 1 h at room temperature. The titre of positive sam-
ples was calculated by serial dilutions until the reactivity was
no longer visible. Results were photographed under a fluores-
cence microscope using Zeiss Axiovision software.

Immunoblot analyses

Total protein from hippocampus and cerebellum was obtained
by dissecting these regions from 20-mm thick paraformalde-
hyde-fixed sagittal mouse brain sections on glass slides at
4�C under a Zeiss stereomicroscope (Stemi 2000). Two con-
secutive sections of isolated hippocampus or cerebellum were
then transferred to an Eppendorf tube in PBS supplemented
with protease inhibitors. Loading buffer (RotiLoad) was
added, the solubilized tissue boiled for 5 min, and the proteins

separated in a 10% SDS gel electrophoresis with semi-dry
blotting on PVDF membranes. Membranes were blocked in
5% non-fat skimmed milk and incubated overnight at 4�C
with the following polyclonal rabbit antibodies: GluN1
(1:1000, Sigma-Aldrich), GluR2/3 (1:1000, Abcam), and
PSD95 (1:1000, Synaptic Systems), or a monoclonal mouse
anti-b-actin (1:20 000, Sigma-Aldrich). Membranes were incu-
bated with secondary antibodies for 1 h at room temperature
(anti-rabbit IgG HRP 1:1000, anti-mouse IgG HRP 1:10 000)
and analysed by enhanced chemiluminescence (all Amersham
GE Healthcare) on a LAS4000 (GE Healthcare). All studies
were done in duplicate. Analysed films were in the linear
range of exposure, digitally scanned, and signals quantified
using Fiji ImageJ software. The signal intensity of each antigen
was normalized to that of actin in the same lane. The mean
intensity of signal in control CSF treated animals was defined
as 100% and all other intensities expressed in per cent relative
to this value.

Statistics

Behavioural tests were analysed using repeated measures two-
way ANOVA for tests with multiple time points (novel object
recognition, sucrose preference test, resident-intruder test, loco-
motor activity), independent sample t-tests for tests with single
time points (forced swimming test, black and white test, ele-
vated plus maze test) or by Mann Whitney-U for skewed dis-
tributions (tail suspension test). Non-normally distributed
parameters were log-transformed (black and white test, ele-
vated plus maze test). Significance of NMDAR antibody titre
in acid-extracted IgG fractions was calculated using the
Kruskal-Wallis test and Dunn’s post hoc test compared to
titres at Day 46. Human IgG intensity, confocal cluster density
and immunoblot data (GluN1, PSD95) from different time
points or regions were analysed using two-way ANOVA
with Sidak-Holm post hoc testing to calculate multiplicity-ad-
justed P-values. Confocal cluster density in the different hip-
pocampal subregions (CA1, CA3, dentate gyrus) were not
significantly different and were analysed pooled. All experi-
ments were assessed visually for outliers (e.g. one animal
with very different results from the other animals at the
same time point), but none were identified, so measurements
were pooled per time point and treatment (patient or control
CSF). For confocal AMPAR cluster density measured at single
time points, independent sample t-tests were used. A P-value of
50.05 was considered significant in post hoc testing after cor-
rection for multiple testing (Sidak-Holm). In the two-way
ANOVA the cut-off for interaction between two factors was
set at 0.10; if the P-value for interaction was 50.10, the ef-
fects of treatment were considered for the separate time points
(post hoc analysis). All tests were done using GraphPad Prism
(Version 6).

Results
One-hundred and eleven mice were included in the studies,

56 for cognitive and behavioural tests, and 55 for assess-

ment of antibody binding to brain and the effects on total

and synaptic NMDAR (Fig. 1).
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Cerebroventricular infusion of
patients’ CSF alters memory and
behaviour in mice

The most robust effect during the 14-day infusion of

patients’ CSF was on the novel object recognition test in

both the open field and V-maze paradigms (Fig. 2A and B).

Compared with animals infused with control CSF, those

infused with patients’ CSF showed a progressive decrease

of the object recognition index, indicative of a memory

deficit (Bura et al., 2007; Puighermanal et al., 2009;

Taglialatela et al., 2009). The memory deficit became

significant on Day 10 and was maximal on Day 18 (4

days after the infusion of CSF had stopped). On Day 25,

the object recognition index had normalized and was simi-

lar to that of animals treated with control CSF (Fig. 2A and

B). For all time-points, the total time spent exploring both

objects (internal control) was similar in animals infused

with control or patients’ CSF (Supplementary Table 1).

The preference to drink sweetened water (sucrose prefer-

ence test) was used as a measure of anhedonic behaviour.

Mice infused with patients’ CSF and tested during the

infusion period (Day 10) had less preference for sucrose

compared with mice infused with control CSF (Fig. 2C).

In contrast, the same mice tested 10 days after the infusion

of CSF had stopped (Day 24) showed a preference for su-

crose similar to that of the control mice. The total con-

sumption of water with and without sucrose was similar

in both groups (internal control, Supplementary Table 1).

In addition, two tests of depressive-like behaviour were

performed. The tail suspension test, performed on Day

12, showed that animals infused with patients’ CSF had

longer periods of immobility compared with those infused

with control CSF (Fig. 2D). In contrast, 6 days after the

infusion of CSF had stopped (Day 20), no differences were

noted with the forced swimming test (examining immobility

in inescapable situations; Fig. 2E and Supplementary Table

1). Overall, these findings suggest that the infusion of

NMDAR antibodies was associated with anhedonic and

depressive-like behaviours.

In contrast to the prominent memory deficit, along with

anhedonia and depressive behaviour, no significant differ-

ences were noted in tests of anxiety (black and white test,

elevated plus maze test), aggression (resident-intruder test)

and locomotor activity (Fig. 3A–D).

Patients’ antibodies bind to NMDAR
in mouse brain

Animals infused with patients’ CSF, but not control CSF,

had progressively increasing human IgG immunostaining

(representing IgG bound to brain) that correlated with the

duration of the infusion. The distribution of IgG immunos-

taining predominated in regions with high density of

NMDAR, mainly the hippocampus (Fig. 4A), resembling

that obtained with brain sections directly incubated with

patients’ CSF or a monoclonal antibody against GluN1

(Dalmau et al., 2008). Upon quantification of immunos-

taining, the maximal antibody binding was identified in

mice sacrificed on Day 18, which had received 14 days of

CSF infusion, compared with mice sacrificed on Days 5 or

13 (Fig. 4B and C). In animals sacrificed on Days 26 and

46 the presence of IgG immunostaining progressively

decreased. In frontal cortex the dynamics of IgG binding

were similar to those of the hippocampus (Supplementary

Fig. 1), but the amount of IgG was substantially less; in

other brain regions such as the cerebellum and striatum, the

IgG immunostaining was sparse and not significantly dif-

ferent between animals infused with patients’ CSF or con-

trol CSF (data not shown).

Studies with immunofluorescence and confocal micros-

copy showed that in animals infused with patients’ CSF

the presence of hippocampal IgG was visible as a punctate

immunolabelling on the surface of neurons and neuronal

processes in contrast to mice infused with control CSF

where minor amounts of IgG reactivity without preference

for neuronal structures were noted (Fig. 4D–G). In add-

ition, the amount of human IgG bound to all selected re-

gions of hippocampus was significantly higher than in the

control group (Fig. 4H).

To determine if the IgG immunostaining represented

brain-bound NMDAR antibodies, IgG was extracted from

several brain regions and examined for reactivity with HEK

cells expressing GluN1. These studies showed that the IgG

extracted from hippocampus of mice infused with patients’

CSF reacted specifically with GluN1 (Fig. 5A). The

NMDAR antibody concentration in the extracts correlated

with the duration of infusion of CSF; it increased until Day

13, reached the maximal concentration on Days 13–18,

and decreased afterwards (Fig. 5A and C). NMDAR anti-

bodies were also detected in IgG extracts from other brain

regions (frontal cortex, cerebellum) but at lower concentra-

tion to that obtained from hippocampus (Fig. 5D).

Demonstration that the extracted antibodies were specific-

ally bound to the NMDAR was provided by the lack of

GluN1 reactivity in the pre-extraction fractions (Fig. 5B

and E). Parallel studies with tissue from animals infused

with control CSF did not show NMDAR antibodies

(Supplementary Fig. 2).

Effects of patients’ antibodies on
NMDAR

To determine the effects of patients’ antibodies on

NMDAR, we focused on the hippocampus, which was

the region with maximal concentration of NMDAR-

bound antibodies. Compared with animals infused with

control CSF, those infused with patients’ CSF had on

Days 13 and 18 a significant decrease of the density of

total and synaptic hippocampal NMDAR clusters followed

by a gradual recovery after Day 18 (pooled analysis of

CA1, CA3 and dentate gyrus; Fig. 6A–D). No significant
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differences in between hippocampal subregions (CA1, CA3,

dentate gyrus) were observed (not shown). In contrast,

patients’ antibodies did not alter the density of PSD95 or

AMPAR clusters (Fig. 6E and F).

Immunoblot analysis of total protein extracted from

hippocampus showed that on Days 13 and 18, mice infused

with patients’ CSF had a significant decrease of total

NMDAR protein concentration compared with mice

infused with control CSF (Fig. 7A and B). The magnitude

of this effect was greater in animals with higher concentra-

tion of IgG bound to hippocampus (Fig. 7C). Parallel

studies examining the effect on the protein concentrations

of PSD95 (Fig. 7A and E) and AMPAR (Fig. 7D) demon-

strated no significant differences between mice infused with

patients’ CSF or control CSF.

In cerebellum, no significant effects on the cluster density

or total protein concentration of NMDAR, PSD95 and

AMPAR were noted in animals infused with patients’

CSF compared to those infused with control CSF (data

not shown).

Immunohistochemical studies for neuronal apoptosis,

infiltrates of T or B cells, and deposits of complement in

hippocampus of animals infused with patients’ or control

CSF, examined on Day 18, showed no abnormalities

(Fig. 8).

Discussion
We report that passive transfer of NMDAR antibodies by

continuous ventricular infusion of CSF from patients with

anti-NMDAR encephalitis causes memory and behavioural

deficits in mice, and that the effects are likely mediated by

the binding of antibodies to NMDAR resulting in a specific

decrease of the density of these receptors. Data from earlier

reports showing that despite the severity and duration of

symptoms, most patients with anti-NMDAR encephalitis

respond to immunotherapy (Gresa-Arribas et al., 2014),

and findings at the cellular level demonstrating that pa-

tients’ antibodies cause a titre-dependent decrease of syn-

aptic NMDAR receptors fulfilled most of the Witebsky’s

criteria for an antibody-mediated disease (Rose and Bona,

1993), but the transfer of symptoms to animals was pend-

ing. In the current study, four sets of experiments satisfy

Figure 2 Infusion of CSF from patients with NMDAR antibodies causes deficits in memory, anhedonia and depressive-like

behaviour. (A and B) Novel object recognition index in open field (A) or V-maze paradigms (B) in animals treated with patients’ CSF (grey

circles) or control CSF (white circles). A high index indicates better object recognition memory. (C) Preference for sucrose-containing water in

animals infused with patients’ CSF (grey) or control CSF (white). Lower percentages indicate anhedonia. (D and E) Total time of immobility in tail-

suspension test during the infusion period (D, Day 12) and in forced swimming test after the infusion period (E, Day 20). Data are presented as

mean � SEM (median � IQR in D). Number of animals: patients’ CSF n = 18 (open field novel object recognition n = 8), control CSF n = 20 (open

field novel object recognition n = 10). Significance of treatment effect was assessed by two-way ANOVA (A–C) with an a-error of 0.05 and post

hoc testing with Sidak-Holm adjustment (asterisks), unpaired t-test (E) or Mann-Whitney U test (D). *P5 0.05, ***P5 0.001. See Supplementary

Table 1 for detailed statistics.
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this postulate: (i) the development of symptoms in animals

infused with patients’ CSF, but not control CSF; (ii) the

demonstration that the infused antibodies reacted predom-

inantly with brain regions with high density of NMDAR

(e.g. hippocampus) and specifically recognized these recep-

tors; (iii) the identification of a selective decrease of the

density of total and synaptic NMDAR clusters and total

NMDAR protein concentration without affecting PSD95,

and that these effects correlated with the concentration of

brain-bound antibodies; and (iv) the correlation noted be-

tween the intensity of the abovementioned findings and

time-course of patients’ antibody infusion, as well as be-

tween the reversibility of symptoms and restoration of

NMDAR levels after stopping the infusion of CSF

antibodies.

Approximately 75% of patients with anti-NMDAR

encephalitis present with mood and psychiatric alterations

ranging from manic or depressive behaviour to psychosis,

often followed by stereotyped movements, seizures, or

decreased level of consciousness (Kayser et al., 2013;

Titulaer et al., 2013). Regardless of the presentation,

most patients develop severe problems forming new mem-

ories and have amnesia of the disease. Close examination

during the phase of recovery shows, in some patients,

impairment in the visual recognition of objects or faces

(e.g. physicians, nurses) (Frechette et al., 2011). Owing to

the wide range of symptoms of the disease and lack of

previous studies examining the distribution of brain tissue

NMDAR-antibody binding when these antibodies are

infused intraventricularly, we used standardized memory

and behavioural tests. The most notable effects were

observed in the tests of memory (novel object recognition)

using different groups of animals in two different para-

digms (open field and V-maze). While the first depends

predominantly on normal hippocampal function, the

second is dependent of perirhinal-hippocampal structures

(Winters et al., 2004). Compared with animals infused

with control CSF, those infused with patients’ CSF

developed progressive memory deficits, which were

maximal on Days 13–18 when the highest concentration

of brain-bound NMDAR antibodies and lowest density of

NMDAR occurred. Other paradigms affected were related

to depressive-like behaviours (tail suspension test) and

anhedonic behaviours (sucrose preference test). We did

not find significant abnormalities in the tests of aggression

and anxiety, which are often present in the human disease,

or in locomotor activity (an expected finding given that

paralysis rarely occurs in patients).

Figure 3 Infusion of CSF from patients with NMDAR antibodies does not alter the tests of anxiety, aggression and locomotor

activity. (A and B) Number of entries into bright/open compartments during a 5 min period in a standard black and white (A, Day 6) or elevated

plus maze test (B, Day 14) in animals treated with patients’ CSF (filled circles) or control CSF (open circles). (C) Number of aggressive events

over a 4-min period in a resident intruder paradigm in both treatment groups. (D) Horizontal (solid lines) and vertical (dashed lines) movement

count over a 10 min period in both treatment groups. Data are presented as mean � SEM. Number of animals: patients’ CSF n = 18, control CSF

n = 20. Statistical assessment as indicated in Fig. 2 and Supplementary Table 1.
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Figure 4 Animals infused with patient’s CSF have a progressive increase of human IgG bound to hippocampus. (A and B)

Immunostaining of human IgG in sagittal brain sections (A) and hippocampus (B) of representative animals infused with patients’ CSF (left) and

control CSF (right), sacrificed at the indicated experimental days. In animals infused with patients’ CSF there is a gradual increase of IgG

immunostaining until Day 18, followed by decrease of immunostaining. Scale bars: A = 2 mm; B = 200 mm. (C) Quantification of intensity of

human IgG immunolabelling in hippocampus of mice infused with patients’ CSF (dark grey columns) and control CSF (light grey columns) sacrificed

at the indicated time points. (D–H) Confocal microscopy analysis of IgG bound to the hippocampus on Day 18. (D) Sagittal section of the

hippocampus with areas examined at higher magnification in E (arrow in CA1), F (arrow heads in CA3) and G (asterisks in dentate gyrus). Note

the fine punctate IgG immunolabelling surrounding neuronal bodies in mice infused with patients’ CSF; this immunolabelling is similar to that

reported in brain sections directly incubated with patients’ antibodies, as in Dalmau et al. (2008). Scale bars: D = 200 mm; E–G = 10mm. (H)

Quantification of the intensity of human IgG immunofluorescence in the indicated areas in animals infused with patients’ CSF (dark grey columns)

or control CSF (light grey columns). For all quantifications, mean intensity of IgG immunostaining in the group with the highest value (animals

treated with patients’ CSF and sacrificed at Day 18) was defined as 100%. All data are presented as mean � SEM. For each time point five animals

infused with patients’ CSF and five with control CSF were examined. Significance of treatment effect was assessed by two-way ANOVA with an

a-error of 0.05 (*) and post hoc testing with Sidak-Holm adjustment ($). ***, $$$P5 0.001; $P5 0.05. See Supplementary Table 2 for detailed

statistics.
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The high levels of brain-bound NMDAR antibodies

between Days 13–18 suggests that after stopping the infu-

sion of patients’ CSF on Day 14, the NMDAR antibodies

continued being distributed from mice cerebroventricular

system to parenchyma. This distribution occurred slowly;

for example, 5 days after starting the infusion of patients’

CSF the amount of NMDAR antibodies that had reached

the hippocampus was very limited compared to that seen

on Days 13–18 (shown in Fig. 4B). Moreover, previous

studies using cultured neurons treated with patients’ CSF

showed that once the antibodies bound to the NMDARs,

the reduction of receptors was microscopically visible in 2 h

but it took 12 h to result in the lowest receptor density.

Subsequently, there was a steady state of low NMDAR

density for as long as the neurons were exposed to patients’

antibodies (Moscato et al., 2014). Together, these findings

explain the progressive worsening of symptoms along with

continued antibody binding and decrease of NMDAR for

at least 4 days after the ventricular infusion stops and the

subsequent recovery starts.

Although the hippocampus was the region with the

highest concentration of brain-bound NMDAR antibodies,

these antibodies were also extracted from cerebral cortex or

cerebellum though at much lower levels. The higher con-

centration of antibodies and predominant decrease of

NMDAR in the hippocampus are consistent with the

predominant binding of human antibodies to this brain

region when sections of rodent brain are directly incubated

with patients’ antibodies (Dalmau et al., 2007; Moscato

et al., 2014). Additionally, because of the close spatial

relationship to the ventricles, the intraventricular infusion

of human CSF antibodies might have contributed to the

preferential binding to the hippocampus.

The correlation between the concentration of brain-

bound antibodies and selective reduction of NMDAR

cluster density and protein concentration was similar to

Figure 5 The human IgG extracted from brain of mice infused with patients’ CSF is specific for NMDARs. (A and B) HEK293

cells expressing the GluN1 subunit of the NMDAR immunolabelled with acid-extracted IgG fractions (top row in A) or pre-extraction fractions

(top row in B) from hippocampus of mice infused with patients’ CSF and sacrificed on the indicated days. The maximal reactivity with GluN1-

expressing cells was noted in acid-extracted IgG fractions from Days 13 and 18 (A); none of the pre-extraction fractions showed GluN1 reactivity

(B) indicating that the reactivity of acid-extracted fractions corresponds to IgG antibodies that were bound to brain NMDAR receptors. The

second row in A and B shows the reactivity with a monoclonal GluN1 antibody, and the third row the colocalization of immunolabelling. Scale

bars = 10mm. (C) Quantification of NMDAR antibody titre in IgG-extracted fractions from hippocampus of animals treated with patients’ CSF

(n = 5 mice per each time point, except four mice for Day 5). Solid line = median. Significance was tested by Kruskal-Wallis with an a-error of 0.05

(asterisks) and post hoc testing with Dunn’s test ($). **, $$P5 0.01, ***, $$$P5 0.001. See Supplementary Table 2 for detailed statistics. (D and E)

HEK293 cells expressing the GluN1 subunit of the NMDAR immunolabelled with acid-extracted IgG fractions (D) and pre-extraction fractions

(E) from hippocampus (Hippo), cerebral cortex (Ctx) and cerebellum (Cb) of mice infused with patients’ CSF (Day 18). The acid-extracted IgG

fraction from hippocampus showed higher level of NMDAR antibodies than those extracted from cerebral cortex (Ctx) and cerebellum (Cb).

Scale bars = 10mm. n.s = not significant.
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Figure 6 Patients’ NMDAR antibodies selectively reduce the density of total and synaptic NMDAR clusters in hippocampus of

mice. (A) Hippocampus of mice infused for 14 days (Day 18) with patients’ CSF (upper row) or control CSF (lower row) immunolabelled for PSD95

and NMDAR. Images were merged (merge) and post-processed to demonstrate co-localizing clusters (co-localization). Squares in ‘co-localization’

indicate the analysed areas in CA1, CA3 and dentate gyrus. Scale bar = 200 mm. (B) Three-dimensional projection and analysis of the density of
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that reported using in vitro studies with cultured rat

hippocampal neurons (Hughes et al., 2010; Moscato

et al., 2014). Moreover, autopsies of patients with

anti-NMDAR encephalitis showed that the hippocampal

regions with highest concentration of brain-bound antibo-

dies were also the areas with lower expression of NMDAR

(Dalmau et al., 2007). In the current model, patients’

antibodies did not alter AMPAR cluster density or protein

concentration; these findings are in line with those reported

with cultured neurons where the clusters of AMPAR and

AMPAR-mediated currents were not directly affected

(Hughes et al., 2010). These experiments, however, did

not explore whether paradigms that normally induce

long-term potentiation, and therefore increase the number

of synaptic AMPAR, were altered by patients’ antibodies.

Mikasova et al. (2012) showed that neurons exposed

to patients’ NMDAR antibodies failed to show an increase

in cell surface AMPAR after induction of chemical long-

term potentiation. Another study examining the acute

metabolic effects of patients’ antibodies after injection

into rat brain showed impairment of NMDA and

AMPA-mediated synaptic function (Manto et al., 2010).

In the present model, we did not perform electrophysiolo-

gical studies on acute slices of brain (a goal of future

Figure 6 Continued

total clusters of PSD95 and NMDAR, and synaptic clusters of NMDAR (defined as NMDAR clusters colocalizing with PSD95) in a representative

CA3 region (square in A ‘co-localization’). Merged images (merge, PSD95 green, NMDAR red) were post-processed and used to calculate the

density of clusters (density = spots/mm3). Scale bar = 2mm. (C–F) Quantification of the density of total (C) and synaptic (D) NMDAR clusters,

PSD95 clusters (E), and total/synaptic AMPAR and PSD95 clusters (Day 18 only, F) in a pooled analysis of hippocampal subregions (CA1, CA3,

dentate gyrus) in animals treated with patients’ CSF (dark grey) or control CSF (light grey) on the indicated days. Mean density of clusters in

control CSF treated animals was defined as 100%. Data are presented as mean � SEM. For each time point five animals infused with patients’ CSF

and five with control CSF were examined. Significance of treatment effect was assessed by two-way ANOVA with an a-error of 0.05 (asterisks) and

post hoc testing with Sidak-Holm adjustment ($) (C–E) or unpaired t-test (F). *, $P5 0.05; **, $$P5 0.01; ***, $$$P5 0.001. See Supplementary

Table 2 for detailed statistics.

Figure 7 Patients’ NMDAR antibodies selectively reduce the protein concentration of NMDAR in hippocampus of mice. (A)

Representative immunoblots of proteins extracted from hippocampus of animals infused with patients’ CSF (P) or control CSF (C) sacrificed at

the indicated time points and probed for expression of GluN1 (NMDAR), PSD95 and b-actin (loading control). Note that there is less visible

GluN1 expression on Days 13 and 18. (B, D and E) Quantification of total NMDAR (B), AMPAR (D) or PSD95 (E) protein in animals treated with

patients’ CSF (filled columns) or control CSF (open columns) sacrificed at the indicated time points (AMPAR Day 18 only, D). Results were

normalized to b-actin (loading control). Mean band density of animals treated with control CSF was defined as 100%. Data are presented as

mean � SEM. For each time point six animals infused with patients’ CSF and six with control CSF were examined (for Days 26 and 46, only five

animals treated with patient’s CSF were available). Significance of treatment effect was assessed by two-way ANOVA with an a-error of 0.05

(asterisks) and post hoc testing with Sidak-Holm adjustment ($). $$P5 0.01; ***P5 0.001. See Supplementary Table 2 for detailed statistics. (C)

Correlation between concentration of human IgG bound to hippocampus (x-axis, highest hippocampal IgG intensity was defined as 100%) and

hippocampal NMDAR protein concentration in mice sacrificed on Day 18 (R2 = 0.69, P = 0.003). Filled circles: mice infused with patients’ CSF

(n = 5), open circles: mice infused with control CSF (n = 5).
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studies); however, there is reported evidence that patients’

NMDAR antibodies suppress induction of long-term po-

tentiation when directly applied to mouse hippocampal

slices (Zhang et al., 2012). Work with cultured neurons

indicates that the decrease of synaptic NMDAR currents

is likely a result of the antibody-mediated low receptor

levels, as no direct antibody blockade was detected

(Moscato et al., 2014).

Our study has limitations related to the type of disease

and symptoms to model. For example, different from other

models of antibody-mediated CNS disorders where the

antibodies result in characteristic symptoms (e.g.

Figure 8 Absence of neuronal apoptosis, deposits of complement, and lymphocytic infiltrates in the hippocampus of mice

infused with patients’ CSF. (A and B) TUNEL and cleaved caspase 3 immunolabelling of a representative area of CA3 (area with maximal IgG

binding and lower NMDAR concentration) of an animal infused with patients’ CSF, showing lack of apoptotic cells. A section of the same region in

an animal with transient middle cerebral artery occlusion (stroke model) shows apoptotic cells in the penumbra (left). (C) Same CA3 region as in

(A) immunostained for C5b-9 showing lack of deposit of complement. A section of the same region in the indicated stroke model shows presence

of complement in the penumbra (left). (D and E) Same CA3 region as in (A) immunostained for T (CD3) and B (CD45R) lymphocytes showing

absence of inflammatory infiltrates. A section of spleen was used as control tissue showing the presence of CD3 (green) and CD45R (red) cells.

Scale bar = 10mm. Total number of animals examined: patients’ CSF n = 5; control CSF n = 5. Scale bars = 20mm.
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amphiphysin antibodies and visible muscle spasms)

(Sommer et al., 2005) or focal deficits with visible tissue

changes (e.g. AQP4 antibodies and neuromyelitis optica)

(Hinson et al., 2012; Bradl and Lassmann, 2014), anti-

NMDAR encephalitis results in a broader spectrum of

symptoms where memory and behavioural deficits occur

early, and the structural alterations are not visible unless

the NMDAR clusters or protein concentration are mea-

sured. It is not surprising that in the current model the

full spectrum of symptoms, such as seizures, dyskinesias

or coma, did not occur. Studies with NMDAR antagonists

have shown that the progression of symptoms (from behav-

ioural and memory deficits to unresponsiveness with cata-

tonic features and coma) correlated with the intensity of the

decrease of receptor function (Javitt and Zukin, 1991).

Therefore, it is likely that prolonged infusion or higher

concentration of patients’ antibodies would cause

additional symptoms. This is supported by the current

model, in which the time course of symptom development,

brain-bound antibody concentration, and decrease of syn-

aptic NMDAR correlated well with each other. Future

experiments using prolonged infusion or higher concentra-

tion of patients’ antibodies may also result in symptoms

beyond hippocampal-parahippocampal regions. Compared

with the hippocampus, other brain regions normally have

lower density of NMDAR, and appeared to be less access-

ible to the ventricularly infused antibodies. Direct injection

of antibodies into those brain regions can be considered,

but we previously tried bilateral hippocampal infusion

using the same osmotic pump approach, resulting in more

limited antibody diffusion and no symptoms (data not pub-

lished). Moreover, the phenotype of the current model is

likely influenced by the strain of mice. In this study we used

C57BL6/J mice because we were interested in the effects on

memory and behaviour, but this strain is one of the most

resistant to develop seizures (Ferraro et al., 2002).

The antibody-induced depletion of synaptic NMDAR

along with the similarities between the human disease and

the phenotypes induced by NMDAR antagonists (phencyc-

lidine, ketamine or MK801) have suggested points of

convergence with one of the most influential theories of

schizophrenia, the NMDA-hypofunction model (Olney

and Farber, 1995; Kehrer et al., 2008). The presence of

positive (hallucinations, delusions, hyperactivity) and nega-

tive (decreased motivation, flat affect, deficit of memory

and learning) symptoms is, however, not identical among

the drug-induced phenotypes and also varies among animal

species (Javitt and Zukin, 1991). It has been suggested that

NMDAR-bearing parvalbumin-positive GABAergic inter-

neurons are disproportionally more sensitive to NMDAR

antagonists than other neurons (Li et al., 2002).

Interestingly, a genetic model of partial ablation of the

GluN1 subunit of NMDAR in corticolimbic GABAergic

interneurons resulted in symptoms partially resembling

our GluN1 immunological model of receptor depletion,

including memory deficits and anhedonic behaviours

(Belforte et al., 2010). Differences related to the underlying

mechanisms (pharmacologic blockade, genetic or immuno-

logic NMDAR depletion) and regions where the

NMDAR function is depleted (general, corticolimbic, or

hippocampal-parahippocampal) likely influence the clinical

phenotypes.

Overall, the current findings provide robust evidence that

antibodies from patients with anti-NMDAR encephalitis

alter memory and behaviour through reduction of cell-

surface and synaptic NMDAR, and therefore support

the use of treatments directed at decreasing the levels of

antibodies or antibody-producing cells. This approach can

now be adapted to (i) model other aspects of the disease by

changing the duration and dosing of antibody infusion, or

strain of mice; (ii) investigate other disorders of memory

and behaviour that occur in association with antibodies

against other cell surface or synaptic proteins, such as

AMPAR or GABA(B)R (Lai et al., 2009; Lancaster et al.,

2010); and (iii) determine whether compounds such as

Ephrin-B2 ligand that has been shown to prevent the desta-

bilizing NMDAR crosslinking effects of patients’ antibodies

improve or alter the course of the disease (Mikasova et al.,

2012).
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