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Abstract

In the sparse linear regression setting, we consider testing the significance of the predictor variable 

that enters the current lasso model, in the sequence of models visited along the lasso solution path. 

We propose a simple test statistic based on lasso fitted values, called the covariance test statistic, 

and show that when the true model is linear, this statistic has an Exp(1) asymptotic distribution 

under the null hypothesis (the null being that all truly active variables are contained in the current 

lasso model). Our proof of this result for the special case of the first predictor to enter the model 

(i.e., testing for a single significant predictor variable against the global null) requires only weak 

assumptions on the predictor matrix X. On the other hand, our proof for a general step in the lasso 

path places further technical assumptions on X and the generative model, but still allows for the 

important high-dimensional case p > n, and does not necessarily require that the current lasso 

model achieves perfect recovery of the truly active variables.

Of course, for testing the significance of an additional variable between two nested linear models, 

one typically uses the chi-squared test, comparing the drop in residual sum of squares (RSS) to a 

 distribution. But when this additional variable is not fixed, and has been chosen adaptively or 

greedily, this test is no longer appropriate: adaptivity makes the drop in RSS stochastically much 

larger than  under the null hypothesis. Our analysis explicitly accounts for adaptivity, as it must, 
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since the lasso builds an adaptive sequence of linear models as the tuning parameter λ decreases. 

In this analysis, shrinkage plays a key role: though additional variables are chosen adaptively, the 

coefficients of lasso active variables are shrunken due to the  penalty. Therefore, the test statistic 

(which is based on lasso fitted values) is in a sense balanced by these two opposing properties—

adaptivity and shrinkage—and its null distribution is tractable and asymptotically Exp(1).
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Lasso; least angle regression; p-value; significance test

1. Introduction

We consider the usual linear regression setup, for an outcome vector  and matrix of 

predictor variables :

(1)

where  are unknown coefficients to be estimated. [If an intercept term is desired, 

then we can still assume a model of the form (1) after centering y and the columns of X; see 

Section 2.2 for more details.] We focus on the lasso estimator [Tibshirani (1996), Chen, 

Donoho and Saunders (1998)], defined as

(2)

where λ ≥ 0 is a tuning parameter, controlling the level of sparsity in . Here, we assume 

that the columns of X are in general position in order to ensure uniqueness of the lasso 

solution [this is quite a weak condition, to be discussed again shortly; see also Tibshirani 

(2013)].

There has been a considerable amount of recent work dedicated to the lasso problem, both in 

terms of computation and theory. A comprehensive summary of the literature in either 

category would be too long for our purposes here, so we instead give a short summary: for 

computational work, some relevant contributions are Friedman et al. (2007), Beck and 

Teboulle (2009), Friedman, Hastie and Tibshirani (2010), Becker, Bobin and Candès (2011), 

Boyd et al. (2011), Becker, Candès and Grant (2011); and for theoretical work see, for 

example, Greenshtein and Ritov (2004), Fuchs (2005), Donoho (2006), Candes and Tao 

(2006), Zhao and Yu (2006), Wainwright (2009), Candès and Plan (2009). Generally 

speaking, theory for the lasso is focused on bounding the estimation error  or 

, or ensuring exact recovery of the underlying model,  [with 

supp(·) denoting the support function]; favorable results in both respects can be shown under 

the right assumptions on the generative model (1) and the predictor matrix X. Strong 

theoretical backing, as well as fast algorithms, have made the lasso a highly popular tool.
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Yet, there are still major gaps in our understanding of the lasso as an estimation procedure. 

In many real applications of the lasso, a practitioner will undoubtedly seek some sort of 

inferential guarantees for his or her computed lasso model—but, generically, the usual 

constructs like p-values, confidence intervals, etc., do not exist for lasso estimates. There is a 

small but growing literature dedicated to inference for the lasso, and important progress has 

certainly been made, with many methods being based on resampling or data splitting; we 

review this work in Section 2.5. The current paper focuses on a significance test for lasso 

models that does not employ resampling or data splitting, but instead uses the full data set as 

given, and proposes a test statistic that has a simple and exact asymptotic null distribution.

Section 2 defines the problem that we are trying to solve, and gives the details of our 

proposal—the covariance test statistic. Section 3 considers an orthogonal predictor matrix X, 

in which case the statistic greatly simplifies. Here, we derive its Exp(1) asymptotic 

distribution using relatively simple arguments from extreme value theory. Section 4 treats a 

general (nonorthogonal) X, and under some regularity conditions, derives an Exp(1) limiting 

distribution for the covariance test statistic, but through a different method of proof that 

relies on discrete-time Gaussian processes. Section 5 empirically verifies convergence of the 

null distribution to Exp(1) over a variety of problem setups. Up until this point, we have 

assumed that the error variance σ2 is known; in Section 6, we discuss the case of unknown 

σ2. Section 7 gives some real data examples. Section 8 covers extensions to the elastic net, 

generalized linear models, and the Cox model for survival data. We conclude with a 

discussion in Section 9.

2. Significance testing in linear modeling

Classic theory for significance testing in linear regression operates on two fixed nested 

models. For example, if M and M ∪ {j} are fixed subsets of {1,…, p}, then to test the 

significance of the jth predictor in the model (with variables in) M ∪ {j}, one naturally uses 

the chi-squared test, which computes the drop in residual sum of squares (RSS) from 

regression on M ∪ {j} and M,

(3)

and compares this to a  distribution. (Here, σ2 is assumed to be known; when σ2 is 

unknown, we use the sample variance in its place, which results in the F-test, equivalent to 

the t-test, for testing the significance of variable j.)

Often, however, one would like to run the same test for M and M ∪ {j} that are not fixed, 

but the outputs of an adaptive or greedy procedure. Unfortunately, adaptivity invalidates the 

use of a  null distribution for the statistic (3). As a simple example, consider forward 

stepwise regression: starting with an empty model M = ∅, we enter predictors one at a time, 

at each step choosing the predictor j that gives the largest drop in residual sum of squares. In 

other words, forward stepwise regression chooses j at each step in order to maximize Rj in 

(3), over all j ∉ M. Since Rj follows a  distribution under the null hypothesis for each fixed 

j, the maximum possible Rj will clearly be stochastically larger than  under the null. 
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Therefore, using a chi-squared test to evaluate the significance of a predictor entered by 

forward stepwise regression would be far too liberal (having type I error much larger than 

the nominal level). Figure 1(a) demonstrates this point by displaying the quantiles of R1 in 

forward stepwise regression (the chisquared statistic for the first predictor to enter) versus 

those of a  variate, in the fully null case (when β* = 0). A test at the 5% level, for example, 

using the  cutoff of 3.84, would have an actual type I error of about 39%.

The failure of standard testing methodology when applied to forward stepwise regression is 

not an anomaly—in general, there seems to be no direct way to carry out the significance 

tests designed for fixed linear models in an adaptive setting.6 Our aim is hence to provide a 

(new) significance test for the predictor variables chosen adaptively by the lasso, which we 

describe next.

2.1. The covariance test statistic

The test statistic that we propose here is constructed from the lasso solution path, that is, the 

solution  in (2) a function of the tuning parameter λ ∈ [0, ∞). The lasso path can be 

computed by the well-known LARS algorithm of Efron et al. (2004) [see also Osborne, 

Presnell and Turlach (2000a, 2000b)], which traces out the solution as λ decreases from ∞ 

to 0. Note that when rank(X) < p there are possibly many lasso solutions at each λ and, 

therefore, possibly many solution paths; we assume that the columns of X are in general 

position,7 implying that there is a unique lasso solution at each λ > 0, and hence a unique 

path. The assumption that X has columns in general position is a very weak one [much 

weaker, e.g., than assuming that rank(X) = p]. For example, if the entries of X are drawn 

from a continuous probability distribution on , then the columns of X are almost surely 

in general position, and this is true regardless of the sizes of n and p; see Tibshirani (2013).

Before defining our statistic, we briefly review some properties of the lasso path.

• The path  is a continuous and piecewise linear function of λ, with knots 

(changes in slope) at values  (these knots depend on y, X).

• At λ = ∞, the solution  has no active variables (i.e., all variables have zero 

coefficients); for decreasing λ, each knot λk marks the entry or removal of some 

variable from the current active set (i.e., its coefficient becomes nonzero or zero, 

resp.). Therefore, the active set, and also the signs of active coefficients, remain 

constant in between knots.

6It is important to mention that a simple application of sample splitting can yield proper p-values for an adaptive procedure like 
forward stepwise: for example, run forward stepwise regression on one-half of the observations to construct a sequence of models, and 
use the other half to evaluate significance via the usual chi-squared test. Some of the related work mentioned in Section 2.5 does 
essentially this, but with more sophisticated splitting schemes. Our proposal uses the entire data set as given, and we do not consider 
sample splitting or resampling techniques. Aside from adding a layer of complexity, the use of sample splitting can result in a loss of 
power in significance testing.
7Points  are said to be in general position provided that no k-dimensional affine subspace , k < min{n, 
p}, contains more than k + 1 elements of {±X1, …, ±Xp}, excluding antipodal pairs. Equivalently: the affine span of any k + 1 points 

, for any signs s1,…, sk+1 ∈ {−1, 1}, does not contain any element of the set {±Xi : i 6≠ i1,…, ik+1}.
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• At any point λ in the path, the corresponding active set  of the lasso 

solution indexes a linearly independent set of predictor variables, that is, rank(XA) 

= |A|, where we use XA to denote the columns of X in A.

• For a general X, the number of knots in the lasso path is bounded by 3p (but in 

practice this bound is usually very loose). This bound comes from the following 

realization: if at some knot λk, the active set is  and the signs of 

active coefficients are , then the active set and signs cannot again 

be A and sA at some other knot λℓ ≠ λk. This in particular means that once a variable 

enters the active set, it cannot immediately leave the active set at the next step.

• For a matrix X satisfying the positive cone condition (a restrictive condition that 

covers, e.g., orthogonal matrices), there are no variables removed from the active 

set as λ decreases and, therefore, the number of knots is p.

We can now precisely define the problem that we are trying to solve: at a given step in the 

lasso path (i.e., at a given knot), we consider testing the significance of the variable that 

enters the active set. To this end, we propose a test statistic defined at the kth step of the 

path.

First, we define some needed quantities. Let A be the active set just before λk, and suppose 

that predictor j enters at λk. Denote by  the solution at the next knot in the path λk+1, 

using predictors A ∪ {j}. Finally, let  be the solution of the lasso problem using 

only the active predictors XA, at λ = λk+1. To be perfectly explicit,

(4)

We propose the covariance test statistic defined by

(5)

Intuitively, the covariance statistic in (5) is a function of the difference between  and 

, the fitted values given by incorporating the jth predictor into the current active set, 

and leaving it out, respectively. These fitted values are parameterized by λ, and so one may 

ask: at which value of λ should this difference be evaluated? Well, note first that 

, that is, the solution of the reduced problem at λk is simply that of the full 

problem, restricted to the active set A (as verified by the KKT conditions). Clearly then, this 

means that we cannot evaluate the difference at λ = λk, as the jth variable has a zero 

coefficient upon entry at λk, and hence
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Indeed, the natural choice for the tuning parameter in (5) is λ = λk+1: this allows the jth 

coefficient to have its fullest effect on the fit  before the entry of the next variable at λk+1 

(or possibly, the deletion of a variable from A at λk+1).

Secondly, one may also ask about the particular choice of function of 

. The covariance statistic in (5) uses an inner product of this 

difference with y, which can be roughly thought of as an (uncentered) covariance, hence 

explaining its name.8 At a high level, the larger the covariance of y with  compared to 

that with , the more important the role of variable j in the proposed model A ∪ {j}. 

There certainly may be other functions that would seem appropriate here, but the covariance 

form in (5) has a distinctive advantage: this statistic admits a simple and exact asymptotic 

null distribution. In Sections 3 and 4, we show that under the null hypothesis that the current 

lasso model contains all truly active variables, A ⊇ supp(β*),

that is, Tk is asymptotically distributed as a standard exponential random variable, given 

reasonable assumptions on X and the magnitudes of the nonzero true coefficients. [In some 

cases, e.g., when we have a strict inclusion , the use of an Exp(1) null 

distribution is actually conservative, because the limiting distribution of Tk is stochastically 

smaller than Exp(1).] In the above limit, we are considering both n, p → ∞; in Section 4, we 

allow for the possibility p > n, the high-dimensional case.

See Figure 1(b) for a quantile–quantile plot of T1 versus an Exp(1) variate for the same fully 

null example (β* = 0) used in Figure 1(a); this shows that the weak convergence to Exp(1) 

can be quite fast, as the quantiles are decently matched even for p = 10. Before proving this 

limiting distribution in Sections 3 (for an orthogonal X) and 4 (for a general X), we give an 

example of its application to real data, and discuss issues related to practical usage. We also 

derive useful alternative expressions for the statistic, present a connection to degrees of 

freedom, review related work, and finally, discuss the null hypothesis in more detail.

2.2. Prostate cancer data example and practical issues

We consider a training set of 67 observations and 8 predictors, the goal being to predict log 

of the PSA level of men who had surgery for prostate cancer. For more details, see Hastie, 

Tibshirani and Friedman (2008) and the references therein. Table 1 shows the results of 

forward stepwise regression and the lasso. Both methods entered the same predictors in the 

same order. The forward stepwise p-values are smaller than the lasso p-values, and would 

enter four predictors at level 0.05. The latter would enter only one or maybe two predictors. 

However, we know that the forward stepwise p-values are inaccurate, as they are based on a 

8From its definition in (5), we get 

 by expanding y = y − μ + μ, 
with μ = Xβ* denoting the true mean. The first two terms are now really empirical covariances, and the last term is typically small. In 
fact, when X is orthogonal, it is not hard to see that this last term is exactly zero under the null hypothesis.
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null distribution that does not account for the adaptive choice of predictors. We now make 

several remarks.

Remark 1—The above example implicitly assumed that one might stop entering variables 

into the model when the computed p-value rose above some threshold. More generally, our 

proposed test statistic and associated p-values could be used as the basis for multiple testing 

and false discovery rate control methods for this problem; we leave this to future work.

Remark 2—In the example, the lasso entered a predictor into the active set at each step. 

For a general X, however, a given predictor variable may enter the active set more than once 

along the lasso path, since it may leave the active set at some point. In this case, we treat 

each entry as a separate problem. Our test is specific to a step in the path, and not to a 

predictor variable at large.

Remark 3—For the prostate cancer data set, it is important to include an intercept in the 

model. To accommodate this, we ran the lasso on centered y and column-centered X (which 

is equivalent to including an unpenalized intercept term in the lasso criterion), and then 

applied the covariance test (with the centered data). In general, centering y and the columns 

of X allows us to account for the effect of an intercept term, and still use a model of the form 

(1). From a theoretical perspective, this centering step creates a weak dependence between 

the components of the error vector ε ∈ ℝn. If originally we assumed i.i.d. errors, εi ~ N(0, 

σ2), then after centering y and the columns of X, our new errors are of the form , 

where . It is easy see that these new errors are correlated:

One might imagine that such correlation would cause problems for our theory in Sections 3 

and 4, which assumes i.i.d. normal errors in the model (1). However, a careful look at the 

arguments in these sections reveals that the only dependence on y is through XTy, the inner 

products of y with the columns of X. Furthermore,

which is the same as it would have been without centering (here 11T is the matrix of all 1s, 

and we used that the columns of X are centered). Therefore, our arguments in Sections 3 and 

4 apply equally well to centered data, and centering has no effect on the asymptotic 

distribution of Tk.

Remark 4—By design, the covariance test is applied in a sequential manner, estimating p-

values for each predictor variable as it enters the model along the lasso path. A more 

difficult problem is to test the significance of any of the active predictors in a model fit by 

the lasso, at some arbitrary value of the tuning parameter λ. We discuss this problem briefly 

in Section 9.
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2.3. Alternate expressions for the covariance statistic

Here, we derive two alternate forms for the covariance statistic in (5). The first lends some 

insight into the role of shrinkage, and the second is helpful for the convergence results that 

we establish in Sections 3 and 4. We rely on some basic properties of lasso solutions; see, 

for example, Tibshirani and Taylor (2012), Tibshirani (2013). To remind the reader, we are 

assuming that X has columns in general position.

For any fixed λ, if the lasso solution has active set  and signs 

, then it can be written explicitly (over active variables) as

In the above expression, the first term  simply gives the regression 

coefficients of y on the active variables XA, and the second term  can be 

thought of as a shrinkage term, shrinking the values of these coefficients toward zero. 

Further, the lasso fitted value at λ is

(6)

where  denotes the projection onto the column space of XA, and 

 is the (Moore–Penrose) pseudoinverse of .

Using the representation (6) for the fitted values, we can derive our first alternate expression 

for the covariance statistic in (5). If A and sA are the active set and signs just before the knot 

λk, and j is the variable added to the active set at λk, with sign s upon entry, then by (6),

where . We can equivalently write , the 

concatenation of sA and the sign s of the jth coefficient when it entered (as no sign changes 

could have occurred inside of the interval [λk, λk+1], by definition of the knots). Let us 

assume for the moment that the solution of reduced lasso problem (4) at λk+1 has all 

variables active and —remember, this holds for the reduced problem at 

λk, and we will return to this assumption shortly. Then, again by (6),

and plugging the above two expressions into (5),
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(7)

Note that the first term above is 

, which is exactly the chi-

squared statistic for testing the significance of variable j, as in (3). Hence, if A, j were fixed, 

then without the second term, Tk would have a  distribution under the null. But of course 

A, j are not fixed, and so much like we saw previously with forward stepwise regression, the 

first term in (7) will be generically larger than , because j is chosen adaptively based on its 

inner product with the current lasso residual vector. Interestingly, the second term in (7) 

adjusts for this adaptivity: with this term, which is composed of the shrinkage factors in the 

solutions of the two relevant lasso problems (on X and XA), we prove in the coming sections 

that Tk has an asymptotic Exp(1) null distribution. Therefore, the presence of the second 

term restores the (asymptotic) mean of Tk to 1, which is what it would have been if A, j were 

fixed and the second term were missing. In short, adaptivity and shrinkage balance each 

other out.

This insight aside, the form (7) of the covariance statistic leads to a second representation 

that will be useful for the theoretical work in Sections 3 and 4. We call this the knot form of 

the covariance statistic, described in the next lemma.

Lemma 1—Let A be the active set just before the kth step in the lasso path, that is, 

, with λk being the kth knot. Also, let sA denote the signs of the active 

coefficients, , j be the predictor that enters the active set at λk, and s be its 

sign upon entry. Then, assuming that

(8)

or in other words, all coefficients are active in the reduced lasso problem (4) at λk+1 and 

have signs sA, we have

(9)

where

and sA∪{j} is the concatenation of sA and s.

The proof starts with expression (7), and arrives at (9) through simple algebraic 

manipulations. We defer it until Appendix A.1.
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When does the condition (8) hold? This was a key assumption behind both of the forms (7) 

and (9) for the statistic. We first note that the solution  of the reduced lasso problem has 

signs sA at λk, so it will have the same signs sA at λk+1 provided that no variables are deleted 

from the active set in the solution path  for λ ∈ [λk+1, λk]. Therefore, assumption (8) 

holds:

When X satisfies the positive cone condition (which includes X orthogonal), because no 

variables ever leave the active set in this case. In fact, for X orthogonal, it is 

straightforward to check that C(A, sA, j, s) = 1, so Tk = λk(λk − λk+1)/σ2.

When k = 1 (we are testing the first variable to enter), as a variable cannot leave the 

active set right after it has entered. If k = 1 and X has unit normed columns, ‖Xi‖2 = 1 for 

i = 1,…, p, then we again have C(A, sA, j, s) = 1 (note that A = ∅), so T1 = λ1(λ1 − 

λ2)/σ2.

When sA = sign((XA)+y), that is, sA contains the signs of the least squares coefficients on 

XA, because the same active set and signs cannot appear at two different knots in the 

lasso path (applied here to the reduced lasso problem on XA).

The first and second scenarios are considered in Sections 3 and 4.1, respectively. The third 

scenario is actually somewhat general and occurs, for example, when 

; in this case, both the lasso and least squares on XA recover 

the signs of the true coefficients. Section 4.2 studies the general X and k ≥ 1 case, wherein 

this third scenario is important.

2.4. Connection to degrees of freedom

There is an interesting connection between the covariance statistic in (5) and the degrees of 

freedom of a fitting procedure. In the regression setting (1), for an estimate ŷ [which we 

think of as a fitting procedure ŷ = ŷ(y)], its degrees of freedom is typically defined [Efron 

(1986)] as

(10)

In words, df(ŷ) sums the covariances of each observation yi with its fitted value ŷi. Hence, 

the more adaptive a fitting procedure, the higher this covariance, and the greater its degrees 

of freedom. The covariance test evaluates the significance of adding the jth predictor via 

something loosely like a sample version of degrees of freedom, across two models: that fit 

on A ∪ {j}, and that on A. This was more or less the inspiration for the current work.

Using the definition (10), one can reason [and confirm by simulation, just as in Figure 1(a)] 

that with k predictors entered into the model, forward stepwise regression had used 

substantially more than k degrees of freedom. But something quite remarkable happens 

when we consider the lasso: for a model containing k nonzero coefficients, the degrees of 

freedom of the lasso fit is equal to k (either exactly or in expectation, depending on the 

assumptions) [Efron et al. (2004), Zou, Hastie and Tibshirani (2007), Tibshirani and Taylor 

(2012)]. Why does this happen? Roughly speaking, it is the same adaptivity versus 
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shrinkage phenomenon at play. [Recall our discussion in the last section following the 

expression (7) for the covariance statistic.] The lasso adaptively chooses the active 

predictors, which costs extra degrees of freedom; but it also shrinks the nonzero coefficients 

(relative to the usual least squares estimates), which decreases the degrees of freedom just 

the right amount, so that the total is simply k.

2.5. Related work

There is quite a lot of recent work related to the proposal of this paper. Wasserman and 

Roeder (2009) propose a procedure for variable selection and p-value estimation in high-

dimensional linear models based on sample splitting, and this idea was extended by 

Meinshausen, Meier and Bühlmann (2009). Meinshausen and Bühlmann (2010) propose a 

generic method using resampling called “stability selection,” which controls the expected 

number of false positive variable selections. Minnier, Tian and Cai (2011) use perturbation 

resampling-based procedures to approximate the distribution of a general class of penalized 

parameter estimates. One big difference with the work here: we propose a statistic that 

utilizes the data as given and does not employ any resampling or sample splitting.

Zhang and Zhang (2014) derive confidence intervals for contrasts of high-dimensional 

regression coefficients, by replacing the usual score vector with the residual from a relaxed 

projection (i.e., the residual from sparse linear regression). Bühlmann (2013) constructs p-

values for coefficients in high-dimensional regression models, starting with ridge estimation 

and then employing a bias correction term that uses the lasso. Even more recently, van de 

Geer and Bühlmann (2013), Javanmard and Montanari (2013a, 2013b) all present 

approaches for debiasing the lasso estimate based on estimates of the inverse covariance 

matrix of the predictors. (The latter work focuses on the special case of a predictor matrix X 

with i.i.d. Gaussian rows; the first two consider a general matrix X.) These debiased lasso 

estimates are asymptotically normal, which allows one to compute p-values both marginally 

for an individual coefficient, and simultaneously for a group of coefficients. All of the work 

mentioned in the present paragraph provides a way to make inferential statements about 

preconceived predictor variables of interest (or preconceived groups of interest); this is in 

contrast to our work, which instead deals directly with variables that have been adaptively 

selected by the lasso procedure. We discuss this next.

2.6. What precisely is the null hypothesis?

The referees of a preliminary version of this manuscript expressed some confusion with 

regard to the null distribution considered by the covariance test. Given a fixed number of 

steps k ≥ 1 along the lasso path, the covariance test examines the set of variables A selected 

by the lasso before the kth step (i.e., A is the current active set not including the variable to 

be added at the kth step). In particular, the null distribution being tested is

(11)

where β* is the true underlying coefficient vector in the model (1). For k = 1, we have A = ∅ 

(no variables are selected before the first step), so this reduces to a test of the global null 

hypothesis: β* = 0. For k > 1, the set A is random (it depends on y), and hence the null 
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hypothesis in (11) is itself a random event. This makes the covariance test a conditional 

hypothesis test beyond the first step in the path, as the null hypothesis that it considers is 

indeed a function of the observed data. Statements about its null distribution must therefore 

be made conditional on the event that A ⊇ supp(β*), which is precisely what is done in 

Sections 3.2 and 4.2.

Compare the null hypothesis in (11) to a null hypothesis of the form

(12)

where S ⊆ {1,…, p} is a fixed subset. The latter hypothesis, in (12), describes the setup 

considered by Zhang and Zhang (2014), Bühlmann (2013), van de Geer and Bühlmann 

(2013), Javanmard and Montanari (2013a, 2013b). At face value, the hypotheses (11) and 

(12) may appear similar [the test in (11) looks just like that in (12) with S = {1,…, p} \ A], 

but they are fundamentally very different. The difference is that the null hypothesis in (11) is 

random, whereas that in (12) is fixed; this makes the covariance test a conditional hypothesis 

test, while the tests constructed in all of the aforementioned work are traditional 

(unconditional) hypothesis tests. It should be made clear that the goal of our work and these 

works also differ. Our test examines an adaptive subset of variables A deemed interesting by 

the lasso procedure; for such a goal, it seems necessary to consider a random null 

hypothesis, as theory designed for tests of fixed hypotheses would not be valid here.9 The 

main goal of Zhang and Zhang (2014), Bühlmann (2013), van de Geer and Bühlmann 

(2013), Javanmard and Montanari (2013a, 2013b), it appears, is to construct a new set of 

variables, say A, based on testing the hypotheses in (12) with S = {j} for j = 1,…, p. Though 

the construction of this new set Ã may have started from a lasso estimate, it need not be true 

that Ã matches the lasso active set A, and ultimately it is this new set Ã (and inferential 

statements concerning Ã) that these authors consider the point of interest.

3. An orthogonal predictor matrix X

We examine the special case of an orthogonal predictor matrix X, that is, one that satisfies 

XTX = I. Even though the results here can be seen as special cases of those for a general X in 

Section 4, the arguments in the current orthogonal X case rely on relatively straightforward 

extreme value theory and are hence much simpler than their general X counterparts (which 

analyze the knots in the lasso path via Gaussian process theory). Furthermore, the Exp(1) 

limiting distribution for the covariance statistic translates in the orthogonal case to a few 

interesting and previously unknown (as far as we can tell) results on the order statistics of 

independent standard χ1 variates. For these reasons, we discuss the orthogonal X case in 

detail.

As noted in the discussion following Lemma 1 (see the first point), for an orthogonal X, we 

know that the covariance statistic for testing the entry of the variable at step k in the lasso 

path is

9In principle, fixed hypothesis tests can be used along with the appropriate correction for multiple comparisons in order to test a 
random null hypotheses. Aside from being conservative, it is unclear how to efficiently carry out such a procedure when the random 
null hypothesis consists of a group of coefficients (as opposed to a single one).
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Again using orthogonality, we rewrite  for a constant C (not 

depending on β) in the criterion in (2), and then we can see that the lasso solution at any 

given value of λ has the closed-form:

where X1,…, Xp are columns of X, and Sλ : ℝ → ℝ is the soft-thresholding function,

Letting , j = 1,…, p, the knots in the lasso path are simply the values of λ at which 

the coefficients become nonzero (i.e., cease to be thresholded),

where |U(1)| ≥ |U(2)| ≥ … ≥ |U(p)| are the order statistics of |U1|,…,|Up| (somewhat of an 

abuse of notation). Therefore,

Next, we study the special case k = 1, the test for the first predictor to enter the active set 

along the lasso path. We then examine the case k ≥ 1, the test at a general step in the lasso 

path.

3.1. The first step, k = 1

Consider the covariance test statistic for the first predictor to enter the active set, that is, for 

k = 1,

We are interested in the distribution of T1 under the null hypothesis; since we are testing the 

first predictor to enter, this is

Lockhart et al. Page 13

Ann Stat. Author manuscript; available in PMC 2015 January 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Under the null, U1,…, Up are i.i.d., Uj ~ N(0, σ2), and so |U1|/σ,…, |Up|/σ follow a χ1 

distribution (absolute value of a standard Gaussian). That T1 has an asymptotic Exp(1) null 

distribution is now given by the next result.

Lemma 2—Let  be the order statistics of an independent sample of χ1 

variates (i.e., they are the sorted absolute values of an independent sample of standard 

Gaussian variates). Then

This lemma reveals a remarkably simple limiting distribution for the largest of independent 

χ1 random variables times the gap between the largest two; we skip its proof, as it is a 

special case of the following generalization.

Lemma 3—If  are the order statistics of an independent sample of χ1 

variates, then for any fixed k ≥ 1,

where the limiting distribution (on the right-hand side above) has independent components. 

To be perfectly clear, here and throughout we use Exp(α) to denote the exponential 

distribution with scale parameter α (not rate parameter α), so that if Z ~ Exp(α), then 

.

Proof—The χ1 distribution has CDF

where Φ is the standard normal CDF. We first compute

the last equality using Mills’ ratio. Theorem 2.2.1 in de Haan and Ferreira (2006) then 

implies that, for constants ap = F−1 (1 − 1/p) and bp = pF′(ap),

where E0 is a standard exponential variate, so − log E0 has the standard (or type I) extreme 

value distribution. Hence, according to Theorem 3 in Weissman (1978), for any fixed k ≥ 1, 
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the random variables W0 = bp (Vk+1 − ap) and Wi = bp(Vi − Vi+1), i = 1,…, k, converge 

jointly:

where G0, E1,…, Ek are independent, G0 is Gamma distributed with scale parameter 1 and 

shape parameter k, and E1,…, Ek are standard exponentials. Now note that

We claim that ap/bp → 1; this would give the desired result as the second term converges to 

zero, using bp→∞. Writing ap, bp more explicitly, we see that 1 − 1/p = 2Φ(ap) − 1, that is, 

1 − Φ(ap) = 1/(2p), and bp = 2pϕ(ap). Using Mills’ inequalities,

and multiplying by 2p,

Since ap → ∞, this means that bp/ap → 1, completing the proof. □

Practically, Lemma 3 tells us that under the global null hypothesis y ~ N(0, σ2), comparing 

the covariance statistic Tk at the kth step of the lasso path to an Exp(1) distribution is 

increasingly conservative [at the first step, T1 is asymptotically Exp(1), at the second step, 

T2 is asymptotically Exp(1/2), at the third step, T3 is asymptotically Exp(1/3), and so forth]. 

This progressive conservatism is favorable, if we place importance on parsimony in the 

fitted model: we are less and less likely to incur a false rejection of the null hypothesis as the 

size of the model grows. Moreover, we know that the test statistics T1, T2, … at successive 

steps are independent, and hence so are the corresponding p-values; from the point of view 

of multiple testing corrections, this is nearly an ideal scenario.

Of real interest is the distribution of Tk, k ≥ 1, not under the global null hypothesis, but 

rather, under the weaker null hypothesis that all variables excluded from the current lasso 

model are truly inactive (i.e., they have zero coefficients in the true model). We study this in 

next section.
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3.2. A general step, k ≥ 1

We suppose that exactly k0 components of the true coefficient vector β* are nonzero, and 

consider testing the entry of the predictor at step k = k0 + 1. Let A* = supp(β*) denote the 

true active set (so k0 = |A*|), and let B denote the event that all truly active variables are 

added at steps 1, …, k0,

(13)

We show that under the null hypothesis (i.e., conditional on B), the test statistic  is 

asymptotically Exp(1), and further, the test statistic  at a future step k = k0 + d is 

asymptotically Exp(1/d).

The basic idea behind our argument is as follows: if we assume that the nonzero components 

of β* are large enough in magnitude, then it is not hard to show (relying on orthogonality, 

here) that the truly active predictors are added to the model along the first k0 steps of the 

lasso path, with probability tending to one. The test statistic at the (k0 + 1)st step and beyond 

would therefore depend on the order statistics of |Ui| for truly inactive variables i, subject to 

the constraint that the largest of these values is smaller than the smallest |Uj| for truly active 

variables j. But with our strong signal assumption, that is, that the nonzero entries of β* are 

large in absolute value, this constraint has essentially no effect, and we are back to studying 

the order statistics from a χ1 distribution, as in the last section. This is made precise below.

Theorem 1—Assume that X ∈ ℝn×p is orthogonal, and y ℝn is drawn from the normal 

regression model (1), where the true coefficient vector β* has k0 nonzero components. Let 

A* = supp(β*) be the true active set, and assume that the smallest nonzero true coefficient is 

large compared to ,

Let B denote the event in (13), namely, that the first k0 variables entering the model along 

the lasso path are those in A*. Then ℙ(B) → 1 as p → ∞, and for each fixed d ≥ 0, we have

The same convergence in distribution holds conditionally on B.

Proof—We first study ℙ(B). Let , and choose cp such that

Note that , independently for j = 1,…, p. For j ∈ A*,
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so

At the same time,

Therefore, ℙ(B) → 1. This in fact means that ℙ(E|B) − ℙ(E) → 0 for any sequence of events 

E, so only the weak convergence of  remains to be proved. For this, we let 

m = p − k0, and V1 ≥ V2 ≥ ⋯ ≥ Vm denote the order statistics of the sample |Uj|, j ∉ A* of 

independent χ1 variates. Then, on the event B, we have

As ℙ(B) → 1, we have in general

Hence, we are essentially back in the setting of the last section, and the desired convergence 

result follows from the same arguments as those for Lemma 3. □

4. A general predictor matrix X

In this section, we consider a general predictor matrix X, with columns in general position. 

Recall that our proposed covariance test statistic (5) is closely intertwined with the knots λ1 

≥ … ≥ λr in the lasso path, as it was defined in terms of difference between fitted values at 

successive knots. Moreover, Lemma 1 showed that (provided there are no sign changes in 

the reduced lasso problem over [λk+1, λk]) this test statistic can be expressed even more 

explicitly in terms of the values of these knots. As was the case in the last section, this knot 

form is quite important for our analysis here. Therefore, it is helpful to recall [Efron et al. 

(2004), Tibshirani (2013)] the precise formulae for the knots in the lasso path. If A denotes 

the active set and sA denotes the signs of active coefficients at a knot λk,

then the next knot λk+1 is given by
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(14)

Where  and  are the values of λ at which, if we were to decrease the tuning 

parameter from λk and continue along the current (linear) trajectory for the lasso 

coefficients, a variable would join and leave the active set A, respectively. These values 

are10

(15)

where recall ; and

(16)

As we did in Section 3 with the orthogonal X case, we begin by studying the asymptotic 

distribution of the covariance statistic in the special case k = 1 (i.e., the first model along the 

path), wherein the expressions for the next knot (14), (15), (16) greatly simplify. Following 

this, we study the more difficult case k ≥ 1. For the sake of readability, we defer the proofs 

and most technical details until the Appendix.

4.1. The first step, k = 1

We assume here that X has unit normed columns: ‖Xi‖2 = 1, for i =1,…,p; we do this mostly 

for simplicity of presentation, and the generalization to a matrix X whose columns are not 

unit normed is given in the next section (though the exponential limit is now a conservative 

upper bound). As per our discussion following Lemma 1 (see the second point), we know 

that the first predictor to enter the active set along the lasso path cannot leave at the next 

step, so the constant sign condition (8) holds, and by Lemma 1 the covariance statistic for 

testing the entry of the first variable can be written as

(the leading factor C being equal to one since we assumed that X has unit normed columns). 

Now let , and R = XTX. With λ0 = ∞, we have A = ∅, and trivially, no 

variables can leave the active set. The first knot is hence given by (15), which can be 

expressed as

10In expressing the joining and leaving times in the forms (15) and (16), we are implicitly assuming that λk+1 < λk, with strict 
inequality. Since X has columns in general position, this is true for (Lebesgue) almost every y, or in other words, with probability one 
taken over the normally distributed errors in (1).
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(17)

Letting j1, s1 be the first variable to enter and its sign (i.e., they achieve the maximum in the 

above expression), and recalling that j1 cannot leave the active set immediately after it has 

entered, the second knot is again given by (15), written as

The general position assumption on X implies that |Rj,j1| < 1, and so 1 − ss1Rj,j1 > 0, all j ≠ 

j1, s ∈ {−1,1}. It is easy to show then that the indicator inside the maximum above can be 

dropped, and hence

(18)

Our goal now is to calculate the asymptotic distribution of T1 = λ1(λ1 − λ2)/σ2, with λ1 and 

λ2 as above, under the null hypothesis; to be clear, since we are testing the significance of 

the first variable to enter along the lasso path, the null hypothesis is

(19)

The strategy that we use here for the general X case—which differs from our extreme value 

theory approach for the orthogonal X case—is to treat the quantities inside the maxima in 

expressions (17), (18) for λ1, λ2 as discrete-time Gaussian processes. First, we consider the 

zero mean Gaussian process

(20)

We can easily compute the covariance function of this process:

where the expectation is taken over the null distribution in (19). From (17), we know that the 

first knot is simply

In addition to (20), we consider the process

(21)

An important property: for fixed j1, s1, the entire process  is independent of g(j1, 

s1). This can be seen by verifying that
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and noting that g(j1, s1) and , all j ≠ j1, s ∈ {−1, 1}, are jointly

(22)

and from the above we know that for fixed j1, s1, M(j1, s1) is independent of g(j1, s1). If j1, s1 

are instead treated as random variables that maximize g(j, s) (the argument maximizers 

being almost surely unique), then from (18) we see that the second knot is λ2 = M(j1, s1). 

Therefore, to study the distribution of T1 = λ1(λ1 − λ2)/σ2, we are interested in the random 

variable

on the event

It turns out that this event, which concerns the argument maximizers of g, can be rewritten 

as an event concerning only the relative values of g and M [see Taylor, Takemura and Adler 

(2005) for the analogous result for continuous-time processes].

Lemma 4—With g, M as defined in (20), (21), (22), we have

This is an important realization because the dual representation g(j1, s1) > M(j1, s1)} is more 

tractable, once we partition the space over the possible argument minimizers j1, s1, and use 

the fact that M(j1, s1) is independent of g(j1, s1) for fixed j1, s1. In this vein, we express the 

distribution of T1 = λ1(λ1 − λ2)/σ2 in terms of the sum

The terms in the above sum can be simplified: dropping for notational convenience the 

dependence on j1, s1, we have

where , which follows by simply solving for g in the quadratic 

equation g(g − M)/σ2 = t. Therefore,
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(23)

where  is the standard normal function (i.e., , for Φ the standard normal CDF), 

 is the distribution of M(j1, s1), and we have used the fact that g(j1, s1) and M(j1, s1) 

are independent for fixed j1, s1, as well as M(j1, s1) > 0. Continuing from (23), we can write 

the difference between  and the standard exponential tail, , as

(24)

where we used the fact that

We now examine the term inside the braces in (24), the difference between a ratio of normal 

survival functions and e−t; our next lemma shows that this term vanishes as m → ∞.

Lemma 5—For any t ≥ 0,

Hence, loosely speaking, if each M(j1, s1) → ∞ fast enough as p → ∞, then the right-hand 

side in (24) converges to zero, and T1 converges weakly to Exp(1). This is made precise 

below.

Lemma 6—Consider M(j1, s1) defined in (21), (22) over j1 = 1, …, p and s1 ∈ {−1,1}. If 

for any fixed m0 > 0

(25)

then the right-hand side in (24) converges to zero as p → ∞, and so ℙ(T1 > t) → e−t for all t 

≥ 0.

The assumption in (25) is written in terms of random variables whose distributions are 

induced by the steps along the lasso path; to make our assumptions more transparent, we 

show that (25) is implied by a conditional variance bound involving the predictor matrix X 

alone, and arrive at the main result of this section.
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Theorem 2—Assume that X ∈ ℝn×p has unit normed columns in general position, and let R 

= XTX. Assume also that there is some δ > 0 such that for each j = 1, …, p, there exists a 

subset of indices S ⊆ {1,…, p} \ {j} with

(26)

and the size of S growing faster than log p,

(27)

The under the null distribution in (19) [i.e., y is drawn from the regression model (1) with β* 

= 0], we have ℙ(T1 > t) → e−t as p → ∞ for all t ≥ 0.

Remark—Conditions (26) and (27) are sufficient to ensure (25), or in other words, that 

each M(j1, s1) grows as in ℙ(M(j1, s1) m0) = o(1/p), for any fixed m0. While it is true that 

 will typically grow as p grows, some assumption is required so that M(j1, s1) 

concentrates around its mean faster than standard Gaussian concentration results (such as the 

Borell-TIS inequality) imply.

Generally speaking, the assumptions (26) and (27) are not very strong. Stated differently, 

(26) is a lower bound on the variance of , conditional on  for all ℓ ∈ S \ 

{i}. Hence, for any j, we require the existence of a subset S not containing j such that the 

variables Ui, i ∈ S, are not too correlated, in the sense that the conditional variance of any 

one given all the others is bounded below. This subset S has to be larger in size than log p, 

as made clear in (27). Note that, in fact, it suffices to find a total of two disjoint subsets S1, 

S2 with the properties (26) and (27), because then for any j, either one or the other will not 

contain j.

An example of a matrix X that does not satisfy (26) and (27) is one with fixed rank as p 

grows. (This, of course, would also not satisfy the general position assumption.) In this case, 

we would not be able to find a subset of the variables , i = 1, …, p, that is both 

linearly independent and has size larger than r = rank(X), which violates the conditions. We 

note that in general, since |S| ≤ rank(X) ≤ n, and |S|/ log p → ∞, conditions (26) and (27) 

require that n/ log p → ∞.

4.2. A general step, k ≥ 1

In this section, we no longer assume that X has unit normed columns (in any case, this 

provides no simplification in deriving the null distribution of the test statistic at a general 

step in the lasso path). Our arguments here have more or less the same form as they did in 

the last section, but overall the calculations are more complicated.

Fix an integer k0 ≥ 0, subset A0 ⊆ {1, …, p} containing the true active set A0 ⊇ A* = 

supp(β*), and sign vector . Consider the event
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(28)

We assume that ℙ(B) → 1 as p → ∞. In words, this is assuming that with probability 

approaching one: the lasso estimate at step k0 in the path has support A0 and signs ; the 

least squares estimate on A0 has the same signs as this lasso estimate; the knots at steps k0 + 

1 and k0 + 2 correspond to joining events; and in particular, the maximization defining the 

joining event at step k0 + 1 can be taken to be unrestricted, that is, without the indicators 

constraining the individual arguments to be . Our goal is to characterize the asymptotic 

distribution of the covariance statistic Tk at the step k = k0 + 1, under the null hypothesis 

(i.e., conditional on the event B). We will comment on the stringency of the assumption that 

ℙ(B) → 1 following our main result in Theorem 3.

First note that on B, we have sA = sign((XA)+y), and as discussed in the third point following 

Lemma 1, this implies that the solution of the reduced problem (4) on XA cannot incur any 

sign changes over the interval [λk, λk+1]. Hence, we can apply Lemma 1 to write the 

covariance statistic on B as

where , A and sA are the active set and 

signs at step k − 1, and jk is the variable added to the active set at step k, with sign sk. Now, 

analogous to our definition in the last section, we define the discrete-time Gaussian process

(29)

For any fixed A, sA, the above process has mean zero provided that A ⊇ A*. Additionally, 

for any such fixed A, sA, we can compute its covariance function

(30)

Note that on the event B, the kth knot in the lasso path is

For fixed jk, sk, we also consider the process
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(31)

(above,  is the concatenation of sA and sk) and its achieved maximum value, subject to 

being less than the maximum of g(A,sA),

(32)

If jk, sk indeed maximize g(A,sA), that is, they correspond to the variable added to the active 

set at λk and its sign (note that these are almost surely unique), then on B, we have 

. To study the distribution of Tk on B, we are therefore interested in 

the random variable

on the event

(33)

Equivalently, we may write

Since ℙ(B) → 1, we have in general

(34)

where we have replaced all instances of A and sA on the right-hand side above with the fixed 

subset A0 and sign vector . This is a helpful simplification, because in what follows we 

may now take A = A0 and sA =  as fixed, and consider the distribution of the random 

processes  and . With A = A0 and sA =  fixed, we drop the notational 

dependence on them and write these processes as g and M. We also write the scaling factor 

C(A0, , jk, sk) as C(jk, sk).

The setup in (34) looks very much like the one in the last section [and to draw an even 

sharper parallel, the scaling factor C(jk, sk) is actually equal to one over the variance of g(jk, 

sk), meaning that  is standard normal for fixed jk, sk, a fact that we will 
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use later in the proof of Lemma 8]. However, a major complication is that g(jk, sk) and M (jk, 

sk) are no longer independent for fixed jk, sk. Next, we derive a dual representation for the 

event (33) (analogous to Lemma 4 in the last section), introducing a triplet of random 

variables M+, M−, M0—it turns out that g is independent of this triplet, for fixed jk, sk.

Lemma 7—Let g be as defined in (29) (with A, sA fixed at A0, ). Let Σj,j′ denote the 

covariance function of g [short form for the expression in (30)].11 Define

(35)

(36)

(37)

Then the event E(jk, sk) in (33), that jk, sk maximize g, can be written as an intersection of 

events involving M+, M−, M0:

(38)

As a result of Lemma 7, continuing from (34), we can decompose the tail probability of Tk 

as

(39)

A key point here is that, for fixed jk, sk, the triplet M+(jk, sk), M−(jk, sk), M0(jk, sk) is 

independent of g(jk, sk), which is true because

11To be perfectly clear, here Σj,j′ actually depends on s, s′, but our notation suppresses this dependence for brevity.
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and g(jk, sk), along with , for all j, s, form a jointly 

Gaussian collection of random variables. If we were to now replace M by M+ in the first line 

of (39), and define a modified statistic  via its tail probability,

(40)

then arguments similar to those in the second half of Section 4.1 give a (conservative) 

exponential limit for .

Lemma 8—Consider g as defined in (29) (with A, sA fixed at A0, ), and M+, M−, M0 as 

defined in (35), (36), (37). Assume that for any fixed m0,

(41)

Then the modified statistic  in (40) satisfies , for all t ≥ 0.

Of course, deriving the limiting distribution of  was not the goal, and it remains to relate 

 to . A fortuitous calculation shows that the two seemingly different 

quantities M+ and M—the former of which is defined as the maximum of particular 

functionals of g, and the latter concerned with the joining event at step k + 1—admit a very 

simple relationship: M+(jk, sk) ≤ M(jk, sk) for the maximizing jk, sk. We use this to bound the 

tail of Tk.

Lemma 9—Consider g, M as defined in (29), (31), (32) (with A, sA fixed at A0, ), and 

consider M+ as defined in (36). Then for any fixed jk, sk, on the event E(jk, sk) in (33), we 

have

Hence, if we assume as in Lemma 8 the condition (41), then limp→∞ ℙ(Tk > t) ≤ e−t for all t 

≥ 0.

Though Lemma 9 establishes a (conservative) exponential limit for the covariance statistic 

Tk, it does so by enforcing assumption (41), which is phrased in terms of the tail distribution 

of a random process defined at the kth step in the lasso path. We translate this into an 

explicit condition on the covariance structure in (30), to make the stated assumptions for 

exponential convergence more concrete.

Theorem 3—Assume that X ∈ ℝn×p has columns in general position, and y ∈ ℝn is drawn 

from the normal regression model (1). Assume that for a fixed integer k0 ≥ 0, subset A0 ⊆ 
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{1, …, p with A0 ⊇ A* = supp(β*) and sign vector  ∈ {−1, 1}|A0|, the event B in} (28) 

satisfies ℙ(B) → 1 as p → ∞. Assume that there exists a constant 0 < η ≤ 1 such that

(42)

Define the matrix R by

Assume that the diagonal elements in R are all of the same order, that is, Rii/Rjj ≤ C for all i, 

j and some constant C > 0. Finally assume that, for each fixed j ∉ A0, there is a set S ⊆ {1, 

…, p} \ (A0 ∪ {j}) such that for all i ∈ S,

(43)

(44)

(45)

where δ > 0 is a constant (not depending on j), and the size of S grows faster than log p,

(46)

Then at step k = k0 + 1, we have limp→∞ ℙ(Tk > t) ≤ e−t for all t ≥ 0. The same result holds 

for the tail of Tk conditional on B.

Remark 5—If X has unit normed columns, then by taking k0 = 0 (and accordingly, A0 = ∅, 

) in Theorem 3, we essentially recover the result of Theorem 2. To see this, note that 

with k0 = 0 (and A0, ), we have ℙ(B) = 1 for all finite p (recall the arguments given at 

the beginning of Section 4.1). Also, condition (42) trivially holds with η = 1 because A0 = ∅. 

Next, the matrix R defined in the theorem reduces to R = XTX, again because A0 = ∅; note 

that R has all diagonal elements equal to one, because X has unit normed columns. Hence, 

(43) is the same as condition (26) in Theorem 2. Finally, conditions (44) and (45) both 

reduce to |Rij| < 1, which always holds as X has columns in general position. Therefore, 

when k0 = 0, Theorem 3 imposes the same conditions as Theorem 2, and gives essentially 

the same result—we say “essentially” here is because the former gives a conservative 

exponential limit for T1, while the latter gives an exact exponential limit.

Remark 6—If X is orthogonal, then for any A0, conditions (42) and (43)–(46) are trivially 

satisfied [for the latter set of conditions, we can take, e.g., S = {1, …, p\(A0∪}{j})]. With an 

additional condition on the strength of the true nonzero coefficients, we can assure that ℙ(B) 

→ 1 as p → ∞ with A0 = A*,  = sign , and k0 = |A0|, and hence prove a conservative 
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exponential limit for Tk; note that this is precisely what is done in Theorem 1 (except that in 

this case, the exponential limit is proven to be exact).

Remark 7—Defining  for i ∉ A0, the condition (43) is a lower bound on 

the ratio of the conditional variance of Ui on Uℓ, ℓ ∉ S, to the unconditional variance of Ui. 

Loosely speaking, conditions (43), (44), and (45) can all be interpreted as requiring, for any j 

∉ A0, the existence of a subset S not containing j (and disjoint from A0) such that the 

variables Ui, i ∈ S, are not very correlated. This subset has to be large in size compared to 

log p, by (46). An implicit consequence of (43)–(46), as argued in the remark following 

Theorem 2, is that n/log p → ∞.

Remark 8—Some readers will likely recognize condition (42) as that of mutual 

incoherence or strong irrepresentability, commonly used in the lasso literature on exact 

support recovery [see, e.g., Wainwright (2009), Zhao and Yu (2006)]. This condition, in 

addition to a lower bound on the magnitudes of the true coefficients, is sufficient for the 

lasso solution to recover the true active set A* with probability tending to one, at a carefully 

chosen value of λ. It is important to point out that we do not place any requirements on the 

magnitudes of the true nonzero coefficients; instead, we assume directly that the lasso 

converges (with probability approaching one) to some fixed model defined by A0,  at the 

(k0)th step in the path. Here, A0 is large enough that it contains the true support, A0 ⊇ A*, 

and the signs  are arbitrary—they may or may not match the signs of the true coefficients 

over A0. In a setting in which the nonzero coefficients in β* are well separated from zero, a 

condition quite similar to the irrepresentable condition can be used to show that the lasso 

converges to the model with support A0 = A* and signs , at step k0 = |A0| of 

the path. Our result extends beyond this case, and allows for situations in which the lasso 

model converges to a possibly larger set of “screened” variables A0, and fixed signs .

Remark 9—In fact, one can modify the above arguments to account for the case that A0 

does not contain the entire set A* of truly nonzero coefficients, but rather, only the “strong” 

coefficients. While “strong” is rather vague, a more precise way of stating this is to assume 

that β* has nonzero coefficients both large and small in magnitude, and with A0 

corresponding to the set of large coefficients, we assume that the (left-out) small coefficients 

must be small enough that the mean of the process g in (29) (with A = A0 and sA = ) 

grows much faster than M+. The details, though not the main ideas, of the arguments would 

change, and the result would still be a conservative exponential limit for the covariance 

statistic Tk at step k = k0 + 1. We may pursue this extension in future work.

5. Simulation of the null distribution

We investigate the null distribution of the covariance statistic through simulations, starting 

with an orthogonal predictor matrix X, and then considering more general forms of X.

5.1. Orthogonal predictor matrix

Similar to our example from the start of Section 2, we generated n = 100 observations with p 

= 10 orthogonal predictors. The true coefficient vector β* contained 3 nonzero components 
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equal to 6, and the rest zero. The error variance was σ2 = 1, so that the truly active predictors 

had strong effects and always entered the model first, with both forward stepwise and the 

lasso. Figure 2 shows the results for testing the 4th (truly inactive) predictor to enter, 

averaged over 500 simulations; the left panel shows the chi-squared test (drop in RSS) 

applied at the 4th step in forward stepwise regression, and the right panel shows the 

covariance test applied at the 4th step of the lasso path. We see that the Exp(1) distribution 

provides a good finite-sample approximation for the distribution of the covariance statistic, 

while  is a poor approximation for the drop in RSS.

Figure 3 shows the results for testing the 5th, 6th and 7th predictors to enter the lasso model. 

An Exp(1)-based test will now be conservative: at a nominal 5% level, the actual type I 

errors are about 1%, 0.2% and 0.0%, respectively. The solid line has slope 1, and the broken 

lines have slopes 1/2, 1/3, 1/4, as predicted by Theorem 1.

5.2. General predictor matrix

In Table 2, we simulated null data (i.e., β* = 0), and examined the distribution of the 

covariance test statistic T1 for the first predictor to enter. We varied the numbers of 

predictors p, correlation parameter ρ, and structure of the predictor correlation matrix. In the 

first two correlation setups, the correlation between each pair of predictors was ρ, in the data 

and population, respectively. In the AR(1) setup, the correlation between predictors j and j′ is 

ρ|j−j′|. Finally, in the block diagonal setup, the correlation matrix has two equal-sized blocks, 

with population correlation ρ in each block. We computed the mean, variance and tail 

probability of the covariance statistic T1 over 500 simulated data sets for each setup. We see 

that the Exp(1) distribution is a reasonably good approximation throughout.

In Table 3, the setup was the same as in Table 2, except that we set the first k coefficients of 

the true coefficient vector equal to 4, and the rest zero, for k = 1, 2, 3. The dimensions were 

also fixed at n = 100 and p = 50. We computed the mean, variance, and tail probability of 

the covariance statistic Tk+1 for entering the next (truly inactive) (k + 1)st predictor, 

discarding those simulations in which a truly inactive predictor was selected in the first k 

steps. (This occurred 1.7%, 4.0% and 7.0% of the time, resp.) Again, we see that the Exp(1) 

approximation is reasonably accurate throughout.

In Figure 4, we estimate the power curves for significance testing via the drop in RSS test 

for forward stepwise regression, and the covariance test for the lasso. In the former, we use 

simulation-derived cutpoints, and in the latter we use the theoretically-based Exp(1) 

cutpoints, to control the type I error at the 5% level. We find that the tests have similar 

power, though the cutpoints for forward stepwise would not be typically available in 

practice. For more details, see the figure caption.

6. The case of unknown σ2

Up until now, we have assumed that the error variance σ2 is known; in practice it will 

typically be unknown. In this case, provided that n > p, we can easily estimate it and proceed 

by analogy to standard linear model theory. In particular, we can estimate σ2 by the mean 
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squared residual error , with  being the regression coefficients 

y on X (i.e., the full model). Plugging this estimate into the covariance statistic in (5) yields a 

new statistic Fk that has an asymptotic F-distribution under the null:

(47)

This follows because , the numerator Tk being asymptotically 

, the denominator  being asymptotically , and we claim 

that the two are independent. Why? Note that the lasso solution path is unchanged if we 

replace y by PXy, so the lasso fitted values in Tk are functions of PXy; meanwhile,  is a 

function of (I−PX)y. The quantities PXy and (I − PX)y are uncorrelated, and hence 

independent (recalling normality of y), so Tk and  are functions of independent quantities 

and, therefore, independent.

As an example, consider one of the setups from Table 2, with n = 100, p = 80 and predictor 

correlation of the AR(1) form ρ|j−j′|. The true model is null, and we test the first predictor to 

enter along the lasso path. (We choose n, p of roughly equal sizes here to expose the 

differences between the σ2 known and unknown cases.) Table 4 shows the results of 1000 

simulations from each of the ρ = 0 and ρ = 0.8 scenarios. We see that with σ2 estimated, the 

F2,n−p distribution provides a more accurate finite-sample approximation than does Exp(1).

When p ≥ n, estimation of σ2 is not nearly as straightforward; one idea is to estimate σ2 from 

the least squares fit on the support of the model selected by cross-validation. One would 

then hope that the resulting statistic, with this plug-in estimate of σ2, is close in distribution 

to F2,n−r under the null, where r is the size of the model chosen by cross-validation. This is 

by analogy to the low-dimensional n > p case in (47), but is not supported by rigorous 

theory. Simulations (withheld for brevity) show that this approximation is not too far off, but 

that the variance of the observed statistic is sometimes inflated compared that of an F2,n−r 

distribution (this unaccounted variability is likely due to the model selection process via 

cross-validation). Other authors have argued that using cross-validation to estimate σ2 when 

p ≫ n is not necessarily a good approach, as it can be anti-conservative; see, for example, 

Fan, Guo and Hao (2012), Sun and Zhang (2012) for alternative techniques. In future work, 

we will address the important issue of estimating σ2 in the context of the covariance statistic, 

when p ≥ n.

7. Real data examples

We demonstrate the use of covariance test with some real data examples. As mentioned 

previously, in any serious application of significance testing over many variables (many 

steps of the lasso path), we would need to consider the issue of multiple comparisons, which 

we do not here. This is a topic for future work.

Lockhart et al. Page 30

Ann Stat. Author manuscript; available in PMC 2015 January 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



7.1. Wine data

Table 5 shows the results for the wine quality data taken from the UCI database. There are p 

= 11 predictors, and n = 1599 observations, which we split randomly into approximately 

equal-sized training and test sets. The outcome is a wine quality rating, on a scale between 0 

and 10. The table shows the training set p-values from forward stepwise regression (with the 

chi-squared test) and the lasso (with the covariance test). Forward stepwise enters 6 

predictors at the 0.05 level, while the lasso enters only 3.

In the left panel of Figure 5, we repeated this p-value computation over 500 random splits 

into training test sets. The right panel shows the corresponding test set prediction error for 

the models of each size. The lasso test error decreases sharply once the 3rd predictor is 

added, but then somewhat flattens out from the 4th predictor onward; this is in general 

qualitative agreement with the lasso p-values in the left panel, the first 3 being very small, 

and the 4th p-value being about 0.2. This also echoes the well-known difference between 

hypothesis testing and minimizing prediction error. For example, the Cp statistic stops 

entering variables when the p-value is larger than about 0.16.

7.2. HIV data

Rhee et al. (2003) study six nucleotide reverse transcriptase inhibitors (NRTIs) that are used 

to treat HIV-1. The target of these drugs can become resistant through mutation, and they 

compare a collection of models for predicting the (log) susceptibility of the drugs, a measure 

of drug resistance, based on the location of mutations. We focused on the first drug (3TC), 

for which there are p = 217 sites and n = 1057 samples. To examine the behavior of the 

covariance test in the p > n setting, we divided the data at random into training and test sets 

of size 150 and 907, respectively, a total of 50 times. Figure 6 shows the results, in the same 

format as Figure 5. We used the model chosen by cross-validation to estimate σ2. The 

covariance test for the lasso suggests that there are only one or two important predictors (in 

marked contrast to the chi-squared test for forward stepwise), and this is confirmed by the 

test error plot in the right panel.

8. Extensions

We discuss some extensions of the covariance statistic, beyond significance testing for the 

lasso. The proposals here are supported by simulations [in terms of having an Exp(1) null 

distribution], but we do not offer any theory. This may be a direction for future work.

8.1. The elastic net

The elastic net estimate [Zou and Hastie (2005)] is defined as

(48)

where γ ≥ 0 is a second tuning parameter. It is not hard to see that this can actually be cast as 

a lasso estimate with predictor matrix  and outcome 

. This shows that, for a fixed γ, the elastic net solution path is piecewise 
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linear over λ, with each knot marking the entry (or deletion) of a variable from the active set. 

We therefore define the covariance statistic in the same manner as we did for the lasso; 

fixing γ, to test the predictor entering at the kth step (knot λk) in the elastic net path, we 

consider the statistic

where as before, λk+1 is next knot in the path, A is the active set of predictors just before λk 

and is the elastic net solution using only the predictors XA. The precise expression for the 

elastic net solution in (48), for a given active set and signs, is the same as it is for the lasso 

(see Section 2.3), but with  replaced by . This generally creates a 

complication for the theory in Sections 3 and 4. But in the orthogonal X case, we have 

 and so

with . This means that for an orthogonal X, under the null,

and one is tempted to use this approximation beyond the orthogonal setting as well. In 

Figure 7, we evaluated the distribution of (1 + γ)T1 (for the first predictor to enter), for 

orthogonal and correlated scenarios, and for three different values of γ. Here, n = 100, p = 

10 and the true model was null. It seems to be reasonably close to Exp(1) in all cases.

8.2. Generalized linear models and the Cox model

Consider the estimate from an ℓ1-penalized generalized linear model:

(49)

where f(yi; xi, β) is an exponential family density, a function of the predictor measurements 

 and parameter . Note that the usual lasso estimate in (2) is a special case of 

this form when f is the Gaussian density with known variance σ2. The natural parameter in 

(49) is , for i = 1, …, n, related to the mean of yi via a link function 

.

Having solved (49) with λ = 0 (i.e., this is simply maximum likelihood), producing a vector 

of fitted values , we might define degrees of freedom as12
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(50)

This is the implicit concept used by Efron (1986) in his definition of the “optimism” of the 

training error. The same idea could be used to define degrees of freedom for the penalized 

estimate in (49) for any λ > 0, and this motivates the definition of the covariance statistic, as 

follows. If the tuning parameter value λ = λk marks the entry of a new predictor into the 

active set A, then we define the covariance statistic

(51)

where λk+1 is the next value of the tuning parameter at which the model changes (a variable 

enters or leaves the active set), and  is the estimate from the penalized generalized linear 

model (49) using only predictors in A. Unlike in the Gaussian case, the solution path in (49) 

is not generally piecewise linear over λ, and there is not an algorithm to deliver the exact the 

values of λ at which variables enter the model (we still refer to these as knots in the path). 

However, one can numerically approximate these knot values; for example, see Park and 

Hastie (2007). By analogy to the Gaussian case, we would hope that Tk has an asymptotic 

Exp(1) distribution under the null. Though we have not rigorously investigated this 

conjecture, simulations seem to support it.

As example, consider the logistic regression model for binary data. Now ηi = log(μi/(1 − 

μi)), with . Figure 8 shows the simulation results from comparing the null 

distribution of the covariance test statistic in (51) to Exp(1). Here, we used the glmpath 

package in R [Park and Hastie (2007)] to compute an approximate solution path and 

locations of knots. The null distribution of the test statistic looks fairly close to Exp(1).

For general likelihood-based regression problems, let η = Xβ and ℓ(η) denote the log 

likelihood. We can view maximum likelihood estimation as an iteratively weighted least 

squares procedure using the outcome variable

(52)

where Sη = ∇ℓ(η), and Iη = ∇2ℓ(η). This applies, for example, to the class of generalized 

linear models and Cox’s proportional hazards model. For the general ℓ1-penalized estimator

(53)

we can analogously define the covariance test statistic at a knot λk, marking the entry of a 

predictor into the active set A, as

12Note that in the Gaussian case, this definition is actually σ2 times the usual notion of degrees of freedom; hence in the presence of a 
scale parameter, we would divide the right-hand side in the definition (50) by this scale parameter, and we would do the same for the 
covariance statistic as defined in (50).
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(54)

with λk+1 being the next knot in the path (at which a variable is added or deleted from the 

active set), and  the solution of the general penalized likelihood problem (53) with 

predictor matrix XA. For the binomial model, the statistic (54) reduces to expression (51). In 

Figure 9, we computed this statistic for Cox’s proportional hazards model, using a similar 

setup to that in Figure 8. The Exp(1) approximation for its null distribution looks reasonably 

accurate.

9. Discussion

We proposed a simple covariance statistic for testing the significance of predictor variables 

as they enter the active set, along the lasso solution path. We showed that the distribution of 

this statistic is asymptotically Exp(1), under the null hypothesis that all truly active 

predictors are contained in the current active set. [See Theorems 1, 2 and 3; the conditions 

required for this convergence result vary depending on the step k along the path that we are 

considering, and the covariance structure of the predictor matrix X; the Exp(1) limiting 

distribution is in some cases a conservative upper bound under the null.] Such a result 

accounts for the adaptive nature of the lasso procedure, which is not true for the usual chi-

squared test (or F -test) applied to, for example, forward stepwise regression.

We feel that our work has shed light not only on the lasso path (as given by LARS), but also, 

at a high level, on forward stepwise regression. Both the lasso and forward stepwise start by 

entering the predictor variable most correlated with the outcome (thinking of standardized 

predictors), but the two differ in what they do next. Forward stepwise is greedy, and once it 

enters this first variable, it proceeds to fit the first coefficient fully, ignoring the effects of 

other predictors. The lasso, on the other hand, increases (or decreases) the coefficient of the 

first variable only as long as its correlation with the residual is larger than that of the inactive 

predictors. Subsequent steps follow similarly. Intuitively, it seems that forward stepwise 

regression inflates coefficients unfairly, while the lasso takes more appropriately sized steps. 

This intuition is confirmed in one sense by looking at degrees of freedom (recall Section 

2.4). The covariance test and its simple asymptotic null distribution reveal another way in 

which the step sizes used by the lasso are “just right.”

The problem of assessing significance in an adaptive linear model fit by the lasso is a 

difficult one, and what we have presented in this paper by no means a complete solution. We 

describe some current work and ideas for future projects below.

• Significance test for generic lasso models. A natural direction to consider is the 

generic lasso testing problem: given a lasso model computed at some fixed value of 

λ, how do we carry out a significance test for each predictor in the active set? Work 

on this is in progress.

• Nonasymptotic null distributions. A geometric characterization of the first knot in 

the lasso path provides an alternative test for the global null hypothesis, β* = 0. 

When all predictors have unit norm, , for i = 1, …, p, this test has the form
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Remarkably, this above result is exact (nonasymptotic), valid for any n and p, 

requiring (essentially) only Gaussianity of the errors, and no real assumptions about 

the matrix X. For most reasonably behaved predictor matrices X, the Exp(1) 

approximation agrees closely with this test. Details are in Taylor, Loftus and 

Tibshirani (2013). Work to extend this formula to subsequent steps along the 

solution path, that is, to test a hypothesis beyond the global null, is underway.

• Generalizations to other penalties and models. The manuscript of Taylor, Loftus 

and Tibshirani (2013) applies to a regularized regression setting with a general 

seminorm penalty, and derives explicit results for the group lasso and nuclear norm 

penalties (in addition to the lasso penalty). The nuclear norm result yields a test for 

principal components and matrix completion. The recent work of Grazier G’Sell, 

Taylor and Tibshirani (2013) studies the covariance test for graphical models, 

based on a sparse estimate of the inverse covariance matrix.

• Sequential procedures with false discovery rate control. It is also interesting to 

consider how the sequence of covariance test p-values can be used to construct a 

sequential test with good power properties, and a guaranteed bound on its false 

discovery rate. A number of such approaches are proposed in Grazier G’Sell et al. 

(2013).

• Proper p-values for forward stepwise. Perhaps surprisingly, a test analogous to the 

covariance test can be used in forward stepwise regression, to construct valid p-

values for this greedy procedure. This work is in progress.

• Other related problems include: estimation of σ2 when p ≥ n, in the context of the 

covariance test; power calculations and confidence interval estimation; theory for 

linear models having strong and weak signals (large and small true coefficients); 

theory for the elastic net, generalized linear models, and the Cox model.

As is clear from the above discussion, the covariance test work has created much excitement 

and activity among our close collaborators and students. It is our hope that the current paper 

will also broadly stimulate other researchers’ interest in this area, and that at some point, the 

joint efforts of the community will yield a full set of inferential tools for the lasso and other 

commonly used adaptive procedures.
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APPENDIX

A.1. Proof of Lemma 1

By continuity of the lasso solution path at λk,
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and, therefore,

(55)

From this, we can obtain two identities: the first is

(56)

obtained by squaring both sides in (55) (more precisely, taking the inner product of the left-

hand side with itself and the right-hand side with itself), and noting that 

; the second is

(57)

obtained by taking the inner product of both sides in (55) with y, and then using (56). 

Plugging (56) and (57) in for the first and second terms in (7), respectively, then gives the 

result in (9).

A.2. Proof of Lemma 4

Note that

the first step following since 1 − ss1Rj,j1 > 0, and the second step following from the 

definition of h(j1,s1). The intersection of the right-hand side above, over all (j, s) ≠ (j1, s1), is 

equivalent to

But the former inequality is the same as g(j1, s1) > 0, because g(j1, s1) and g(j1, −s1) have 

opposite signs. Further, the inequality g(j1, s1) > 0 is redundant, as M(j1, s1) ≥ 0. This gives 

the result.

A.3. Proof of Lemma 5

By l’Hôpital’s rule,
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where ϕ is the standard normal density. First, note that

Also, a straightforward calculation shows

where in the last step we used the fact that , again by 

l’Hôpital’s rule. Therefore, , which completes the proof.

A.4. Proof of Lemma 6

Fix ε > 0, and choose m0 large enough that

Starting from (24),

Above, the term multiplying ε is equal to 1, and the second term can be made arbitrarily 

small (say, less than ε) by taking p sufficiently large.

A.5. Proof of Theorem 2

We will show that for any fixed m0 > 0 and j1, s1,

(58)

where S ⊆ {1, …, p} \ {j1} is as in the theorem for j = j1, with size |S| ≥ dp, and c < 1 is a 

constant (not depending on j1). This would imply that
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where we used the fact that dp/ log p → ∞ by (27). The above sum tending to zero now 

implies the desired convergence result by Lemma 6, and hence it suffices to show (58). To 

this end, consider

where in both inequalities above we used the fact that |Rj,j1| < 1. We can therefore use the 

bound

where we define  for j ∈ S. Let r = |S|, and without a loss of 

generality, let S = {1, …, r}. We will show that

(59)

for c = Φ (2m0/(σδ))−Φ(−2m0/(σδ)) < 1, by induction; this would complete the proof, as it 

would imply (58). Before presenting this argument, we note a few important facts. First, the 

condition in (26) is really a statement about conditional variances:

where recall that . Second, since U1, …, Ur are jointly normal, we have

(60)

which can be verified using the conditional variance formula (i.e., the law of total variance). 

Finally, the collection V1, …, Vr is independent of , because these random variables are 

jointly normal, and  for all j = 1, …, r.

Now we give the inductive argument for (59). For the base case, note that , 

where its variance is
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the second equality is due to the independence of V1 and , and the last inequality comes 

from the fact that conditioning can only decrease the variance, as stated above in (60). 

Hence,

Assume as the inductive hypothesis that . Then

We have, using the independence of V1, …, Vq+1 and ,

where the variance is

and here we again used the fact that conditioning further can only reduce the variance, as in 

(60). Therefore,

and so

completing the inductive step.

A.6. Proof of Lemma 7

Notice that

We now handle division by  in three cases:

• if 1 − Σj,j′/Σjj > 0, then
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• if 1 − Σj,j′/Σjj < 0, then

• if 1 − Σj,j′/Σjj = 0, then

Using this breakdown, we see that the statement g(jk, sk) > g(j, s) for all (j, s) ≠ (jk, sk) is then 

equivalent to

Noting that g(jk, sk) and g(jk, −sk) must have opposite signs, the above is equivalent to

which gives the result in the lemma.

A.7. Proof of Lemma 8

Define  and . Exactly as before (dropping for 

simplicity the notational dependence of g, M+ on jk, sk),

Therefore, we can rewrite (40) as

Note that we have dropped the inequality g(jk, sk) > 0 from each term, as it is implied by the 

first inequality g(jk, sk)/σk > u(t, M+(jk, sk)/σk) ≥ 0. We can upper bound the right-hand side 

above by replacing g(jk, sk) < M−(jk, sk) with
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because u(a, b) ≥ b for all a ≥ 0 and b. Furthermore, Lemma 10 (Appendix A.10) shows that 

indeed  for fixed jk, sk, and hence g(jk, sk)/σk is standard 

normal for fixed jk, sk. Therefore,

(61)

where

with  the joint distribution of M+(jk, sk), M−(jk, sk), M0 (jk, sk), 

and we used the fact that g is independent of M+, M−, M0 for fixed jk, sk. From (61),

(62)

where we here used the fact that

the last equality following by Lemma 7 (i.e., each term in the last sum is exactly the 

probability of jk, sk maximizing g). We show in Lemma 11 (Appendix A.11) that

provided that m− > m+. Hence, fix ε > 0, and choose m0 sufficiently large, so that for each k,
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Working from (62),

Note that the first term on the right-hand side above is ≤ ε, and the second term is bounded 

by , which by assumption can be made arbitrarily small 

(smaller than, say, ε) by taking p large enough.

A.8. Proof of Lemma 9

For now, we reintroduce the notational dependence of the process g on A, sA, as this will be 

important. We show in Lemma 12 (Appendix A.12) that for any fixed jk, sk, j, s,

where , as given in (30), and as usual,  denotes 

the concatenation of SA and Sk. According to its definition in (35), therefore,

and hence on the event E(jk, sk), since we have 

This means that (now we return to writing  as g, for brevity)

and so , the desired conclusion.
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A.9. Proof of Theorem 3

Since we are assuming that , we know that , so we only 

need to consider the marginal limiting distribution of Tk. We write A = A0 and . The 

general idea here is similar to that used in the proof of Theorem 2. Fixing m0 and jk, sk, we 

will show that

(63)

where S ⊆ {1, …, p} \ A ∪ {jk}) is as in the statement of the theorem for j = jk, with size |S| 

≥ dp, and c < 1 is a constant (not depending on jk). Also, as in the proof of Lemma 8, we 

abbreviated . This bound would imply that

since dp/ log p → 0. The above sum converging to zero is precisely the condition required 

by Lemma 9, which then gives the desired (conservative) exponential limit for Tk. Hence, it 

is suffices to show (63). For this, we start by recalling the definition of M+ in (35):

where 

Here, we write ; note that  (as shown in Lemma 10). 

First, we show that the conditions of the theorem actually imply that S+(jk, sk) ⊇ S × {−1, 

1}|S|. This is true because for j ∈ S and any s ∈ {−1, 1}, we have 

by (44), and

The first implication uses the assumption (42), as 

 and 

, and the second simply follows from the 

definition of  and . Therefore,
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Let  and  for j ∈ S. By the arguments given in the proof 

of Lemma 12, we can rewrite the right-hand side above, yielding

where the last two inequalities above follow as  for all j ∈ S, 

which itself follows from the assumption that  for all j ∈ S, in (45). 

Hence,

where . Writing without a loss of generality r = |S| and S = {1, …, r}, 

it now remains to show that

(64)

Similar to the arguments in the proof of Theorem 2, we will show (64) by induction, for the 

constant . Before this, it is helpful to discuss 

three important facts. First, we note that (43) is actually a lower bound on the ratio of 

conditional to unconditional variances:

Second, conditioning on a smaller set of variables can only increase the conditional 

variance:
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which holds as U1, …, Ur are jointly normal. Third, and lastly, the collection V1, …, Vr is 

independent of , since these variables are all jointly normal, and it is easily verified that 

 for each j = 1, …, r.

We give the inductive argument for (64). For the base case, we have , where

Above, in the second equality, we used that V1 and  are independent, and in the last 

inequality, that conditioning on fewer variables (here, none) only increases the variance. 

This means that

where Z is standard normal; note that in the last inequality above, we applied the upper 

bound

Now, for the inductive hypothesis, assume that . 

Consider

Using the independence of V1, …, Vq+1 and ,

The variance  is

where we again used the fact that conditioning on a smaller set of variables only makes the 

variance larger. Finally,
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where we used  as above, and so

This completes the inductive proof.

A.10. Statement and proof of Lemma 10

Lemma 10

For any fixed A, sA, and any j ∉ A, s ∈ {−1, 1}, we have

where  denotes the concatenation of SA and S.

Proof

We will so that

(65)

The right-hand side above, after a straightforward calculation, is shown to be equal to

(66)

Now let . In block form,

(67)

Solving for z1 in the first row yields

and, therefore, (66) is equal to
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(68)

Solving for z2 in the second row of (67) gives

Plugging this value into (68) produces the left-hand side in (65), completing the proof. □

A.11. Statement and proof of Lemma 11

Lemma 11

If v = v(m) satisfies v > m, then for any t ≥ 0,

Proof

First note, using a Taylor series expansion of , that for sufficiently large m,

(69)

Also, a simple calculation shows that ∂(u(t, m) − m)/∂m ≤ 0 for all m, so that

(70)

Now consider

where the first inequality follows from (70), and the second from (69) (assuming m is large 

enough). Continuing from the last upper bound,
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where

Therefore, we have

(71)

It is clear that f(w, t) → 1 as w → ∞. Fixing ε choose m0 large enough so that all w ≥ m0, we 

have |f (w, t) −1| ≤ ε. Then the term multiplying e−t on the right-hand side in (71), for m ≤ 

m0, is

which shows that the right-hand side in (71) is ≤ ε · e−t ≤ ε, and completes the proof. □

A.12. Statement and proof of Lemma 12

Lemma 12

For any fixed jk, sk, j, s (and fixed A, sA), we have

(72)

where  denotes the covariance between  and 

Proof

Simple manipulations of the left-hand side in (72) yield the expression
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(73)

where . Now it remains to show that (73) is equal 

to

(74)

We show individually that the numerators and denominators in (73) and (74) are equal. First 

the denominators: starting with (73), notice that

(75)

By the well-known formula for partial regression coefficients,

that is, θjk,j is the (jk)th coefficient in the regression of Xj on . Hence, to show that 

(75) is equal to the denominator in (74), we need to show that  gives 

the coefficients in A in the regression of Xj on . This follows by simply noting that 

the coefficients  satisfy the equation

and so solving for θA,j,

Now for the numerators: again beginning with (73), its numerator is

(76)

and by essentially the same argument as above, we have
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therefore, (76) matches the numerator in (74). □
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FIG. 1. 
A simple example with n = 100 observations and p = 10 orthogonal predictors. All true 

regression coefficients are zero, β* = 0. On the left is a quantile–quantile plot, constructed 

over 1000 simulations, of the standard chi-squared statistic R1 in (3), measuring the drop in 

residual sum of squares for the first predictor to enter in forward stepwise regression, versus 

the  distribution. The dashed vertical line marks the 95% quantile of the  distribution. 

The right panel shows a quantile–quantile plot of the covariance test statistic T1 in (5) for the 

first predictor to enter in the lasso path, versus its asymptotic null distribution Exp(1). The 

covariance test explicitly accounts for the adaptive nature of lasso modeling, whereas the 

usual chi-squared test is not appropriate for adaptively selected models, for example, those 

produced by forward stepwise regression.
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FIG. 2. 
An example with n = 100 and p = 10 orthogonal predictors, and the true coefficient vector 

having 3 nonzero, large components. Shown are quantile–quantile plots for the drop in RSS 

test applied to forward stepwise regression at the 4th step and the covariance test for the 

lasso path at the 4th step.
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FIG. 3. 
The same setup as in Figure 2, but here we show the covariance test at the 5th, 6th and 7th 

steps along the lasso path, from left to right, respectively. The solid line has slope 1, while 

the broken lines have slopes 1/2, 1/3, 1/4, as predicted by Theorem 1.
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FIG. 4. 
Estimated power curves for significance tests using forward stepwise regression and the 

drop in RSS statistic, as well as the lasso and the covariance statistic. The results are 

averaged over 1000 simulations with n = 100 and p = 10 predictors drawn i.i.d. from N(0, 1) 

and σ2 = 1. On the left, there is one truly nonzero regression coefficient, and we varied its 

magnitude (the effect size parameter on the x-axis). We examined the first step of the 

forward stepwise and lasso procedures. On the right, in addition to a nonzero coefficient 

with varying effect size (on the x-axis), there are 3 additional large coefficients in the true 

model. We examined the 4th step in forward stepwise and the lasso, after the 3 strong 

variables have been entered. For the power curves in both panels, we use simulation-based 

cutpoints for forward stepwise to control the type I error at the 5% level; for the lasso we do 

the same, but also display the results for the theoretically-based [Exp(1)] cutpoint. Note that 

in practice, simulation-based cutpoints would not typically be available.
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FIG. 5. 
Wine data: the data were randomly divided 500 times into roughly equal-sized training and 

test sets. The left panel shows the training set p-values for forward stepwise regression and 

the lasso. The right panel show the test set error for the corresponding models of each size.
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FIG. 6. 
HIV data: the data were randomly divided 50 times into training and test sets of size 150 and 

907, respectively. The left panel shows the training set p-values for forward stepwise 

regression and the lasso. The right panel shows the test set error for the corresponding 

models of each size.
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FIG. 7. 
Elastic net: an example with n = 100 and p = 10, for orthogonal and correlated predictors 

(having pairwise population correlation 0.5), and three different values of the ridge penalty 

parameter γ.
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FIG. 8. 
Lasso logistic regression: an example with n = 100 and p = 10 predictors, i.i.d. from N(0, 1). 

In the left panel, all true coefficients are zero; on the right, the first coefficient is large, and 

the rest are zero. Shown are quantile–quantile plots of the covariance test statistic (at the 

first and second steps, resp.), generated over 500 data sets, versus its conjectured asymptotic 

distribution, Exp(1).
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FIG. 9. 
Lasso Cox model estimate: the basic setup is the same as in Figure 8 (n, p, the distribution of 

the predictors X, the true coefficient vector—on the left, entirely zero, and on the right, one 

large coefficient). Shown are quantile–quantile plots of the covariance test statistic (at the 

first and second steps, resp.), generated over 500 data sets, versus the Exp(1) distribution.
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Lockhart et al. Page 61

Table 1

Forward stepwise and lasso applied to the prostate cancer data example. The error variance is estimated by , 

the MSE of the full model. Forward stepwise regression p-values are based on comparing the drop in residual 

sum of squares (divided by ) to an F(1, n − p) distribution (using  instead produced slightly smaller p-

values). The lasso p-values use a simple modification of the covariance test (5) for unknown variance, given in 

Section 6. All p-values are rounded to 3 decimal places

Step Predictor entered Forward stepwise Lasso

1 lcavol 0.000 0.000

2 lweight 0.000 0.052

3 svi 0.041 0.174

4 lbph 0.045 0.929

5 pgg45 0.226 0.353

6 age 0.191 0.650

7 lcp 0.065 0.051

8 gleason 0.883 0.978

Ann Stat. Author manuscript; available in PMC 2015 January 06.
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TABLE 4

Comparison of Exp(1), F2,N−p, and the observed (empirical) null distribution of the covariance statistic, when 

σ2 has been estimated. We examined 1000 simulated data sets with n = 100, p = 80 and the correlation 

between predictors j and j′ equal to ρ|j−j′|. We are testing the first step of the lasso path, and the true model is 

the global null. Results are shown for ρ = 0.0 and 0.8. The third column shows the tail probability 

computed over the 1000 simulations, where q0.95 is the 95% quantile from the appropriate distribution [either 

Exp(1) or F2,n−p]

Mean Variance 95% quantile Tail prob

ρ = 0

Observed 1.17 2.10 3.75

Exp(1) 1.00 1.00 2.99 0.082

F2,n−p 1.11 1.54 3.49 0.054

ρ = 0.8

Observed 1.14 1.70 3.77

Exp(1) 1.00 1.00 2.99 0.097

F2,n−p 1.11 1.54 3.49 0.064
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