
Blood vessel segmentation and width estimation 
in ultra-wide field scanning laser 

ophthalmoscopy 

Enrico Pellegrini,1,* Gavin Robertson,2 Emanuele Trucco,1 Tom J. MacGillivray,2,3,4 
Carmen Lupascu,5 Jano van Hemert,6 Michelle C. Williams,7 David E. Newby,7  

Edwin JR van Beek,3 and Graeme Houston8 
1 VAMPIRE Project, School of Computing, University of Dundee, DD1 4HN. UK 

2 VAMPIRE Project, Centre for Clinical Brain Science, University of Edinburgh, EH16 4TJ, UK 
3 Clinical Research Imaging Centre, University of Edinburgh, EH16 4TJ, UK 

4 Clinical Research Facility, University of Edinburgh, EH4 2XU, UK 
5 Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, 90123, Italy 

6 Optos plc, Dunfermline, KY11 8GR, UK 
7 University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, EH16 4TJ, UK 

7 Clinical Research Imaging Centre, University of Edinburgh, EH16 4TJ, UK 
8 Ninewells Hospital and Medical School, University of Dundee, DD1 9SY, UK 

*e.z.pellegrini@dundee.ac.uk 

Abstract: Features of the retinal vasculature, such as vessel widths, are 
considered biomarkers for systemic disease. The aim of this work is to 
present a supervised approach to vessel segmentation in ultra-wide field of 
view scanning laser ophthalmoscope (UWFoV SLO) images and to 
evaluate its performance in terms of segmentation and vessel width 
estimation accuracy. The results of the proposed method are compared with 
ground truth measurements from human observers and with existing state-
of-the-art techniques developed for fundus camera images that we 
optimized for UWFoV SLO images. Our algorithm is based on multi-scale 
matched filters, a neural network classifier and hysteresis thresholding. 
After spline-based refinement of the detected vessel contours, the vessel 
widths are estimated from the binary maps. Such analysis is performed on 
SLO images for the first time. The proposed method achieves the best 
results, both in vessel segmentation and in width estimation, in comparison 
to other automatic techniques. 

© 2014 Optical Society of America 

OCIS codes: (100.2960) Image analysis; (100.3008) Image recognition, algorithms and filters; 
(100.4996) Pattern recognition, neural networks; (170.4470) Ophthalmology. 

References and links 

1. N. Patton, T. M. Aslam, T. MacGillivray, I. J. Deary, B. Dhillon, R. H. Eikelboom, K. Yogesan, and I. J. 
Constable, “Retinal image analysis: concepts, applications and potential,” Prog. Retin. Eye Res. 25(1), 99–127 
(2006). 

2. B. R. McClintic, J. I. McClintic, J. D. Bisognano, and R. C. Block, “The relationship between retinal 
microvascular abnormalities and coronary heart disease: a review,” Am. J. Med. 123, 374 (2010).  

3. T. Y. Wong, F. M. A. Islam, R. Klein, B. E. K. Klein, M. F. Cotch, C. Castro, A. R. Sharrett, and E. Shahar, 
“Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis 
(MESA),” Invest. Ophthalmol. Vis. Sci. 47(6), 2341–2350 (2006). 

4. E. R. Ogagarue, P. L. Lutsey, R. Klein, B. E. Klein, and A. R. Folsom, “Association of ideal cardiovascular 
health metrics and retinal microvascular findings: the Atherosclerosis Risk in Communities Study,” J. Am. Heart 
Assoc. 2(6), 000430 (2013). 

5. J. J. Wang, G. Liew, T. Y. Wong, W. Smith, R. Klein, S. R. Leeder, and P. Mitchell, “Retinal vascular calibre 
and the risk of coronary heart disease-related death,” Heart 92(11), 1583–1587 (2006). 

6. J. C. Parr and G. F. Spears, “General caliber of the retinal arteries expressed as the equivalent width of the 
central retinal artery,” Am. J. Ophthalmol. 77(4), 472–477 (1974). 

#221875 - $15.00 USD Received 27 Aug 2014; revised 30 Oct 2014; accepted 9 Nov 2014; published 17 Nov 2014
(C) 2014 OSA 1 December 2014 | Vol. 5,  No. 12 | DOI:10.1364/BOE.5.004329 | BIOMEDICAL OPTICS EXPRESS  4329



7. M. D. Knudtson, K. E. Lee, L. D. Hubbard, T. Y. Wong, R. Klein, and B. E. K. Klein, “Revised formulas for 
summarizing retinal vessel diameters,” Curr. Eye Res. 27(3), 143–149 (2003). 

8. W. Jones and G. Karamchandani, Panoramic Ophthalmoscopy, Optomap Images and Interpretation (SLACK 
Incorporated, 2007). 

9. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “Detection of blood vessels in retinal 
images using two-dimensional matched filters,” IEEE Trans. Med. Imaging 8(3), 263–269 (1989). 

10. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. van Ginneken, “Ridge-based vessel 
segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004). 

11. A. M. Mendonça and A. Campilho, “Segmentation of retinal blood vessels by combining the detection of 
centerlines and morphological reconstruction,” IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006). 

12. E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using line operators and support vector 
classification,” IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007). 

13. J. Xu, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Retinal vessel segmentation on SLO image,” Conf. Proc. 
IEEE Eng. Med. Biol. Soc. 2008, 2258–2261 (2008). 

14. G. Robertson, E. Pellegrini, C. Gray, E. Trucco, and T. MacGillivray, “Investigating post-processing of scanning 
laser ophthalmoscope images for unsupervised retinal blood vessel detection,” in Proocedings of IEEE 26th 
International Symposium on Computer-Based Medical Systems (IEEE, 2013), pp. 441–444. 

15. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar Júnior, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation 
using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging 25(9), 1214–1222 
(2006). 

16. P. Bankhead, C. N. Scholfield, J. G. McGeown, and T. M. Curtis, “Fast retinal vessel detection and measurement 
using wavelets and edge location refinement,” PLoS ONE 7(3), e32435 (2012). 

17. C. A. Lupaşcu, D. Tegolo, and E. Trucco, “Accurate estimation of retinal vessel width using bagged decision 
trees and an extended multiresolution Hermite model,” Med. Image Anal. 17(8), 1164–1180 (2013). 

18. D. E. Newby, M. C. Williams, A. D. Flapan, J. F. Forbes, A. D. Hargreaves, S. J. Leslie, S. C. Lewis, G. 
McKillop, S. McLean, J. H. Reid, J. C. Sprat, N. G. Uren, E. J. van Beek, N. A. Boon, L. Clark, P. Craig, M. D. 
Flather, C. McCormack, G. Roditi, A. D. Timmis, A. Krishan, G. Donaldson, M. Fotheringham, F. J. Hall, P. 
Neary, L. Cram, S. Perkins, F. Taylor, H. Eteiba, A. P. Rae, K. Robb, D. Barrie, K. Bissett, A. Dawson, S. 
Dundas, Y. Fogarty, P. G. Ramkumar, G. J. Houston, D. Letham, L. O’Neill, S. D. Pringle, V. Ritchie, T. 
Sudarshan, J. Weir-McCall, A. Cormack, I. N. Findlay, S. Hood, C. Murphy, E. Peat, B. Allen, A. Baird, D. 
Bertram, D. Brian, A. Cowan, N. L. Cruden, M. R. Dweck, L. Flint, S. Fyfe, C. Keanie, T. J. MacGillivray, D. S. 
Maclachlan, M. MacLeod, S. Mirsadraee, A. Morrison, N. L. Mills, F. C. Minns, A. Phillips, L. J. Queripel, N. 
W. Weir, F. Bett, F. Divers, K. Fairley, A. J. Jacob, E. Keegan, T. White, J. Gemmill, M. Henry, J. McGowan, L. 
Dinnel, C. M. Francis, D. Sandeman, A. Yerramasu, C. Berry, H. Boylan, A. Brown, K. Duffy, A. Frood, J. 
Johnstone, K. Lanaghan, R. MacDuff, M. MacLeod, D. McGlynn, N. McMillan, L. Murdoch, C. Noble, V. 
Paterson, T. Steedman, and N. Tzemos, “Role of multidetector computed tomography in the diagnosis and 
management of patients attending the rapid access chest pain clinic, The Scottish computed tomography of the 
heart (SCOT-HEART) trial: study protocol for randomized controlled trial,” Trials 13(1), 184 (2012). 

19. G. Robertson, T. Peto, B. Dhillon, M. C. Williams, E. Trucco, E. J. R. van Beek, G. Houston, D. E. Newby, and 
T. MacGillivray, “Wide-field Ophthalmic Imaging for Biomarkers Discovery in Coronary Heart Disease,” 
presented at the ARVO ISIE Imaging Conference, Seattle, US, May 2013. 

20. M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka, C. G. Owen, and S. A. Barman, “Blood 
vessel segmentation methodologies in retinal images--a survey,” Comput. Methods Programs Biomed. 108(1), 
407–433 (2012). 

21. T. MacGillivray, A. Perez-Rovira, E. Trucco, K. S. Chin, A. Giachetti, C. Lupascu, D. Tegolo, P. J. Wilson, A. 
Doney, A. Laude, and B. Dhillon, “VAMPIRE: Vessel Assessment and Measurement Platform for Images of the 
Retina,” in Human Eye Imaging and Modelling, E. Y. K. Ng, J. H. Tan, U. R. Acharya, J. S. Suri, eds. (CRC 
Press, 2012). 

22. J. Jan, J. Odstrcilik, J. Gazarek, and R. Kolar, “Retinal image analysis aimed at blood vessel tree segmentation 
and early detection of neural-layer deterioration,” Comput. Med. Imaging Graph. 36(6), 431–441 (2012). 

23. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale vessel enhancement filtering,” in 
MICCAI 1998 Lecture Notes in Computer Science, W. M. Wells, A. C. F. Colchester, S. L. Delp, eds. (Springer, 
1998). 

24. A. Cavinato, L. Ballerini, E. Trucco, and E. Grisan, “Spline-based refinement of vessel contours in fundus retinal 
images for width estimation,” in Proceedings of IEEE International Symposium on Biomedical Imaging: from 
Nano to Macro (IEEE, 2013), pp. 860–863. 

25. J. Carletta, “Assessing agreement on classification tasks: the kappa statistics,” Comput. Linguist. 22(2), 249–254 
(1996). 

26. J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics 33(1), 
159–174 (1977). 

27. Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,” 
Psychometrika 12(2), 153–157 (1947). 

28. F. N. Doubal, T. J. MacGillivray, N. Patton, B. Dhillon, M. S. Dennis, and J. M. Wardlaw, “Fractal analysis of 
retinal vessels suggests that a distinct vasculopathy causes lacunar stroke,” Neurology 74(14), 1102–1107 
(2010). 

#221875 - $15.00 USD Received 27 Aug 2014; revised 30 Oct 2014; accepted 9 Nov 2014; published 17 Nov 2014
(C) 2014 OSA 1 December 2014 | Vol. 5,  No. 12 | DOI:10.1364/BOE.5.004329 | BIOMEDICAL OPTICS EXPRESS  4330



29. D. E. Croft, J. van Hemert, C. C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D. M. Brown, “Precise 
montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and 
fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014). 

1. Introduction 

Evidence shows that changes in morphological features associated with retinal blood vessels 
such as widths, tortuosity and branching angles are biomarkers of systemic diseases such as 
hypertension, arteriosclerosis, stroke, myocardial infarction and cardiovascular disease [1–5]. 
The investigation of biomarkers has traditionally been confined to limited areas of the retina 
around the macula and the optic disc (OD). Examples are the Central Retinal Artery / Vein 
Equivalent [6] and Artery Vein Ratio [7], which are measured in an annulus that covers the 
surface from 1 to 1.5 optic disc diameters (ODD’s) around the center of the OD. Alternative 
devices such as the scanning laser ophthalmoscope (SLO) [8], with an ultra-wide field of 
view (UWFoV) of approximately 200° (compared to 30-60° with a fundus camera), can 
capture in a single image a larger part of the retina, allowing more extensive analysis of the 
associated vasculature. The automatic and objective quantification of morphometric vascular 
features is crucial, especially in population studies, where the manual annotation of large 
number of images would be an extremely time-consuming process. For this reason, since the 
work by Chaudhuri et al. [9], automatic tools for the segmentation of blood vessels and the 
estimation of their widths in fundus images have been extensively investigated and different 
approaches, such as [10–12] among others, have been presented in literature. To the best of 
our knowledge, the vast majority of these techniques have been developed for images 
acquired with fundus cameras and are less frequently applied to SLO images [13]. The task of 
vessel segmentation presents different challenges in UWFoV SLO images from conventional 
fundus images. For instance, the illumination is usually less uniform across such a large field 
of view. This leads to a lower contrast between the vessel edges and the background, 
especially in the periphery of the retina, and has to be taken into account. 

The aim of this study is to present a supervised approach to vessel segmentation that is 
specifically tailored to UWFoV SLO images and to assess its performance in terms of 
segmentation accuracy and vessel width estimation error. We are the first group to investigate 
both tasks at the same time on this particular type of images. The proposed algorithm extends 
our previous unsupervised approach [14] based on Gaussian matched filters, morphological 
operations and hysteresis thresholding. This time multiple matched filters are adopted to take 
into account vessel width variations. The resulting maps, as well as information on vessel 
width and direction, are used as input to a neural network classifier. Segmentation results are 
evaluated using a ground truth set of images manually segmented by trained human 
observers.In addition, two well-known and publicly available segmentation techniques [15, 
16], that give state-of-the-art results on fundus camera images, are adapted to work 
specifically on UWFoV SLO images and used for comparison. The performance of the 
proposed method is also evaluated in terms of accuracy of width estimation. The comparison 
is made, not only with the human observers and the two segmentation algorithms cited 
previously, but also with a version of the width estimation technique proposed by Lupascu et 
al. [17] that was adapted and modified for UWFoV SLO images. 

No conclusions are drawn on associations between retinal vascular features and systemic 
disease but the method developed will enable future association studies. 

2. Methods 

This research followed the tenets of the Declaration of Helsinki and was approved by the 
Research Ethics Committee of the Universities of Dundee and Edinburgh, UK. 

Informed consent was obtained by all the participants involved in the data collection. 
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2.1 Materials 

For generality, the UWFoV SLO images (3900 x 3072 pixels) used in this study are acquired 
from a variety of volunteers with different medical histories. Ten images from volunteers 
(smokers and non-smokers, hypertensive and normotensive, mean age = 58.4 ± 17.5 years) 
involved in the SCOT-HEART Trial [18, 19], are captured using an Optos P200C SLO 
device. This non-mydriatic device makes use of a green laser source, operating at 532 nm, 
and of a red laser source, operating at 633 nm, to build a false color image of the retina and 
sub-retinal layers. 

From each image [Fig. 1], 12 rectangular windows of size 2 x 1.5 ODD’s are extracted, 
manually segmented by two trained observers and used as ground truth to evaluate vessel 
segmentation. One window is centered on the OD. Four windows are located around the first 
one in order to capture the largest vessels usually visible in conventional fundus images with 
a narrower field of view. Three windows are located in the periphery of the image, avoiding 
eyelashes and other possible artifacts. Four additional windows are located in the area 
between the latest two groups. Apart from the one centered on the OD, the exact location of 
the other windows is different for each image, especially in the periphery, to ensure that 
windows not showing vessels are not selected. 

The choice of this 120-window data set is made so that the selected windows are 
representative of the range of vessel widths and background intensities that can be found in an 
UWFoV SLO at different distances from the OD. This is also a good trade-off between the 
portion of the area covered by the 12 windows and the time cost of the manual segmentation 
of an entire image. We have determined empirically that approximately 18 hours are needed 
for an observer to manually segment an entire UWFOV SLO image while only 4 hours are 
required for 12 windows. 

In the same set of images, 32 vessel widths per image, for a total of 144 widths, are 
manually annotated by three trained observers (Obs 1, Obs 2, Obs 3) and used to assess the 
accuracy of width estimation. Every width is measured once by each observer at selected 
points along the blood vessel paths chosen by Obs 1. Respectively, 8 vessels are annotated in 
the annulus between 1.0 and 1.5 ODD’s from the OD center, called zone B [20], 8 vessels 
between 1.5 and 2.0 ODD’s, 8 vessels between 2.0 and 2.5 ODD’s and the last 8 vessels in 
the region outside the last annulus. In each region 4 arteries and 4 veins are selected. All the 
annotations are made using specific tools from the VAMPIRE [21] software suite. 

 

Fig. 1. Original UWFoV SLO image (left) and binary map segmented using the proposed 
method (right). The windows used for the segmentation evaluation are also shown. 

2.2 Pre-processing steps, morphological cleaning and matched filtering 

As reported in detail elsewhere [14], the green channel of the image [Fig. 2(a)] undergoes a 
number of pre-processing steps to produce a map, Mm, where the background has been 
suppressed and the vascular network highlighted [Fig. 2(b)]. The retinal vasculature is further 
enhanced by convolving the map with a battery of orthogonally oriented Gaussian and 

#221875 - $15.00 USD Received 27 Aug 2014; revised 30 Oct 2014; accepted 9 Nov 2014; published 17 Nov 2014
(C) 2014 OSA 1 December 2014 | Vol. 5,  No. 12 | DOI:10.1364/BOE.5.004329 | BIOMEDICAL OPTICS EXPRESS  4332



Laplacian of Gaussian (LoG) kernels rotated in 15° steps to account for varying vessel 
orientation. The Gaussian filter is used to smooth the vessel along its direction while the LoG 
enhances the contrast of the vessel’s cross-sectional profile. The maximum intensity value at 
each pixel location is extracted to form a map [Fig. 2(c)], MC. The process is repeated at four 
different scales using different values of standard deviation σ for the LoG and the Gaussian 
filters to accommodate for the range of vessel widths expected after a visual inspection of the 
UWFoV SLO images. In particular, σ = w/(2√2), where the width of vessels are w = [3 7 11 
15] pixels for the LoG kernel and a value equal to 4σ is used for the respective Gaussian 
kernel. 

A further step of morphological grayscale reconstruction is performed at this stage to 
recover small details lost during the process. A parametric map [22], MW, encoding the width 
range from the set of four maps from the convolution stage is created by taking the maximum 
value at each pixel location. Two direction maps are computed by measuring the local 
orientation using eigenvalue analysis of the Hessian matrix [23] on two orthogonal versions 
of Mm. By computing the local standard deviation (SD) of each of these direction maps and 
taking the minimum value at each pixel location, a SD map [Fig. 2(d)], MSd, is created 
without large SD values. 

 

Fig. 2. Example of window extracted from an UWFoV SLO image at different stages of the 
segmentation process: green channel of the image (a), Mm (b), MC (c), MSd (d), MNN (e), MB 
(f).Binary maps obtained by [14] (g), by [15] (h), by [16] (i). 

2.3 Neural network classification and hysteresis thresholding 

The six parameterized maps from the previous processing steps (four MC’s, MW and MSd) form 
the input vector to the neural network classifier. A fully connected, two-layer, feed-forward 
neural network with nine neurons in the hidden layer is used at this stage. The activation 
function for the hidden layer is the log-sigmoid function, logsig(n) = 1/(1 + e-n), while the 
output layer has a softmax activation function, softmax(n) = en/en. The output is a map, MNN 
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[Fig. 2(e)], where the intensity, at each pixel location, is the likelihood estimated by the neural 
network of that pixel belonging to a vessel. 

The final step in the processing towards the binary vessel map is to threshold MNN. 
Hysteresis thresholding is chosen due to its ability to include vessel pixels of lower likelihood 
that could otherwise be lost with a single global threshold level. A lower and upper bounds 
are set and any pixels with intensity higher than the upper bound are considered vessels and 
set to 1 in the final binary map. All the pixels with intensity values between the two bounds 
and connected to those above the upper bound are considered vessels as well and set to 1. The 
rest of the pixels are considered background and set to 0 in the final binary map. To aid in the 
thresholding step, a binary map of estimated vessels, ME, is obtained by setting all the pixels 
in MSd with intensity value ≤ 10 and connected to areas ≥ 1000 pixels (values determined by 
experiment) as vessel candidates and the rest as background. In the first instance, all pixel 
values in MNN that falls in the vessel regions defined by ME are identified and a vessel 
probability histogram is formed. Depending on the shape of this histogram one of two 
possible sets of hysteresis threshold bounds is chosen. If the histogram is well fitted (R2 > 
0.85) by a power function, f(x) = a + bxc, with a single peak located between a vessel 
probability of 0.9 and 1, the lower and higher threshold bounds are fixed respectively at 0.50 
and 0.65 [Fig. 3(a)]. If the two conditions are not satisfied together, the threshold bounds are 
set respectively to Mh−0.15σh and Mh + 0.15σh, where Mh and σh are the mean value and the 
SD of the vessel probability histogram [Fig. 3(b)]. This second case occurs 20% of the times 
in our image set. 

At this stage, ME is skeletonized and added to the upper bound hysteresis map to connect 
potential vessel pixels of lower probability. This can be particularly effective in peripheral 
regions of UWFoV SLO images where contrast may be low but ME can still predict vessel 
presence. Lastly, the binary map undergoes morphological cleaning to produce the final 
binary vessel map, MB [Fig. 2(f)]. 

 

Fig. 3. Examples of vessel probability histograms of all pixel values in MNN that falls in the 
vessel regions defined by ME: histogram well fitted by a power function with a single peek 
between 0.9 and 1 (a), histogram that does not satisfy the two conditions (b). 
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2.4 Adaptation of fundus-camera image segmentation techniques 

Two fundus-camera image segmentation techniques are adapted to achieve the best 
segmentation performance on UWFoV SLO images and used for comparison. First, the 
supervised algorithm by Soares et al. [15] is re-trained on our data set (leave-one-image-out 
cross-validation) and the Gabor wavelet coefficients are re-scaled to fit the widths of blood 
vessels on UWFoV SLO images. Second, the algorithm by Bankhead et al. [16], in which the 
wavelet levels of the IUWT are rescaled and the threshold percentage yielding the binary map 
is lowered to account for the lower percentage of vessel pixels visible in the 200° field of 
view. 

2.5 Width estimation 

Four different binary maps are obtained from the segmentation of each image using the 
aforementioned techniques: proposed method, and our previous unsupervised approach, 
Robertson et al. [Fig. 2(g)], Soares et al. [Fig. 2(h)], Bankhead et al. [Fig. 2(i)]. After a step 
of spline-refinement of the vessel edges [24] is applied to the outputs of each segmentation 
algorithm, all the width of all the vessels annotated in the WE-Data set is measured. The 
width estimation algorithm by Lupascu et al. [17] is re-implemented adding a pre-processing 
step of contrast enhancement and adapting the Gaussian fit for the detection of the vessel 
boundaries. The algorithm is then re-trained on our data set (leave-one-image-out cross-
validation). 

2.6 Statistics 

The inter-observer agreement between the trained annotators that manually segmented the 
vessels is evaluated in terms of Cohen’s Kappa coefficient [25]. With a k value equal to 0.83 
the agreement is considered “almost perfect” according to the guidelines in [26]. 

To evaluate the performance of vessel segmentation algorithms, standard metrics are 
computed according to the guidelines in [20]. Mean values and SD of true positive rate 
(TPR), false positive rate (FPR), positive predictive value (PPV), negative predictive value 
(NPV), accuracy (Acc) and area under the curve (AUC) of the receiving operating 
characteristics of the segmentation techniques are calculated. Assuming the OD size to be 
constant and according to the number of pixels that a window covers, mean and SD are 
weighted to account for the variation of window size among images. The values achieved 
using the first observer as ground truth and those achieved using the second observer as 
ground truth are then averaged to obtain the final results reported in Section 3 [Table 1]. A 
McNemar’s test [27] is used to assess whether the difference in segmentation accuracy 
between the two best performing algorithms is statistically significant or not. 

For every vessel width, the average of the values measured by the three observers (Obs 
average) is considered as ground truth. The set of vessel widths is divided in three subgroups. 
This choice is motivated by the fact that we are interested in assessing the algorithm 
performances in detail at different scales. Large vessels are those generally taken into account 
for the investigation of biomarkers in zone B. Medium vessels are the most numerous across 
the large field of view of the images in our data set. Small vessels could be relevant for the 
investigation of different types of biomarkers such as the fractal dimension of the retinal 
vasculature [28]. The choice of the thresholds (6.5 and 9.0 pixels) between the three 
subgroups is determined by visual inspection of the histogram of the manually annotated 
vessel widths so that the groups contain approximately the same number of samples. The 
smallest width measured in the data set is equal to 3.6 pixels while the largest one is equal to 
14.4 pixels. 

Since no statistically significant difference is found between the distributions of width 
estimation errors of arteries and veins (unpaired t-test, α = 0.05, p-value = 0.19), no further 
distinction is made in that sense in our analysis. We report width ranges and results [Table 2] 
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using mean and SD of the ground truth, and mean and SD of the differences between 
estimated value and ground truth. The Pearson’s correlation coefficients (r) between the 
ground truth and the widths, either measured by the observers or estimated from the binary 
vessel maps, are also reported in the table. Lastly, paired t-tests are performed between the 
ground truth and the set of widths estimated from the binary maps obtained by the different 
segmentation techniques. 

3. Results 

The performance of the vessel segmentation algorithms are shown [Table 1]. From a 
McNemar’s test (α = 0.05, p-value < 0.001) we can infer that the proposed method achieves a 
significantly better segmentation accuracy with respect to the second best performing 
technique [15]. 

Table 1. Vessel segmentation results 

Segmentation Method TPR FPR PPV NPV Acc AUC 
2nd Observer 0.833(0.026) 0.015(0.003) 0.833(0.026) 0.985(0.003) 0.972(0.003) n. a. 

Proposed method 0.702(0.059) 0.011(0.006) 0.865(0.048) 0.973(0.006) 0.965(0.006) 0.97 
Robertson et al. [14] 0.593(0.073) 0.009(0.005) 0.858(0.062) 0.963(0.010) 0.957(0.008) 0.87 

Soares et al. [15] 0.674(0.062) 0.017(0.004) 0.786(0.056) 0.970(0.006) 0.957(0.006) 0.96 
Bankhead et al. [16] 0.819(0.038) 0.033(0.007) 0.697(0.049) 0.983(0.004) 0.954(0.006) 0.95 

Values are expressed as average and (SD). 

The evaluation of the vessel width estimation performance is shown [Table 2]. All figures 
are expressed in pixels. Given the UWFoV, the conversion pixel-µm depends on the location 
where the width is measured. This conversion can be calculated, following the instrument 
specifications provided by the manufacturers, after a stereographic projection (proprietary 
OPTOS software) of the image [29] that takes into account the gaze angle of the patient, 
determined by the location of the fovea. Based on a theoretical calculation on a subset of the 
annotated vessel widths, assuming a constant size of the eye bulb, we have determined that 1 
pixel = 17.2 µm on average in zone B while at 4 ODD’s from the OD, where the farthest 
vessel width is measured, 1 pixel = 20.6 µm on average. 

The proposed method is the only one that does not show a statistically significant 
difference (α = 0.05, p-value = 0.13) in the distribution of the estimated vessel widths with 
respect to the ground truth. Paired t-test between every other set of estimated widths and the 
ground truth result in a rejection of the null hypothesis (α = 0.05, p-value < 0.001 in all four 
cases). 

Table 2. Vessel width results 

Width range 
Obs 

average 

Differences with respect to the ground truth 

Obs 1 Obs 2 Obs 3 
Robertson et 

al. [14] 
Soares et 
al. [15] 

Bankhead et 
al. [16] 

Lupascu et 
al. [17] 

Proposed 
method 

Small 
3.5-6.5 

5.51 
(0.72) 

0.16 
(0.51) 

−0.04 
(0.41) 

−0.11 
(0.63) 

−0.40  
(1.09) 

−0.20 
(1.52) 

1.80  
(1.41) 

1.54  
(1.08) 

0.65  
(0.94) 

Medium 
6.5-9.0 

7.54 
(0.73) 

0.41 
(0.63) 

0.11 
(0.55) 

−0.53 
(0.80) 

−1.22  
(1.65) 

−0.40 
(1.90) 

2.00  
(1.24) 

0.84  
(0.99) 

0.16  
(1.12) 

Large 
9.0-14.5 

10.53 
(1.23) 

0.30 
(0.75) 

0.13 
(0.51) 

−0.44 
(0.85) 

−3.69  
(2.64) 

−2.18 
(3.92) 

1.36  
(1.06) 

−0.64 
(1.64) 

−0.55  
(1.02) 

Total 
3.5-14.5 

7.27 
(1.94) 

0.30 
(0.62) 

0.06 
(0.50) 

−0.35 
(0.77) 

−1.33  
(2.03) 

−0.63 
(2.36) 

1.81  
(1.29) 

0.85  
(1.38) 

0.22  
(1.11) 

Pearson’s r 1.00 0.96 0.97 0.92 0.42 0.49 0.81 0.71 0.82 
Except from the last row, all values are expressed in pixels as average and (SD) 

4. Discussion 

We presented a supervised vessel segmentation technique based on multi-scale matched 
filters, a neural network classifier and hysteresis thresholding. We addressed vessel 
segmentation in UWFoV SLO images as well as evaluated performance in terms of accuracy 
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in vessel width estimation for the first time. The effectiveness of a segmentation algorithm in 
this second task is important since metrics based on vessel widths are considered biomarkers 
of systemic diseases. Therefore automatic segmentation algorithms producing inaccurate 
measures of widths could lead to erroneous conclusions in biomarker studies. 

The proposed method achieves the best results in our comparison tests in vessel 
segmentation accuracy (Acc = 0.965 ± 0.006) and AUC (0.97). The low value of SD of the 
segmentation accuracy suggests that the method performs consistently on the entire set of 
windows. Windows located close to the OD are where largest vessels are the most visible. 
Thin vessels, instead, are more abundant in windows taken from the periphery of the image. 
A low SD in segmentation accuracy is therefore an indication of the goodness of the proposed 
technique in segmenting all possible scales of vessels. These results represent a considerable 
improvement with respect to our previous approach [14] and have proven to be significantly 
better than the performance achieved by the best of the techniques [15, 16] developed for 
fundus camera images that we adapted to UWFoV SLO images. 

At the same time, the proposed method presents the lowest overall bias (0.22 pixels), 
which is comparable to those between human observers, and the lowest SD (1.11 pixels) in 
width estimation errors among the automatic algorithms [14–17] used for comparison. The 
results achieved by the proposed method are the only ones that do not show a statistically 
significant difference from the ground truth. Lastly, the values of Pearson’s r coefficients 
indicate that the widths estimated from the binary vessel maps automatically segmented with 
the proposed method are the most correlated (r = 0.82) to the ground truth. 

It is worth noting that a good value of vessel segmentation accuracy does not necessarily 
imply good results in vessel width estimation. This is made explicit by the performance in the 
two tasks (see Table 1 and Table 2) of [14] and [15]. Both techniques show the second 
highest value of segmentation accuracy (Acc = 0.957) but at the same time the two lowest 
correlations (r respectively equal to 0.42 and 0.49) to the vessel width ground truth. 

One known limitation of the proposed algorithm is its supervised nature that requires a 
tedious and time consuming step of manual segmentation of retinal images, necessary to train 
the neural network classifier. After the training phase, the time needed to process a whole 
UWFoV SLO image by our method is comparable (approximately 200 seconds) to the time 
required by the other supervised method [15] that has been tested. The unsupervised 
technique by Bankhead et al. [16] is considerably faster (10 seconds) given the same 
computer configuration (i5-3450 CPU @ 3.10 GHz, 8.00 GB of RAM). 

A limitation of this study is that the OD dimension is assumed to be constant among 
participants as previously reported by other authors [7]. The study of the refraction of each 
subject is also beyond the scope of this work. 

A more comprehensive investigation of the performance of the proposed method in 
conventional fundus camera images and the possible differences with respect to UWFoV SLO 
ones acquired from the same subject is currently being carried out. 
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