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Abstract: Fluorescence molecular tomography (FMT) is a promising
imaging modality and has been actively studied in the past two decades
since it can locate the specific tumor position three-dimensionally in small
animals. However, it remains a challenging task to obtain fast, robust
and accurate reconstruction of fluorescent probe distribution in small
animals due to the large computational burden, the noisy measurement and
the ill-posed nature of the inverse problem. In this paper we propose a
nonuniform preconditioning method in combination with L1 regularization
and ordered subsets technique (NUMOS) to take care of the different
updating needs at different pixels, to enhance sparsity and suppress noise,
and to further boost convergence of approximate solutions for fluorescence
molecular tomography. Using both simulated data and phantom experiment,
we found that the proposed nonuniform updating method outperforms its
popular uniform counterpart by obtaining a more localized, less noisy, more
accurate image. The computational cost was greatly reduced as well. The
ordered subset (OS) technique provided additional 5 times and 3 times
speed enhancements for simulation and phantom experiments, respectively,
without degrading image qualities. When compared with the popular L1

algorithms such as iterative soft-thresholding algorithm (ISTA) and Fast
iterative soft-thresholding algorithm (FISTA) algorithms, NUMOS also
outperforms them by obtaining a better image in much shorter period of
time.
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1. Introduction

In the past two decades, fluorescence molecular tomography (FMT) has been playing an im-
portant role in a number of preclinical research fields [1, 2]. In FMT, fluorescent agents (e.g.
fluorophores) will be injected into the object such as mice and then near-infrared (NIR) laser
beams will activate those fluorophores. The fluorophores will then emit fluorescence photons
propagating out of the mouse surface, which can be captured by detectors such as CCD cam-
eras. Meanwhile, the geometry of the mouse will be extracted so that along with the optical
properties of the mouse, the system matrix can be set up. Then all the captured images can
be combined tomographically to recover the distribution of the fluorophores inside the mouse.
Due to the high scattering effects of photons in tissues, the system matrix of FMT is usually
ill-conditioned and the reconstruction problem is ill-posed. Regularization methods have been
employed to obtain reasonable results [3–7]. One may also construct an overall precondition-
ing matrix first before proceeding with any regularization models [8]. But ensuring the non-
negativity constraint in FMT may be time consuming, for instance, an expensive line search is
needed when the popular preconditioned conjugate gradient algorithm is used [5].

Also in the past two decades, the majorization-minimization (MM) algorithm has attracted
considerable attention in medical imaging due to its advantages such as separating the high
dimensional variable for an easier iterative update in a parallel way [9] and applying the non-
negative constraints straightforwardly. Yet the MM algorithm has a critical issue of choosing
the appropriate surrogate functions [9]. In medical imaging arguably the most well known ap-
plication of MM framework was originated in Fessler et al. [10] and Erdogan & Fessler [11]
for transmission tomography, where separable quadratic surrogate (SQS) functions were intro-
duced based on a uniform additive type of weight functions. The uniform weighting has a clear
advantage in the sense that it can be pre-computed and needs no iterative updates [10]. In FMT,
Dutta et al. [5] followed [10, 11] and employed the uniform additive weight function to study
the effects of the joint L1 and total variation regularization method. Our previous work [6, 7]
also followed this additive type of weighting when we investigated a family of nonconvex regu-
larization methods. Nevertheless, uniform weighting tend to ignore the different updating needs
at different nodes, which could hinder the convergence of iterations to the true solution.

Recently a nonuniform weighting strategy has been reported to improve image qualities in
computed tomography [12, 13]. In this paper, we follow the spirit of [12, 13] and propose a
non-uniform multiplicative weighting with ordered subsets (NUMOS) technique, which is a
generalization of the image space reconstruction algorithm (ISRA) [14, 15], for the MM algo-
rithm in FMT in small animal imaging, and validate its advantages over its uniform counterpart
using both simulated data and phantom experiment.

2. Method

2.1. Forward modeling

In the continuous wave domain, photon transfer is modeled by the following coupled diffusion
equation, along with Robin type (mixed) boundary conditions:

−∇ · (Dex(r)∇Φex(r))+µa,ex(r)Φex(r) = Sex(r)
n · (Dex(r)∇Φex(r))+αexΦex(r) = 0
−∇ · (Dem(r)∇Φem(r))+µa,em(r)Φem(r) = Φex(r)Sem(r)
n · (Dem(r)∇Φem(r))+αemΦem(r) = 0

(1)

where ∇ denotes the gradient operator, r the location vector, Dex(r) = [3(µ ′s,ex(r)+µa,ex(r))]−1

and Dem(r) = [3(µ ′s,em(r) + µa,em(r))]−1, with µa,ex(r), µa,em(r) being the absorption coeffi-
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cients and µ ′s,ex(r), µ ′s,em(r) being the reduced scattering coefficients at excitation and emission
wavelengths, Φex(r), Φem(r) are the photon fluxes, Sex(r) is the excitation source term, Sem(r)
is the fluorescence yield to be reconstructed, and n is the outward unit normal vector of the
boundary, and αex, αem are the Robin boundary coefficients.

The above equations can be solved using the finite element method (FEM), leading to a
simple linear system of equations [16, 17]:

Ax = b (2)

where A = (ai j) ∈ RNm×Nn , ai j > 0, is the system matrix, x = (x j) ∈ RNn×1 is a short way to
write the fluorescence yield Sem(r), b = (bi) ∈ RNm×1 the measurements, and Nm,Nn the total
number of measurements and FEM mesh nodes, respectively. Note that Nm = Nd ∗Ns with
Nd ,Ns being the number of detectors and excitation sources.

2.2. Regularized least squares

A typical solution of (2) is obtained by minimizing the following regularized squared data-
measurement misfit under the non-negativity constraint:

x̂ = arg min
x,x≥0

Φ(x) :=
1
2
‖Ax−b‖2

2 +λR(x), (3)

where λ is the regularization parameter and R(x) is the regularization term, such as the Lp

(semi-)norm: R(x) = ‖x‖p
p, p≥ 0 .

Recall in the MM algorithm, the definition of a surrogate function Φsur(x) in the minimiza-
tion problem, the following three conditions should hold:

Φ
sur(x)≥Φ(x), for allx; Φ

sur(xk) = Φ(xk), at pointxk; ∇Φ
sur(xk) = ∇Φ(xk), atxk. (4)

We follow the SQS routine [11] to construct Φsur (the right-hand side of the inequality below)
for the data-fitting term in (3) as follows:

1
2
‖b−Ax‖2

2 =
1
2

Nm

∑
i=1

(bi− (Ax)i)
2 ≤ 1

2

Nm

∑
i=1

Nn

∑
j=1

βi j{bi− (Axk)i−
ai j

βi j
(x j− xk

j)}2

=
Nn

∑
j=1
{
(x j− xk

j)
2

2

Nm

∑
i=1

a2
i j

βi j
− x j

Nm

∑
i=1

ai j(bi− (Axk)i)+ constant } (5)

where constant is independent of x j, βi j > 0 and ∑
Nn
j=1 βi j = 1. Note that superscript k refers to

values of variables at kth iteration, which are known.
The regularized non-negative minimization problem (3) may then be easily solved, espe-

cially when we employ the L1 regularization. Denoting ∑
Nm
i=1

a2
i j

βi j
by κ j and the regularization

parameter by λ1, each x j has the following analytical iterative updating formula:

xk+1
j,L1 =

(
xk

j +
∑

Nm
i=1 ai j(bi− (Axk)i)−λ1

κ j

)
+

, (6)

where u+ = max(0,u), representing the positive part of any function u. For the details of the
above derivations, we refer readers to [6], where analytical formulas for nonconvex Lp, 0 < p <
1, and log regularizations were also presented.
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2.3. Nonuniform update

As we mentioned in the introduction section, we clearly see in (5) and (6) that choosing a
suitable weight βi j is critical for the success of the MM algorithm, since it determines κ j,
which dictates the convergence speed of the algorithm. Contrary to the popular uniform ad-
ditive weighting [5, 6, 10, 11]: β A

i j =
ai j

∑
Nn
l=1 ail

, we propose to adopt in this paper the following

nonuniform multiplicative weighting [11, 15]:

β
M
i j =

ai jxk
j

∑
Nn
l=1 ailxk

l

. (7)

We briefly analyze why (7) meets our needs better in the following. Substituting (7) into the
κ j in (6), we have κM

j = (AtAxk) j/xk
j and (6) has the following much simplified form, noting

that the positive function (·)+ is not needed if λ1 = 0:

xM,k+1
j,L1 = xk

j
((Atb) j−λ1)+

(AtAxk) j
. (8)

In comparison with its counterpart obtained by using the additive form, where κA
j = (AtA1Nn) j

with 1Nn being the Nn-dimensional vector with all entries equal 1 :

xA,k+1
j,L1 =

(
xk

j +
(Atb) j− (AtAxk) j−λ1

(AtA1Nn) j

)
+

, (9)

we observed two potential advantages of (8): firstly, the nonuniform update (8) clearly uses
only part of the calculations in (9) so it is less expensive; and secondly, (8) implies that during
the iterative process, once xk

j = 0, then xk̃
j remains 0 for all k̃≥ k, as long as not all components

are 0, so it naturally promotes sparsity, which is desirable in most FMT problems [18].
We then utilized a random version of the ordered subsets (OS) technique [5, 11, 19] to en-

hance the convergence speed of (8). In case an even division of subsets is not possible, we
simply ignore those “extra” measurements. We then have the following NUMOS algorithm:

Initialization: x0 = x0 ∗1n, B = (Atb− λ

nOS ∗1Nn)+ ;
for k = 1 to Nmax

nOS do
Compute Ai based on a random partition of the Nd detectors, and select the
corresponding Bi ;
for i = 1 to nOS do

xk+1 = Bi .∗xk./(At
iAixk) ;

end
If ‖xk+1−xk‖2/‖xk‖2 < δstop ∗nOS, break;

end
where 0 < x0 < 1 is randomly picked, Nmax is the number of iterations, nOS number of
subsets, .∗ and ./ entry-wise multiplication and division respectively, and δstop the
empirically chosen stopping criterion.

Algorithm 1: NUMOS

2.4. Remarks

We remark here that the better performing nonconvex (Lp,0 < p < 1, and log) regularizations
as identified by our previous work [6, 7] and a recent work from another group [20] are essen-
tially doing nonuniform updates, the effects of which will be undesirably canceled in part, if
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not all, by the effects of the nonuniform updating of κ j. So in this paper we only include L1

regularization to retain the nonuniform updating of κ j in hope of further gain in image qualities.

We also remark that the recent NU-SQS multiplicative variant [13]: β nM
i j =

ai j∆xk
j

∑
Nn
l=1 ail∆xk

l
, where

∆xk
j = |xk

j − xk−1
j |, does not lead to a simple update as (8), hence it does not carry any of the

aforementioned benefits when compared with the uniform additive weighting. It may however
significantly enhance the convergence if the initialization is close to the truth as shown in [13].
But since we don’t have a good initialization as the filtered-back-projection result used in [13]
for computed tomography, we will investigate this variant in the future.

2.5. Image quality metrics

In the analysis of the qualities of the reconstructed images and the selection of the best regular-
ization parameter, we used on the same four metrics as proposed in our previous work [6]: the
volume ratio (VR) [21] that is the ratio of the reconstructed volume (typically defined as the
voxels with intensities greater than half of the maximum) to the true volume, the dice similarity
coefficient (Dice) [22] that is the ratio of the intersection to the average of two volumes, and the
well known mean squared error (MSE) and contrast-to-noise ratio (CNR) [23]. VR is a measure
of sparsity of the reconstructed target and Dice quantifies the shape and location accuracy. The
closer VR and Dice are to 1, the better. MSE is only calculated if the ground-truth is known
and usually the smaller it is, the better. CNR is about the reconstructed image only and higher
values are preferred.

3. Numerical simulations and results

To validate the advantages of NUMOS, we first tested it on simulated data. For a fair com-
parison with the uniform additive weighting without OS we adopted in [6], here we used
the same simulated data set and first set nOS = 1, i.e. no OS, then increased nOS by orders
of 2 [11]: 2,22, ...,27. We briefly recapitulate the simulation setup as follows. Two fluores-
cent capillary tube sources were inserted inside a mouse mesh, which consisted of 32,332
nodes and 161,439 tetrahedral elements. The tubes diameters were 2 mm and lengths 20
mm. The fluorophore concentration inside the tubes were 1 and outside 0. A total of 60
laser excitations source nodes were uniformly selected along the trunk of the mouse and all
the 4020 surface nodes covering the trunk were set as detectors. The tissue optical prop-
erties were µa = 0.007mm−1, µ ′s = 0.72mm−1 at 650 nm, the excitation wavelength, and
µa = 0.014mm−1, µ ′s = 0.78mm−1 at 700 nm, the emission wavelength. White Gaussian noise
with a signal-to-noise ratio of 1 was added to the simulated measurements. All our calculations
were done on an Intel i5 2400 3.1GHz PC with 16GB memory.

The simulation result is shown in Fig. 1, with detailed image quality metrics in Table 1. Note
that in this and the following table, we also included the metrics for the best images recon-
structed using the uniform additive weighting (Uniform) along with nonconvex regularizations,
which were directly copied from our previous work [6]. We clearly see that the proposed NU-
MOS with nOS = 1 significantly outperforms “Uniform” in obtaining a more localized and
less noisy image. The sparsity (VR) and location accuracy (Dice) have been significantly en-
hanced, CNR is more than two times higher, and MSE is about 40% lower, as indicated by
Table 1. The computational cost of NUMOS, nOS = 1, is less than 1/4 of Uniform. This is
partly because that NUMOS needed only about 1400 iterations to stop, while Uniform took
2000 iterations to reach that result. As for results from different nOS, we presented the cases
when nOS = 16,32,64 and 128 in Fig. 1(c)-(f). The results shown are averaged over 6 runs.
For nOS = 16 and 32, we obtained further speed gain, without sacrificing much of the image
qualities. From Fig. 1(d) and Table 1, we can see that nOS = 32 is a reasonably good choice
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Fig. 1. The coronary sections from bottom to top of the simulated mouse: (a) Truth and
reconstructions with our proposed NUMOS algorithm using λ1 = 1.0E-03 and (b) nOS= 1,
(c) nOS = 16, (d) nOS = 32, (e) nOS = 64, and (f) nOS = 128, respectively.

since we have about 5.4X speed gain against the nOS = 1 case. For nOS = 64 and 128, image
qualities are still acceptable although they start to deteriorate. We may still opt for these cases
if we want further reduction of computation time by another 24% and 40%, respectively.

Table 1. Metrics for simulated mouse: reconstructed using NUMOS with nOS =
1, 16, 32, 64, and 128, respectively, and λ1 = 1.0E-03 v.s. uniform weighting with non-
convex L1/2 regularization, λ1/2 = 4.0E-05, the best result among different regularization
methods [6]. The overall best performance is highlighted in bold.

Algorithm VR Dice CNR MSE Time (seconds)
NUMOS, nOS=1 1.01 0.61 9.10 2.18E-03 740.4

NUMOS, nOS=16 1.04 0.61 9.01 2.21E-03 221.8
NUMOS, nOS=32 1.08 0.59 8.94 2.23E-03 139.2
NUMOS, nOS=64 1.18 0.57 8.81 2.27E-03 104.8
NUMOS, nOS=128 1.39 0.55 8.40 2.38E-03 81.9

Uniform 3.74 0.26 4.31 3.64E-03 3201.3

4. Phantom experiments and results

We further validated NUMOS with phantom experiment and also tested it with nOS = 1 and
with nOS ranging from 21 to 27. The cubic phantom was again the same as we used in [6] with
dimension 32 mm by 32 mm by 29 mm and was composed of 1% intralipid, 2% agar, and water
in the background. In the two capillary target tubes, both 6.5 µm DiD fluorescence dye solution
and uniformly distributed 18[F]-fluoro-2-deoxy-D-glucose (FDG) at activity level of 100 µCi
were injected for simultaneous FMT and positron emission tomography (PET) scans. The PET
result will be used to validate our FMT. The excitation laser at wavelength of 650 nm scanned
the front surface of the phantom at 20 illumination nodes. The emission wave length was 700
nm and there were 1057 detectors for measurement collection. The tissue optical properties
were µa = 0.0022mm−1, µ ′s = 1.10mm−1 at both 650 nm and 700 nm wavelengths. The FEM
mesh has 8690 nodes and 47,581 tetrahedral elements. The PET images were thresholded at
20% of the maximum FDG concentrations to identify the positions of the capillary tubes. For
more details of the PET imaging, please refer to [24].

The phantom experiment result is shown in Fig. 2, with detailed image quality metrics in
Table 2. The reconstructed images are normalized so that they can be compared with the truth
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Fig. 2. The coronary sections from bottom to top of the cubic phantom: (a) the truth (PET)
and reconstructions with our proposed NUMOS algorithm using λ1 = 5.0E+03 and (b)
nOS = 1, (c) nOS = 16, (d) nOS = 32, (e) nOS = 64, and (f) nOS = 128, respectively.

we obtained from PET, where intensity information is not comparable. The findings here are
similar to the simulation case. We see that in comparison with “Uniform”, NUMOS, nOS=1
takes 12x less of time to obtain a results with improved metrics: VR much closer to 1, CNR
much higher, and Dice coefficient also slightly higher. The results for different nOS’s are av-
eraged from 6 runs. The results from cases of nOS = 16 and 32 are again very comparable to
those of the case of nOS = 1. And nOS = 32 provides an additional about 3x speed gain. When
nOS is further increased, the image qualities start to drop although we again see some speed
gain.

Table 2. Metrics for cubic phantom, reconstructed using NUMOS with λ1 = 5.0E+03,
and nOS = 1, 16, 32, 64, and 128, respectively, v.s. uniform weighting with L1/2, λ1/2 =
5.0E+07, the best result among different regularization methods [6]. The overall best per-
formance is highlighted in bold.

Algorithm VR Dice CNR Time (seconds)
NUMOS, nOS=1 1.13 0.41 7.90 14.7
NUMOS, nOS=16 1.23 0.39 8.00 8.3
NUMOS, nOS=32 1.22 0.41 8.20 5.3
NUMOS, nOS=64 0.77 0.40 9.11 3.5

NUMOS, nOS=128 0.26 0.14 6.38 3.1
Uniform 2.56 0.39 5.11 180.5

5. Discussion and conclusion

In this paper, we proposed NUMOS, a robust nonuniform multiplicative weighting strategy
for the MM framework in FMT with L1 regularization and ordered subsets acceleration. Us-
ing both simulation and phantom data, we compared NUMOS with the other popular uniform
additive weighting strategy in combination with best possible regularizations. We started the
iteration from an arbitrary uniform initialization, ran a maximum of 5000 steps and stopped
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when ‖xk+1− xk‖2/‖xk‖2 < δstop ∗ nOS, with δstop empirically set as 4E-04 for simulations
and 9E-04 for phantom. NUMOS was robust for noise levels as high as having SNR of 1. NU-
MOS performed better in the sense that the reconstructed targets were more localized (smaller
VR, higher Dice, higher CNR, and smaller MSE (only for simulation case) than those from
its uniform counterpart, and also in terms of its significantly faster speed of convergence. On
an Intel i5 2400 3.1GHz PC with 16GB memory, each iteration took about 0.6 seconds (v.s
1.6 seconds for the uniform weighting in [6]) for the simulated data with SNR of 1, and about
0.025 (vs. 0.09) seconds for the cubic phantom. NUMOS (nOS = 1) also needed much less
iterations to converge, bringing the total speed to 4x faster for the simulation and 12x faster for
the phantom than its uniform counterparts. By setting the ordered subset number to be 32, we
were able to get an additional 5.5x and 3x speed enhancements for the numerical simulation
and cubic phantom respectively.

For a better understanding of the uniform additive and nonuniform multiplicative types of βi j

in section 2.3, we examined a small variation of the multiplicative form (7), β vM
i j =

ai j(xk
j+z j)

∑
Nn
l=1 ail(xk

l +zl)
,

where z j is a small positive number [10]. It is essentially using the maximum of β M
i j and β A

i j
at each step, which performed almost the same as β M

i j , but with a slightly slower convergence

speed as expected. We also examined a more general additive form β
gA
i j =

aq
i j

∑
Nn
l=1 aq

il
, q > 0 [9].

But not much improvement in the reconstructed images was observed when we varied the p
to different values other than 1, with the exception of 0.9 ≤ p < 1, where we were able to see
some slight improvement in the convergence rate.

Although the L1 regularization is not our emphasis as we already remarked in the method
section, we understand that there are a lot of efficient L1 algorithms available. A good sum-
mary of five types of closely related L1 optimization models can be found in [25], where more
than ten specific algorithms are also discussed. However, as the authors there stated, all those
algorithms are not equivalent to the regularized model we adopted (QRλ in [25]). There are
a lot of subtleties to be taken care of before they can be adopted into FMT. Here we briefly
compared NUMOS with the popular iterative soft-thresholding algorithm (ISTA) [26] and fast
iterative soft-thresholding algorithm (FISTA) [27] algorithms, which have been successfully
implemented in FMT [28, 29] recently. We first tested the algorithms on the phantom exper-
iment data since its size is much smaller and the calculation of its largest eigenvalue is easy.
The results are shown in Fig. 3 (a) and (b) and Table 3. We have not been able to directly carry
out the calculation on the digimouse due to the fact that ISTA and FISTA need the estima-
tion of the eigenvalues of the system matrix, which is too large (requires ∼ 62GB memory for
storage alone). We noticed there was a lot of background noise in the reconstruction result of
FISTA as shown in Fig. 3(b). Further investigation revealed that FISTA did not monotonically
decrease the objective function when nonnegative solutions are sought. We applied the back-
tracking technique to guarantee the strict decrease of the objective function hoping to get rid
of the noise. The result is shown in Fig. 3(c). To the best of our knowledge, FISTA with back-
tracking line search has not been applied to FMT before. The image quality has been greatly
improved and is comparable to the result from our proposed NUMOS with nOS = 1 as can be
seen from Fig. 3(d). Yet NUMOS is already about 10 time faster. It will be a few extra times
faster if OS feature is turned on. In short, our proposed NUMOS outperforms both ISTA and
FISTA in yielding an accurate image in much short period of time.

For regularization problems, selection of the optimal regularization parameters has always
been a issue. Although we mentioned in section 2.5 that we followed our previous work [6]
where a detailed comparison of metrics VR, Dice, CNR and MSE were used, it would still be
interesting if we can find an automatic way for quick selection. This is also related to how the

#221583 - $15.00 USD Received 25 Aug 2014; revised 18 Oct 2014; accepted 24 Oct 2014; published 12 Nov 2014
(C) 2014 OSA 1 December 2014 | Vol. 5,  No. 12 | DOI:10.1364/BOE.5.004249 | BIOMEDICAL OPTICS EXPRESS  4257



Fig. 3. The coronary sections from bottom to top of the cubic phantom: L1 regularized
reconstructions with parameter λ1 = 5.0E+03 using (a) ISTA [26, 28], (b) FISTA [27, 29],
(c) FISTA with backtracking line search [27] and (d) NUMOS algorithm with nOS = 1,
respectively.

Table 3. Metrics for cubic phantom, reconstructed by L1 regularization with parameter
λ1 = 5.0E+03, using (a) ISTA, (b) FISTA, (c) FISTA with backtracking line search, and (d)
NUMOS with nOS = 1, respectively.

Algorithms VR Dice CNR Time (seconds)
ISTA 4.38 0.25 4.66 189.0 s

FISTA 1.34 0.41 7.12 24.7 s
FISTA with backtracking 1.28 0.41 8.46 138.0 s

NUMOS, nOS=1 1.13 0.41 7.90 14.7 s

reconstructed targets are defined and how the stopping criteria are chosen. We plan to do more
involved comparisons and explorations in this direction in the future.

It was brought to our attention that a clustered/group sparsity promoting algorithm has been
introduced into diffuse optical imaging recently [31]. We will consider similar techniques in
FMT as well in the future.

For the OS technique, the choice of nOS depends on the size of our measurements, the stop-
ping criterion, and how much we want to sacrifice the image qualities for a faster convergence
speed [11, 30]. For our simulation data, we found that for nOS = 16,32, the result is not too
different from the case for nOS = 1 and for nOS = 64,128, the results are still quite good. For
phantom experiments, nOS = 16,32,64 are all good but nOS = 128 is not working well. A
possible explanation is that much less measurements in each subset may cause the algorithm
unstable. One important requirement for the OS technique is to choose the subsets in a balanced
way [19]. That’s why we did the randomization trick, which has unfortunately increased quite
some computational cost and prevented us from obtaining a theoretical nOS times of speed
increase [11]. We plan to further study the distribution of our detector positions so that a de-
terministic way of choosing ordered subsets for the FMT system may become possible, which
may make it possible for NUMOS to take even less time.

Lastly, as we mentioned in the introduction, when λ1 = 0 and nOS= 1, the NUMOS updating
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formula (8) was also known as the ISRA algorithm [14, 15], and the “non-negative matrix
factorization” (NNMF) algorithm [32]. It is interesting to note that this special case of NUMOS,
under the NNMF framework, was used to remove background autofluorescence effectively [33,
34]. In our future in vivo study, we may follow the NNMF framework and preprocess the data
straightforwardly to guarantee sparsity.

In conclusion, our proposed NUMOS algorithm is superior to its uniform counterpart that
was popular for the MM framework in FMT and it is also significantly faster than some state-of-
the-art algorithms such as FISTA, even when we disable the OS feature for speed enhancement.
When a reasonably large number of ordered subsets are used, our NUMOS can be 3∼ 5 extra
times faster.
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