
Algorithms for Quantitative Quasi-static Elasticity Imaging using 
Force Data

Mohit Tyagi1, Sevan Goenezen2, Paul E. Barbone3, and Assad A. Oberai1,*

1Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic 
Institute Troy, NY 12180

2Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

3Mechanical Engineering, Boston University, Boston, MA 02215

Abstract

Quasi-static elasticity imaging can improve diagnosis and detection of diseases that affect the 

mechanical behavior of tissue. In this methodology images of the shear modulus of the tissue are 

reconstructed from the measured displacement field. This is accomplished by seeking the spatial 

distribution of mechanical properties that minimizes the difference between the predicted and the 

measured displacement fields, where the former is required to satisfy a finite element 

approximation to the equations of equilibrium. In the absence of force data, the shear modulus is 

determined only up to a multiplicative constant. In this manuscript we address the problem of 

calibrating quantitative elastic modulus reconstructions created from measurements of quasi-static 

deformations. We present two methods that utilize the knowledge of the applied force on a portion 

of the boundary. The first involves rescaling the shear modulus of the original minimization 

problem to best match the measured force data. This approach is easily implemented but neglects 

the spatial distribution of tractions. The second involves adding a force-matching term to the 

original minimization problem and a change of variables, wherein we seek the log of the shear 

modulus. We present numerical results that demonstrate the usefulness of both methods.

Keywords

Biomechanical imaging; elasticity imaging; quantitative modulus images; force data

1. INTRODUCTION

Elasticity imaging, or more generally biomechanical imaging, has emerged as an important 

new modality for the detection and diagnosis of different type of diseases including breast 

and prostate cancer [1, 2], atherosclerosis [3, 4], liver cirrhosis [5], and disorders of the brain 

[6, 7]. Further, since it involves generating maps of the mechanical properties of tissue in-
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vivo, it may also be used to create patient-specific, predictive models of tissue deformation 

which find applications in surgical planning and training.

In elasticity imaging the deformation field within the tissue in response to an external or 

internal excitation is measured, and this field in conjunction with the equations of 

equilibrium and an assumed stress-strain law is used to determine the spatial distribution of 

the material parameters in that law [8]. One may classify elasticity imaging by considering 

whether the time scale of the excitation is fast enough so that inertia of the tissue is 

significant [9]. If this is the case, it is often possible to estimate absolute (also referred to as 

quantitative) estimates of the material properties. This is because given the displacement 

history, the inertia term, which is a product of the tissue density and acceleration, can be 

estimated easily. Here it is assumed that the density of soft tissues is known and does not 

vary significantly. This provides a calibrated body force term on the right hand side of the 

equations of motion, which in turn permits the quantitative estimation of the elasticity 

parameters. We remark that quantitative estimates of material properties are useful because 

(a) they can be used to monitor the progression of a disease or a treatment (think of a tumor 

becoming less stiff following chemotherapy), (b) they are needed in creating patient-specific 

models for surgical planning and training, (c) in some cases they may be used to stage a 

disease (liver fibrosis, for example [5, 10, 11, 12, 13, 14]) and perhaps most importantly, (d) 

they provide an objective means to compare results across operators, imaging systems, and 

time.

In another class of elasticity imaging applications, the tissue is deformed slowly, and the 

displacements are measured typically using ultrasound. In these applications the time scale 

of excitation is slow so that inertia plays no role. We refer to this as quasi-static elasticity 

imaging. In quasi-static elasticity imaging, one typically has at most a measured quasi-static 

displacement field. From such data, then even in the most optimistic modeling case, one can 

determine the shear modulus of the tissue only up to a multiplicative constant [15, 16, 17, 

18]. This is because in the equations of motion, there is no term on the right-hand-side in 

order to calibrate the material parameters (see Equation (1) in the following section). This is 

a shortcoming of quasi-static elasticity imaging which is overcome by other advantages such 

as simpler experimental set up and higher resolution. Thus there has been effort in recent 

years in making quasi-static elasticity imaging quantitative [19].

One approach to quantitative quasi-static elasticity imaging has focused on using a 

calibrated layer or stand-off pad on the surface of the tissue that is being compressed [19, 

20, 21]. Techniques that use calibration layers must ensure that the layer and the tissue are 

compatible both in terms of their acoustic and elastic properties. Further the coupling 

between the ultrasound transducer and the calibration layer, as well as between the 

calibration layer and the tissue has to be tight.

As an alternative, such restrictions may be avoided by measuring the contact force between 

the ultrasound probe and the body, as for example, described in [22, 23, 24]. We consider 

two approaches for making use of force data. The first uses force data as a post-processing 

step once the relative modulus distribution has been determined using displacement data 

only. This method is simple and easy to implement, however it does not make use of the 
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force data measured in several spatial locations in order to improve the estimate of the 

spatial distribution of the shear modulus. The second approach overcomes this limitation by 

appending to the original minimization problem a force matching term (in addition to a 

displacement matching and a regularization term). Through simple analysis and numerical 

examples we demonstrate that a naive implementation of this approach fails due to the 

conflicting requirements of minimizing the force matching and regularization terms. We 

propose a simple remedy to this problem by solving for the Jeffrey’s parameter [25], which 

is the natural log of the modulus instead of the modulus itself. We demonstrate its efficacy 

through analysis and numerical experiments.

The layout of this paper is as follows. We begin with defining the forward and inverse 

elasticity problems in Section 2. Thereafter in Section 3 we quantify the indeterminacy of 

the shear modulus based on pure displacement data. We also demonstrate that when the 

inverse problem is solved as a minimization problem the regularization term forces the 

modulus distribution toward the smallest possible value. In Section 4 we describe two 

approaches for quantitative elasticity reconstructions using force data, and in Section 5 we 

verify their numerical performance. In Section 6 we extend the application of these methods 

to a pure Dirichlet problem and end with conclusions in Section 7.

2. FORWARD AND INVERSE PROBLEMS

2.1. Equation of equilibrium and constitutive model

The equation of equilibrium in the current configuration is,

(1)

The Cauchy stress tensor is given by,

(2)

where J is the Jacobian or the determinant of the deformation gradient F = 1 + ∇u, where u 
is the displacement field, and S is the second Piola-Kirchhoff stress tensor which may be 

obtained from any valid strain energy density function as

(3)

Here p is the pressure and W is the strain energy density function that depends on the 

invariants of the Cauchy-Green strain tensor C = FTF. In the above equation we have 

assumed that the material is incompressible.

We utilize the Blatz [26] strain energy density function given by

(4)
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Here μ is the shear modulus at zero strain, γ is a nonlinear parameter that determines the 

nonlinearity of the material response, and I1 = trace(C) is the first principal invariant of the 

Cauchy Green tensor. This strain energy density function and the resulting stress-strain 

relation has an exponential functional form (see [27] for more details). Using (4) in (3) and 

(2) we arrive at

(5)

where

(6)

We note that we have explicitly written A as a function of the displacement.

The equation of equilibrium (1) above is appended by boundary conditions. We consider 

displacements that are prescribed on a portion of the boundary,

(7)

Further, we assume that some portion of the boundary may be traction-free. That is,

(8)

Together Γg and Γh must cover the entire boundary, that is ∂Ω = Γg ∪ Γh. We also assume 

that at least some portion of the boundary is traction-free, that is Γh ≠ ∅.

Forward problem—Together (1), (5), (7) and (8) define a well posed forward problem: 

given the material parameters μ and γ, and the boundary data g, determine the displacements 

u and the pressure p everywhere in Ω. In this manuscript, when solving the inverse problem, 

we will consider a sequence of forward problems where g and γ will be fixed, and μ will be 

varied. In that case we may write the solution to the forward problem as {u, p} = {û, p̂}[μ] 

to indicate that for every field μ we have a corresponding set of displacement and pressure 

fields. We also denote the Cauchy stress constructed using these fields as σ = σ̂[μ].

Inverse problem—In elasticity imaging, we wish to solve the inverse problem: given the 

displacement field u everywhere in Ω determine the material parameters μ and γ. There are 

several important remarks to be made here:

1. The pressure field is typically not measured in elasticity imaging, and is therefore 

unknown when solving the inverse problem. However, once the material 

parameters have been determined it can be recovered from (5), after recognizing 

that the material parameters and the displacement fields are both known. Hence the 

pressure field may be thought of as a useful by-product of the inverse problem.

2. In order to solve for both the shear modulus μ and the nonlinear parameter γ, it is 

necessary to measure a displacement field at small strains (|∇u| ≪ 1) and another 

at a finite value of strain [17]. The first displacement field is then used to determine 

the shear modulus μ, while fixing γ to a small constant (say 1) throughout the 
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domain. The second displacement field in then used to determine γ everywhere. 

This procedure works, because the linearization of (5), obtained assuming small 

strains (|∇u| ≪ 1), reduces to

(9)

Here  is the infinitesimal strain tensor, and remarkably the nonlinear 

parameter does not appear in the expression for the stress. Thus the nonlinear 

parameter does not influence the displacement at small strains. In this paper we will 

focus on this first step of solving the nonlinear elasticity problem. That is, we will 

assume that γ is fixed and we are interested in determining a quantitative estimate 

of μ.

3. When the inverse problem is solved using only displacement data (the set up 

described above) the shear modulus is determined only up to a multiplicative 

factor. In order to determine the absolute value of the shear modulus some force 

measurement is necessary. This statement is made precise in the following section.

Minimization problem—The inverse problem is typically solved as a minimization 

problem [28, 29, 30], where the shear modulus μ* is given by

(10)

In the expression above [μ] is the displacement matching term defined as,

(11)

where U is the measured displacement field, and û[μ] is the displacement field 

corresponding to a shear modulus distribution μ. The goal is to find the shear modulus 

distribution that yields a displacement field u, which minimizes π. Also, in the equation 

above ℛ[μ] represents the regularization term, and α the corresponding parameter. The 

regularization term imposes prior beliefs on the reconstructed shear modulus distribution 

while at the same time regularizing the inverse problem. In elasticity imaging, where the 

goal is to identify regions with sharp variations in material properties, one popular choice for 

the regularization term is the total variation term [31, 27], given by

(12)

This term penalizes the total variation in μ without regard for the steepness of the variation. 

Further, β ≪ |∇μ|, is a parameter than ensures that this term has continuous derivatives with 

respect to μ at ∇μ = 0.
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3. INDETERMINACY OF THE SHEAR MODULUS

In this section we demonstrate that given only displacement data it is possible to determine 

the shear modulus only up to a multiplicative constant. We do so by proving three 

propositions that shed light on the solution obtained by solving the inverse problem defined 

in (10). Throughout this section μ0 is an arbitrary positive constant.

Proposition 1

We claim that

(13)

That is let {u, p, μ} be a solution to the forward problem, then {u, μ0p, μ0μ} is also a 

solution to the forward problem.

Proof—In order to prove this we have to prove that the set {u, μ0p, μ0μ} satisfies the 

equation of equilibrium and the boundary conditions given that the set {u, p, μ} satisfies the 

equation of equilibrium and the boundary conditions.

Since the displacement field is unaltered between the two sets the Dirichlet boundary 

condition is automatically satisfied.

We denote the Cauchy stress for the sets {u, μ0p, μ0μ} and {u, p, μ} by σ0 and σ, 

respectively. Then

(14)

As a result,

(15)

and on Γh,

(16)

Hence we conclude that the set {u, μ0p, μ0μ} is a solution to the forward problem.

Proposition 2

Let μ* be the solution of the minimization problem (10), then [μ0μ*] = [μ*]. That is any 

other shear modulus field constructed by multiplying μ* with a positive real number yields 

the same value for the displacement matching term.

Proof—From the definition of the displacement matching term, we have

(17)
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Proposition 3

Let μ* be the solution of the minimization problem (10), and let , then μl = 

μ̄.

Proof—This proposition states that minimizer μ* must attain the lower bound somewhere. 

To prove this we assume the contrary, that is μl > μ̄, and construct the shear modulus field 

. Next we evaluate

(18)

However, this violates our assumption that μ* is the minimizer. Hence we conclude that μl = 

μ̄.

Taken together the propositions above tell us the following about μ*, the solution to the 

minimization problem:

1. Any field μ0μ*, where μ0 is a positive real number, is an equally viable field in that 

it yields the same value for the displacement matching term as μ*.

2. Of all these possible fields the TV regularization selects the one whose minimum is 

equal to the specified lower bound.

3. By solving the inverse problem, while we can expect some information in the 

contrast of the shear modulus, we cannot get any information about its magnitude. 

In the following section we demonstrate how we recover the magnitude by using 

measured force data.

4. USING FORCE DATA

In this section we demonstrate how force data may be used to tackle the indeterminacy in 

evaluating the shear modulus. We assume that on multiple surface patches of the boundary 

Γg the normal force has been measured. We denoted the set of points on each patch by Γ(i) 

and the measured normal force by , where i = 1, ⋯, M.

We consider two approaches. The first is a post-processing method in which the inverse 

problem is first solved without accounting for any force information, and the thereafter the 

shear modulus is rescaled using the force data. In the second approach the force data is 

incorporated in the data matching term while solving the inverse problem. The post-

processing approach is easier to implement, however it is limited in that it does not make 
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effective use of multiple force measurements in evaluating the spatial distribution of the 

shear modulus. The second approach overcomes this short coming but at the expense of 

solving a more complicated problem. In addition we will observe that in order for the second 

approach to work we will need to modify the form of the minimization problem posed in 

(10).

Post-processing method

We assume that the inverse problem has been solved using displacement matching data, and 

the resulting displacement field, pressure, shear modulus and Cauchy stress fields are 

denoted by u*, p*, μ* and σ*. In the previous section we have demonstrated that any shear 

modulus field μ0μ* is an equally likely solution in that it will also minimize the 

displacement matching term to the same extent as μ*. Further, in Proposition 1 we have 

shown that the corresponding displacement, pressure and stress fields will be given by u*, 

μ0p* and μ0σ*. We now determine the optimal value of μ0 by matching the measured and 

predicted forces,

(19)

(20)

We note that the force term on the right hand side of (20) is measured and integral of the 

Cauchy stress can be evaluated once the reconstruction with the displacement matching term 

is done. Using these two pieces of data we can estimate μ0. With μ0 known, we can estimate 

the actual modulus distribution as μ(x) = μ0μ*(x).

If more than one force measurements are available (M > 1), we will have M estimates of μ0. 

In this case we may solve (19) in a least-squares sense in order to determine μ0.

Force-matching method

The second approach involves appending to the original objective function a force matching 

term so that optimal shear modulus distribution is given by

(21)

Here αf is a penalty parameter that determines the relative importance of the force matching 

term which is denoted ℱ[μ] and is equal to

(22)

We now discuss a drawback associated with using this from of the objective function. It is 

related to the opposing tendencies of the regularization and the force matching terms, and 

leads to poor modulus reconstructions as shown in the following section. In the previous 
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section we demonstrated that the displacement matching term is unchanged when the target 

modulus is changed from μ(x) to μ0μ(x), where μ0 is a positive constant. We also proved that 

out of all possible μ0’s the regularization term will select one for which the shear modulus 

attains the lower bound somewhere in the domain. However, in contrast to this, the force 

matching term is minimized when the value of μ0 (for a single force measurement) is given 

by

(23)

Depending on the value of μ and  this may lead to a very large value of μ0. More 

importantly it can be much larger than μ̄, the lower bound on μ. As a result the force 

matching term will act in direct opposition to the regularization term. While the force 

matching will try to converge to a larger value of μ0, the regularization term will try and 

lower it so that the total variation is minimized. A direct consequence of this is the 

appearance of artifacts in the reconstructions when the displacement field is corrupted with 

even a small amount of noise (see Section 5).

This difficulty can be avoided by introducing a variable transformation ψ = ln μ and a new 

objective function such that the optimal distribution of ψ is given by

(24)

In this new setting as the shear modulus is changed from μ to μ0μ the log-modulus changes 

from ψ to ψ0 + ψ, where ψ0 = ln μ0. Consequently the value of the objective function 

changes to

(25)

In deriving the above we have made use of the relations [μ0μ] = [μ] (the result of 

Proposition 2) and the fact the total variation of ψ, which depends only on ∇ψ, is unchanged 

by the addition of a constant to ψ. Now the only term that is affected by adding a constant to 

ψ, and hence multiplying μ with a constant, is the force matching term. The displacement 

matching and the regularization terms are unchanged. As a result the force-matching term 

determines the value of this constant with no “interference” from the other terms.

We note that a similar transformation to the log of conductivity is also described in [32] 

when solving the inverse heat conduction problem. However, in that case the motivation is 

to transform the minimization with bounds to one with no bounds. This is because while the 

conductivity needs to be bounded away from zero, there is no such requirement on its 

logarithm.

5. NUMERICAL RESULTS

We now consider two numerical examples that demonstrate the utility of the methods 

discussed in the previous section. In both examples the specimen is a cube with edge length 

L = 20 and is subject to the loading sketched in Figure 1. The top surface is fixed in the 
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vertical direction and is traction free in all other directions while the bottom surface is 

compressed by a strain ε0 = 1% in the vertical direction and is traction free in all other 

directions. This level of strain represents a typical value at which displacement data is 

estimated in practice. Further, by restricting the strain to a small value we are avoiding the 

confounding nonlinear elastic effects. All other surfaces are traction free. In order to 

eliminate the rigid body modes, the corner of the specimen that is coincident with the origin 

is fixed in all directions and the corner at (0, L, 0) is fixed in the x and the z directions.

The specimen is treated as an isotropic incompressible hyperelastic material with a strain 

energy density given by (4). In this expression the value of γ is set to 0.1, implying that the 

stress response is mostly linear in the range of the prescribed deformation. The value of μ 

varies depending on the problem considered.

The displacement field within the specimen is “measured” by solving the forward problem 

using stabilized finite elements [33, 34] on tetrahedral mesh with 203 elements and then 

adding 1% Gaussian white noise to the displacement field. In addition the force on the 

bottom surface (the one that is compressed) is also measured and is corrupted by 1% noise. 

The shear modulus is reconstructed using these measurements on the same mesh. We avoid 

the “inverse crime” by adding noise to both the displacement and force data.

Sandwich problem

In this problem the specimen is comprised of three layers of equal thickness with μtop = 

μbottom = 1 and μmiddle = 10 (see Figure 2(a)).

First, we solve for the shear modulus field using only the displacement data and produce a 

relative modulus reconstruction. We set the lower bound for μ at 0.1 and use μ = 0.1 as an 

initial guess over the entire domain. We solve the inverse problem using this algorithms 

described in [27]. The resulting reconstruction is shown in Figure 2(b). We note that the TV 

regularization has caused the softer layers to attain the lower bound, and that the contrast 

between the soft and the stiff layers is 9.31, which is quite close to the correct value. We 

obtain the quantitative reconstruction from this image by employing the post-processing 

approach described in Section 4. The result is shown in Figure 2(c). We note that the 

modulus has now been re-scaled so that its distribution is quite close to the absolute modulus 

distribution.

We also solve for the shear modulus distribution by adding the force matching term to the 

displacement matching term. The objective function for this formulation is given by (21). 

We note that we have to select α (the regularization parameter) and αf (the force-matching 

parameter) for this problem. We vary these over several orders of magnitude and obtain the 

results displayed in Figure 3. In this array of figures the regularization parameter α increases 

going from bottom to top, while the force matching parameter αf increases going from right 

to left.

From this figure we observe that there is no choice of these parameters that results in a 

viable reconstruction for μ. When αf is small (right-most column in the figure), there is a 

value of the regularization parameter, α, that produces a reconstruction with the right 
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contrast and no oscillations (subfigure 3(p)). However, the value of αf is so small that the 

force matching term plays no role and this reconstruction is essentially the same as that for 

the pure displacement matching term. As a result we recover a good relative modulus 

distribution but not a quantitative one.

The way to enhance the effect of the force matching term is to increase αf. Once this is done 

we are lead to reconstruction like those in subfigure 3(m). Here the average value of shear 

modulus on the face where the force is measured (the bottom face) approaches the correct 

answer μ = 1, however away from the face it quickly drops down to the lower bound in order 

to minimize the regularization term. This leads to a spurious “boundary layer” in the 

reconstruction. Furthermore, the oscillations in μ on the face indicate that the regularization 

term is too small. However, once this term is increased we are lead to results like subfigure 

3(e). Now the regularization term appears to overwhelm both the force and displacement 

matching terms. Consequently, the average shear modulus on the bottom face is 

significantly smaller than 1, and the contrast within the specimen is also much smaller than 

10. The conclusion therefore is that in the α, αf parameter space there is no value that leads 

to an accurate quantitative reconstruction. As discussed in the previous section the reason 

for this is the conflict between the force matching and regularization terms.

Finally, we solve for the shear modulus by including the displacement and force matching 

terms and by using the transformation ψ = log μ (see Section 4). This formulation also 

includes the two parameters, α and αf, and the reconstructions obtained by varying these 

parameters are shown in Figure 4. In contrast to the previous case (Figure 3) where there 

was no value of these parameters that lead to accurate quantitative reconstructions, we now 

observe that there is a range of values of α and αf for which accurate quantitative 

reconstructions are obtained. In particular, all the reconstructions in subfigures (m) to (p) 

within Figure 4 are accurate. In particular, when the regularization parameter is small 

enough so as to recover the contrast in the modulus, there is a large range of force-matching 

parameter (O(103)) within which we recover accurate quantitative reconstructions. As 

discussed in Section 4, this is due to the fact that in this formulation the force matching term 

alone determines the absolute value of μ and the displacement matching and the 

regularization terms are unchanged when μ is altered by a multiplicative constant.

Inclusion problem

In this problem the specimen is comprised of a hard spherical inclusion of diameter =(2/5)L 

placed at the center with μinclusion = 10 in a soft background with μbackground = 1 (see Figure 

5(a)). All the other parameters are the same as in the sandwich problem.

we solve for the shear modulus field using only the displacement data and produce a relative 

modulus reconstruction. We set the lower bound for μ at 0.1 and use μ = 0.1 as an initial 

guess over the entire domain. The resulting reconstruction is shown in Figure 5(b). We note 

that the TV regularization has caused the background to attain the lower bound, and that the 

contrast between the background and the inclusion is 7.13, which is close to the correct 

value. We obtain the quantitative reconstruction from this image by employing the post-

processing approach described in Section 4.
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The result is shown in Figure 5(c). We note that the modulus has now been re-scaled so that 

its distribution is quite close to the absolute modulus distribution.

We also solve for the shear modulus distribution by adding the force matching term to the 

displacement matching term. The objective function for this formulation is given by (21). 

Similar to the previous problem we have varied the parameters α and αf over several orders 

of magnitude. Of these, some representative results are shown in Figure 6.

When αf is small there is a value of the regularization parameter, α, that produces a 

reconstruction with the right contrast and no oscillations (Figure 6(a)). However, the value 

of αf is so small that the force matching term plays no role and this reconstruction is 

essentially the same as that for the pure displacement matching term. As a result we recover 

a good relative modulus distribution but not a quantitative one.

When αf is increased we are lead to reconstructions like those in Figure 6(b). Here the 

average value of shear modulus on the face where the force is measured (the bottom face) 

approaches the correct answer μ = 1, however we can clearly see a spurious region of low 

modulus below the inclusion on this face. The low value of shear modulus in this region 

ensures that the total variation of the reconstructed modulus remains small even in the 

presence of the contrast in the modulus, which develops in order to reduce the displacement 

matching term. The net result is a reconstruction which is very different from the actual 

distribution.

When the regularization parameter is increased in order to force the reconstruction on the 

bottom face to be more uniform, we obtain results like those in Figure 6(c). Now the 

regularization term appears to overwhelm the displacement matching term. The average 

shear modulus on the bottom is close to 1, however the contrast is severely diminished. Thus 

even for this example, the conclusion therefore is that in the α, αf parameter space there is 

no value that leads to an accurate quantitative reconstruction.

Finally, we solve for the shear modulus by including the displacement and force matching 

terms and by using the transformation ψ = log μ (see Section 4). In this case for a given 

value of the regularization parameter, there is a large range of values for the force-matching 

parameter that leads to results to accurate results. One such result is shown in Figure 7, 

where we note that the reconstruction has the correct absolute value and contrast.

6. EXTENSION TO A PURE DIRICHLET PROBLEM

Up to this point, we used knowledge of the (non-zero) applied force on one face, and the fact 

that we know another face to be traction free. In some instances it may not be feasible to 

assume that one of the boundaries is traction free. This would happen when none of the 

boundaries in the ultrasound image is close to an unconstrained physical boundary. In this 

section, the approach developed in this article for utilizing force data to reconstruct 

quantitative modulus estimates, is extended to such problems. To do so, we assume that we 

know the (non-zero) applied force on two or more faces. As such, this may be thought of as 

an extension of the previous case where the applied force on a second face is zero, to one 

where the applied force on a second face is non-zero but known.
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In the pure Dirichlet case Γh = ∅ and the boundary condition (7) does not apply. The 

forward problem for the pressure is unique up to an additive constant. In order to make the 

problem unique it is assumed that the average value of the sought pressure is zero, that is,

(26)

We note that this choice is arbitrary and the average pressure can be set to any finite-valued 

constant without changing the displacement field. The solution to (1), (5), (7) and (26) given 

all the data is now unique. Since we are interested how this solution varies with variation in 

the shear modulus, we may once again denote it by {u, p} = {û, p̂}[μ] to indicate that for 

every field μ we have a corresponding set of displacement and pressure fields.

It is easy to verify that for this forward problem (the solution to (1), (5), (7) and (26)) also 

the three propositions of Section 2 hold. As a result with only displacement data we can 

determine μ by solving (10) up to a multiplicative constant. Further the pressure is known 

only up to an additive constant since the constraint (26) is arbitrary. Thus there are two 

arbitrary constants μ0 and p0 that are left undetermined and may be computed using 

measured force data.

Post-processing method

We assume that the inverse problem (10) has been solved using displacement matching data, 

and the resulting displacement field, pressure, shear modulus and Cauchy stress fields are 

denoted by u*, p*, μ* and σ*.We note that any shear modulus field μ0μ* is an equally likely 

solution in that it will also minimize the displacement matching term to the same extent as 

μ*, and that the pressure is only determined up to an additive constant. The corresponding 

displacement, pressure and stress fields will be given by u*, μ0p* + p0 and μ0σ* − p01. Note 

that in comparison to the traction-free boundary case, we have an additional unknown p0. 

We now determine the values of μ0 and p0 by matching the measured and predicted forces,

(27)

where A(i) is the area of the surface on which the force is measured. In the last line of the 

equation above A(i) and  are known. Consequently, we arrive at a linear system of 

equations for the unknowns μ0 and p0. These can be solved once two force measurements 

are available. Alternatively, for more than two force measurements, these can be solved in a 

least-squares sense to determine the optimal values of μ0 and p0.

Force-matching method

We now consider modifying the inverse problem in order to account for the measured force 

data, and using this to determine a quantitative estimate of the shear modulus and the 

pressure. Based on our experience of simply adding a force matching term to the objective 

function for the case when one boundary condition is traction free (see Section 4), we 

anticipate a difficulty due to the opposing tendencies of the force matching and 

regularization terms. In oder to overcome this, we propose a change of variables from μ to ψ 
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= ln μ and propose solving the following inverse problem in order to determine the log-shear 

modulus field ψ*(x) and the additive pressure parameter :

(28)

where the displacement matching and regularization terms are given by (11), and (12), 

respectively, and the forcing matching term is given by

(29)

For the inverse problem described in (28):

1. In the displacement matching term for a given value of ψ (and hence μ = eψ), the 

displacement field is determined by solving the forward problem given through 

equations (1), (5), (7) and (26).

2. Both the displacement matching and the regularization terms are unchanged if the 

log shear modulus is altered by an additive constant and the constant pressure p0 is 

changed. The only term that determines these values is the force matching term. 

Hence we anticipate that similar to the case with some traction-free surface, this 

inverse problem will yield accurate results in the presence of noise.

7. CONCLUSIONS

We have considered the quasi-static elasticity imaging problem of determining the shear 

modulus distribution in the interior of a specimen from a measurement of the interior 

displacement field. We have demonstrated that in the absence of any force data the shear 

modulus is undetermined up to a multiplicative constant. When this problem is solved by 

minimizing a displacement matching term in conjunction with total variation regularization, 

the regularization term automatically selects this constant to be the one that minimizes the 

total variation while conforming to the lower bound set on the shear modulus.

When some force data is available, there are two options of determining this constant and 

hence a quantitative estimate of the shear modulus. The first involves post-processing the 

results of the original minimization problem in order to rescale the shear modulus so as to 

best match the measured force data. This approach is easy to implement but may not make 

the best use of distributed force measurements. The second involves adding a force-

matching term to the original minimization problem, and has the potential to make use of 

distributed force data. However, it suffers from a direct conflict between the force-matching 

term and the regularization term, leading to erroneous reconstructions in the presence of 

noise. This difficulty is circumvented by a simple change of variables, wherein we seek to 

determine the log of the shear modulus instead of the shear modulus itself, and minimize its 

total variation. Using log μ as an optimization variable removes the conflict between the 

force matching and regularization terms. The force matching term works by rescaling the 

shear modulus by a multiplicative constant in order to best match the measured force, which 
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is the same as adding a constant to log μ. The addition of a constant has no effect on the 

regularization term, which only involves the gradient of log μ. Hence using log μ instead of 

μ effectively decouples the force matching and regularization terms.

We have applied and tested both the approaches (post-processing and force-matching) to a 

problem where a portion of the boundary is assumed to be traction free and force data is 

measured on some other portion. Numerical tests have verified our claims and the benefit of 

working the log of the shear modulus. In addition, we have extended these approaches to the 

case where no surface on the specimen is assumed to be traction-free.

In summary the methods described in this paper provide two alternate approaches for 

including force data in elasticity imaging that lead to quantitative estimates of the shear 

modulus. Similar extensions to other elastic properties will be considered in the future.
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Figure 1. 
Schematic of the numerical examples.
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Figure 2. 
Shear modulus distributions for the sandwich problem: (a) Exact μ, (b) Reconstruction of μ 

with displacement matching only, (c) Reconstruction of μ after post-processing for the 

measured force
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Figure 3. 
Reconstruction of μ through displacement and force matching terms.
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Figure 4. 
Reconstruction of μ through displacement and force matching terms and using the variable 

transformation ψ = log μ.
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Figure 5. 
Shear modulus distributions for the inclusion problem: (a) Exact μ, (b) Reconstruction of μ 

with displacement matching only, (c) Reconstruction of μ after post-processing for the 

measured force.
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Figure 6. 
Reconstruction of μ using force matching and displacement matching term.
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Figure 7. 
Reconstruction of μ using force matching and displacement matching term and variable 

transformation ψ = log μ with α=2e-06, αf =1e-04.
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