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Abstract

In this paper we propose a class of flexible weight functions for use in comparison of two 

cumulative incidence functions. The proposed weights allow the users to focus their comparison 

on an early or a late time period post treatment or to treat all time points with equal emphasis. 

These weight functions can be used to compare two cumulative incidence functions via their risk 

difference, their relative risk, or their odds ratio. The proposed method has been implemented in 

the R-CIFsmry package which is readily available for download and is easy to use as illustrated in 

the example.
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1. Introduction

Competing risks data arise in medical studies where patients may experience failure from 

multiple causes, and failure from one cause precludes observation of failure from all other 

causes. For example, in cancer studies, two potential causes of failure are disease relapse 

and death in complete remission (without relapse). Since it is not possible for patients who 

died in remission to experience relapse and vice versa, death in remission and relapse are 

two competing risks. Evaluation of the effect of a treatment on a specific cause of failure 

must account for all other competing risks. One quantity of interest for competing risk data 

is the cumulative incidence function [1] which quantifies the probability of experiencing 

failure from a specific cause in the presence of other competing causes. The cumulative 

incidence function is a function of the cause-specific hazards from all causes of failure.

When there is only one cause of failure, i.e., no competing risks, treatment effects are often 

compared using the Kaplan and Meier [2] estimators, the log-rank test, and the hazard ratio 
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of the Cox proportional hazards model [3]. A standard analysis approach for competing risks 

data is to model the treatment effect for each cause of failure, with the most common 

approach based on the Cox proportional hazards model [4, 5]. Although the Cox model can 

be applied to competing risks data, it models the treatment effect on the hazard function of a 

specific cause rather than modeling the treatment effect directly on the cumulative incidence 

of that cause.

Direct comparison of the cumulative incidence functions has also been considered. Gray [6] 

developed a log-rank type test and Fine and Gray [7] proposed a Cox type model for 

competing risks data. However, the interpretation of the Gray test and the Fine and Gray 

model is somewhat awkward and it is difficult to interpret the treatment effect directly on 

the cumulative incidence functions from these models.

Pepe [8] proposed a test based on the integrated difference between the weighted cumulative 

incidence functions. Lin [9] suggested a Kolmogorov-Smirnov type test based on the 

maximum difference between the cumulative incidence functions. Klein and Andersen [10] 

proposed a regression approach that models the cumulative incidence via the pseudovalues 

from a jackknife statistic computed from the cumulative incidence function. Scheike et al. 

[11] considered a class of flexible regression models based on the binomial regression 

modeling approach [12, 13, 14]. More recently, Zhang and Fine [15] proposed inferences 

based on the risk difference, the risk ratio, and the odds ratio of the cumulative incidence 

functions. Although these methods provide direct interpretation of the treatment effect on 

the cumulative incidence functions, they do not include weight functions that allow the 

researchers to focus on an early or a late treatment effect.

In a clinical study, a treatment may have a time-varying effect on the cumulative incidence 

of a specific cause of failure, that is, the treatment effect changes over time. For example, in 

a cancer study, the researchers may want to compare the outcomes after allogeneic stem cell 

transplantation to the outcomes after chemotherapy. It is well known that allogeneic stem 

cell transplantation has a higher early treatment-related mortality rate and a lower late 

relapse rate. This paper proposes a class of flexible weight functions that allows the 

investigators to focus on the treatment effect either in an early or a late period post 

treatment, or to evaluate the overall treatment effect treating all time periods post treatment 

with equal emphasis.

Specifically, this work extends the summary statistics of Zhang and Fine [15] to include a 

weight function with flexible parameters to emphasize the various post-treatment time 

periods. The weight functions proposed here were motivated by the class of flexible weights 

of Fleming and Harrington [16]. The cumulative incidence function is a subdistribution 

function, that is, the cumulative probability does not reach 1 at time infinity. The proposed 

weight functions adjust for this unique property of the cumulative incidence function to give 

the weights a relatively consistent interpretation.

This paper also introduces the R-CIFsmry package we developed to compute the summary 

statistics using the proposed weight functions. The R-CIFsmry package computes the 

estimates of the cumulative incidence for the cause of interest for each treatment group as 
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well as the estimates of the weighted point-wise comparison between the two groups. It also 

constructs the confidence bands for the weighted comparison over the time interval starting 

from the earliest time point where both groups have experienced at least one failure from the 

cause of interest to the largest failure time for that cause. The R-CIFsmry package also 

provides the overall weighted summary statistics specified by the users.

Section 2 presents the summary statistics and the proposed weight functions. Section 3 gives 

the results of our simulation studies. The proposed method is applied to a real data example 

using the R-CIFsmry package in Section 4. The package is available from the 

Comprehensive R Archive Network at http://CRAN.P-project.org/package=CIFsmry.

Discussion of the proposed approach is given in Section 5.

2. Inferences for summary statistics and weight functions

2.1. Nonparametric estimate of cumulative incidence function

For subject j in group i, let Tij be the event time and Cij be the censoring time. Let Xij = min 

(Tij, Cij), Δij = I(Tij ≤ Cij), and let εij be the cause of failure. For group i, assume that {Xij, 

Δij, Δijεij} are independent and identically distributed for j = 1,···, ni. Further assume that 

observations from the two treatment groups are independent. Let Fi1(t) be the cumulative 

incidence function of cause 1 for group i and be defined as

where Si(u−) is the overall survival probability P (Tij ≥ u) and Λi1(u) is the cumulative cause-

specific hazard function of cause 1. Define the counting process 

 and Yij(t) = I{Xij ≥ t}. Let  and 

. The cumulative incidence function Fi1(t) is commonly estimated by the 

Aalen and Johansen [17] estimator

where Ŝi(t) is the Kaplan-Meier estimator for all causes and  is 

the Nelson-Aalen estimator for cause 1. The asymptotic properties of F̂
i1(t) have been 

studied by Lin [9] and Andersen et al. [18] among others. Under regularity conditions 

(described in the Appendix of Zhang and Fine [15]), for i = 1, 2,

Li et al. Page 3

Comput Methods Programs Biomed. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://CRAN.P-project.org/package=CIFsmry


uniformly for t ∈ [0, τ] for a fixed τ where  is called the influence function and its 

explicit expression can be found in [15]. Furthermore,  converges 

weakly to a Gaussian process. A consistent variance estimator for  can 

be obtained based on the influence function  where  is a 

naive estimator for  [15].

2.2. Summary statistics and weight functions

To assess the treatment effect, we are interested in testing the null hypothesis H0: F11(t) = 

F21(t) for t ∈ [0, τ]. Pepe [8] proposed a summary statistic comparing two cumulative 

incidence functions defined as

(1)

where W(t) is the weight function with . Zhang and Fine [15] considered some 

alternative summary statistics. Let G(u, v) be a transformation function maps from (D[0, τ], 

D[0, τ]) to ℜ, and G(u, v) has absolute continuous partial derivatives with respect to u and v. 

Three transformations have been considered and studied by Zhang and Fine [15]: G1(u, v) = 

u − v; G2(u, v) = u/v, for v > 0; and G3(u, v) = {u/(1 − u)}/{v/(1 − v)}, for 0 < u, v < 1; which 

represent the risk difference, the risk ratio, and the odds ratio of two cumulative incidence 

functions, respectively. The proposed summary statistic has the form

The statistic Ḡ when G = G1 reduces to a Pepe’s test of Equation (1).

In biomedical research, it is common that the treatment effect changes over time and the 

researchers may be more interested in an early difference or a late difference instead of 

treating all time periods with equal interest. Pepe [8] and Zhang and Fine [15] among others 

proposed a weight function in their approaches. However, none of these approaches 

considered a specific weight function that puts emphasis on the treatment effect at an earlier 

or a later time period post treatment. For non-competing risks survival data, Fleming and 

Harrington [16] proposed a class of flexible weighted log-rank tests with weight function 

[S(t−)]p[1 − S(t−)]q where S(t) is the survival function from the pooled sample. When p > 0 

and q = 0, this weight function gives more weight to the early time period, and when p = 0 

and q > 0, it gives more weight to the late time period. The Fleming and Harrington weights 

are functions of S(t) which is directly related to the quantities being compared and it is also 

related to the size of the risk set at the comparison time points. Certain cases of Fleming and 

Harrington’s weighted log-rank statistics correspond to well known tests, e.g., (p = 0, q = 0) 

reduces to the log-rank test, (p = 1, q = 0) corresponds to the Prentice-Wilcoxon test. See 

Klein and Moeschberger [19] for a discussion and an illustration of various Fleming and 

Harrington weights.
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Motivated by Fleming and Harrington [16], we propose a set of new weight functions to 

compare the cumulative incidence functions between two groups. The proposed weights are 

functions of the cumulative incidence of the cause of interest which are the quantities we 

want to compare. Since the cumulative incidence function is a subdistribution function 

which never goes to 1 as time goes to infinity, we propose rescaling the components of the 

weight function by dividing the cumulative incidence function by its value at the end of the 

study to give the components a numerical value ranging between 0 and 1. Having 

components with similar range of values gives the p and q parameters of the weight function 

a relatively consistent interpretation. The proposed weight function has the form

(2)

where p ≥ 0 and q ≥ 0 and F1(t) is the cumulative incidence function of cause 1 under the 

null hypothesis which can be estimated from the data using the pooled sample.

2.3. Inference for summary statistics with weight function

The summary statistic with the proposed weight can be estimated by

where Ŵ (t) = {1 − F̂
1(t−)/F̂

1(τ)}p {F̂
1(t−)/F̂

1(τ)}q and F̂
1(t) is estimated from the pooled 

sample. Under regularity conditions, it can be shown that Ŵ (t) converges to W(t) uniformly 

for t ∈ [0, τ]. Zhang and Fine [15] showed that, for n = n1 + n2,  converges in 

distribution to a normal random variable and the asymptotic variance can be consistently 

estimated by  where  and 

G(1)(u, v) = ∂G(u, v)/∂u and G(2)(u, v) = ∂G(u, v)/∂v.

Hypothesis tests and confidence intervals for the weighted point-wise comparison can be 

constructed based on the asymptotic normality. The confidence bands for the weighted 

summary can be constructed using the resampling technique described in details by Zhang 

and Fine [15] where the cut points for the (1 − α) × 100 percent confidence bands are the (1 

− α) × 100th percentile of a simulated process with independent standard normal variates.

3. Simulation Study

A simulation study was conducted to evaluate the performance of the proposed weight 

functions. Our simulation results indicate that the summary statistics based on the relative 

risk and the odds ratio are sensitive to the time period used for the comparison. The 

denominators of the relative risk and the odds ratio are functions of the cumulative incidence 

function F(t). Depending on the data, the cumulative incidence in the early time points may 

be close to zero causing instability when estimating the relative risk or the odds ratio at these 
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early time points. The summary statistic based on the relative risk and the odds ratio can be 

stabilized by selecting a time interval for comparison where the cumulative incidences at the 

lower endpoint of the time interval are not too small.

Our simulation results suggest that the summary statistic based on the difference in 

cumulative incidence functions is the most stable. Therefore, only the results of the risk 

difference are shown in this section. We considerd several combinations of the parameters 

(p, q) for the weight function W(t) in Equation (2). Tables 1 – 4 show the results of five of 

these combinations: (i) heavy early weight (2,0), (ii) moderate early weight (1,0), (iii) even 

weight (0,0), (iv) moderate late weight (0,1), and (v) heavy late weight (0,2). Results for 

other combinations with larger values of p and q are discussed at the end of this section.

Three total sample sizes of n = 100, 300, and 500 were considered for each scenario. 

Although the results for equal group sizes (ni = 50, 150, 250) are shown here, similar results 

were observed from a simulation study with unequal group sizes. As expected, given the 

same total sample size, a balanced design with equal group sizes generally provides the best 

power. All simulations were performed using 10,000 replications.

The Type I error rate was evaluated under the null hypothesis with failure times for both 

groups generated from the cumulative incidence functions F1(t) = p1(1 − e−t) for cause 1 

(the cause of interest) and F2(t) = (1 − p1)(1−e−t) for cause 2, where p1 = F1(∞) = 0.66 

which means the maximum cumulative incidence of cause 1 was set to 66%. The null 

hypothesis was tested at the 95% confidence level with 20%, 30%, and 50% censoring. 

Table 1 shows the simulation results under the null hypothesis where pc denotes the 

percentage of censoring. The type I error rates were consistently close to the nominal level 

for all weight functions and all sample sizes with 20% and 30% censoring. With 50% 

censoring, the type I error rates were slightly inflated with smaller sample sizes (ni = 50, 

150) but were close to the nominal level with larger sample size (ni = 250).

The power of the weighted comparisons was evaluated using three alternative scenarios for 

each weight function: (a) the first scenario assumes proportional subdistribution hazards 

between the two groups, (b) the second scenario assumes an early difference in the 

cumulative incidence functions, and (c) the third scenario assumes a late difference (see 

Figure 1). In this section, the powers are shown for simulation with 30% censoring. Similar 

results were observed for all alternative scenarios with 50% censoring.

The failure times from cause 1 for the first scenario were generated from the cumulative 

incidence function F1(t) = 1 − [1 − p1(1 − e−t)]exp{βZ} where p1 = 0.66 and Z is the indicator 

for group 2. In this scenario, the cumulative incidence of cause 1 for group 1 is the same as 

the cumulative incidence generated under the null hypothesis described above (Curve 0 of 

Figure 2). The subdistribution hazard of cause 1 for group 2 is exp(β) times the 

subdistribution hazard for group 1. The power was evaluated for two different values of β: 

0.2 and 0.5 (Curves 1 and 2, respectively, of Figure 2). The failure times from cause 2 were 

generated from the cumulative incidence function F2(t) = (1 − p1)exp{βZ}(1 − e−texp{βZ}).

Table 2 shows the power for the five weight functions in this scenario. As expected, the 

power increases as the sample size increases and with a larger difference. Under the 
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proportional subdistribution hazards alternative, the even weight function with (p = 0, q = 0) 

gives the best power and it is comparable to the Gray test [6]. However, the variation in 

power across all weight functions is small under this scenario.

The failure times for cause 1 with an early or a late difference were generated from 

cumulative incidence functions with piece-wise Weibull distributions of the form

(3)

for both groups where the pieces were set at two years and p1 = 0.66.

In the early difference alternative, the cumulative incidence functions for cause 1 in the first 

two years were generated for group 1 by setting A = 1, 2 (Curves 1 and 2, respectively, of 

Figure 3) and for group 2 A = 4 (Curve 3 of Figure 3). After two years, the failure times for 

both groups were generated by setting A = 2. The failure times for cause 2 were also 

generated from piece-wise Weibull distributions with the form F2(t) = (1 − p1){1 − exp(−

(t/2)A)} for both groups. Table 3 shows the power comparing the cumulative incidence 

functions between the two groups under these scenarios. The comparisons with early 

weights, (p = 2, q = 0) and (p = 1, q = 0), provide significantly more power than the 

comparisons with the even weight or with late weights. Even with a small sample size (50 

per group), the power using a moderate early weight (p = 1, q = 0) increases three folds 

while using a heavy early weight (p = 2, q = 0) increases five folds compared to the power 

of the test with the even weight or that of the Gray test. The improvement in power is even 

more significant with larger sample sizes. For example, with ni = 150, the power to detect 

the difference between Curves 1 and 3 using the Gray test was 27% and using the integrated 

difference with even weight was 21% whereas when using a moderate early weight, the 

power increased to 91% and to more than 99% with a heavy early weight.

In the late difference scenario, the cumulative incidence functions for cause 1 before two 

years were generated with A = 2 for both groups. After the first two years, the cumulative 

incidence functions assume A = 0.1, 0.5 for group 1 (Curves 1 and 2, respectively, of Figure 

4) and A = 4 for group 2 (Curve 3 of Figure 4). The failure times for cause 2 were also 

generated from piece-wise Weibull distributions with the form F2(t) = (1 − p1){1 − exp(−

(t/2)A)} for both groups. Table 4 shows the power when comparing the cumulative 

incidences under this scenario. The comparisons with late weights, (p = 0, q = 1) and (p = 0, 

q = 2), provide more power than the comparison with early weights. However, it is worth 

noting that the improvement in power using weight functions focusing on a late time period 

under the late difference alternative is more moderate than the improvement when using the 

early weight functions under the early difference scenario. This phenomenon can be 

explained by the large variance of the cumulative incidence estimate later in the time course.

Simulation results for the three alternative scenarios with 30% censoring were shown in this 

section. Simulation results with 50% censoring (not shown) lead to similar conclusions. 

Under the proportional subdistribution hazards alternative, the variation in power across all 

weight functions was small with the highest power achieved around the even weight 

function. Under the early difference alternative, the comparisons with early weights 
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outperformed the comparisons with the even weight and the late weight functions. Under the 

late difference alternative, the comparisons with late weights provide more power than with 

other weight functions.

This section showed our simulation results for weight functions with the values of p and q 

ranging between 0 and 2. In practice, selection of the values for p and q depends on the 

cumulative incidence functions being compared. Although p and q can take much higher 

values, the improvement in power diminishes as p and q become too large. The larger the 

value of p the earlier the emphasis is on the treatment effect. In most cases, the difference 

between the cumulative incidences is very small in the very early time post treatment. 

Therefore, weighted comparison with very large p may show very small difference. In our 

simulation study, increasing the value of p from 2 to 5 lead to an increase of 10% – 20% in 

power under the early difference scenario for smaller sample sizes (ni = 50, 150), however, 

the power only increased by less than 10% when p = 10 compared to when p = 5. The power 

barely increased when p was increased from 2 to 10 for larger sample size (ni = 250). On the 

other hand, under the late difference alternative, the increase in power for the value of q = 10 

compared to q = 2 was small when the difference was constant toward the end of the follow-

up period (Curves 1 vs. 3 of Figure 4) and the power slightly decreased when the difference 

became smaller at the tail end (Curves 2 vs. 3 of Figure 4). It is important to note that the 

value of p and q must be selected prior to conducting the analysis. At the design stage, p and 

q can be selected by simulating data from the cumulative incidence functions hypothesized 

for the study and the p and q values from the weight function that gives the best power under 

this hypothesis can be selected for future analysis. The R-CIFsmry package described in the 

following section can be used for this type of design simulation.

4. R package and data example

4.1. Package CIFsmry

The proposed method has been implemented in an R package called CIF-smry. The package 

is available for download at http://CRAN.P-project.org/package=CIFsmry.

The CIFsm() function in the CIFsmry package provides point estimates and standard errors 

for the cumulative incidence functions separately for the two groups. The package also 

computes the weighted summary statistics for the risk difference, the relative risk, and the 

odds ratio of the cumulative incidence functions using the weight specified by the user. It 

also gives the confidence intervals and the confidence bands for the requested summary 

statistics. A simulated dataset called sim.dat is included in the package as an example.

The CIFsm() function requires an input data set consisting of three variables in the following 

order: event time, cause of failure, and treatment group. The cause of failure must be coded 

as 1 for the cause of interest, 2 for all other causes, and 0 for censored observations. (Note 

that the proposed weighted comparison and this package were developed to compare two 

cumulative incidence functions for a specific cause of failure. When there are more than two 

competing causes of failure, all causes of failure except for the cause of interest must be 

combined into one competing risk.) The treatment group must be coded as 1 for the 

treatment and 0 for the control. Other arguments for the CIFsm() function include:
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• method: specify the summary statistic of interest. Options include “dif” (default), 

“rr”, and “or” for risk difference, relative risk, and odds ratio, respectively.

• pp, qq: specify the p and q values for the weight function. Even weight (pp = 0, qq 

= 0) is the default option.

• conf.bd: request confidence band for the summary statistic specified in the method 

argument. Options for this argument are TRUE (default) if confidence band is 

requested and FALSE if not needed. Setting the conf.bd = FALSE saves on 

computational time.

• n.sim: specify the number of simulations used to create the 95% confidence band 

(default is 500, not applicable if conf.bd = FALSE).

Calling the CIFsm() function produces the following values for each event time tjp:

• ny1, f1, f1.se, ny2, f2, f2.se which correspond to the number of patients at risk in 

group 1, the cumulative incidence estimate for cause 1 in group 1 and its standard 

error, the number of patients at risk in group 2, the cumulative incidence estimate 

for cause 1 in group 2 and its standard error, respectively, and

• dif, dif.se, dif.pv, rr, rr.se, rr.pv, or, or.se, or.pv correspond to the estimated risk 

difference, its standard error and p–value, the estimated relative risk, its standard 

error and p–value, and the estimated odds ratio, its standard error and p–value, 

respectively. Note that these are pointwise estimates for each event time tjp.

Calling the CIFsm() function also gives the following statistics for the time integrated 

weighted summary requested by the users:

• ave (the requested time integrated weighted summary statistic),

• avese (standard error of the time integrated weighted summary statistic),

• ci95 (95% confidence interval of the time integrated weighted summary),

• avepval (p–value of the time integrated weighted summary statistic),

• cbcut (95% confidence band cut points for the summary statistics), and

• region (time range of data used for comparison).

Other values given by CIFsm() include sample (total sample size from both groups), size 

(group sample size), njp (number of distinct event times), method (summary statistic 

specified), and weight (weight function used).

4.2. Bone marrow transplant example

In this section, we use a bone marrow transplant data set to illustrate the proposed weighted 

summary statistics and the CIFsmry package. The data came from a study by the Center for 

International Blood and Marrow Transplant Research (CIBMTR). The CIBMTR is 

comprised of clinical and basic scientists who confidentially share data on their blood and 

bone marrow transplant patients with the CIBMTR Data Collection Center located at the 

Medical College of Wisconsin. The CIBMTR is a repository of information about results of 

transplants at more than 450 transplant centers worldwide. The objective of this study was to 
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identify factors that affect outcomes after transplantation for patients with myelodysplastic 

syndromes using bone marrow cells from a sibling with identical human leukocyte antigen 

[20]. The study showed that younger age and platelet cell count at the time of transplantation 

higher than 100 × 109/L were associated with lower treatment-related mortality (TRM), 

higher disease-free survival as well as higher overall survival.

This illustrative example uses data from 408 patients with complete data to evaluate the 

effect of platelet cell count at transplant on treatment-related mortality. Patients were 

divided into two groups: platelets > 100 × 109/L (treatment group, n = 128) versus platelets 

≤ 100 × 109/L (control group, n = 280). Treatment-related mortality is defined as death in 

remission with relapse as the competing risk. The example dataset is called bmt (data 

available in the R-timereg package) and consists of three variables time (failure or censoring 

time), cause (1 for TRM, 2 for relapse, and 0 for censored), and platelet (1 for platelets > 

100 × 109/L and 0 for platelets ≤ 100 × 109/L).

To use the CIFsmry package, first download it to a local directory and then open R (version 

3.0.1 or higher) and install the package. Load the package (library(CIFsmry)) and the data 

(data(bmt)). Frequency table of the variable cause shows that 161 patients (39%) died in 

remission, 87 (21%) experienced relapse, and 160 (39%) were alive and in remission at the 

last follow up.

table(bmt$cause)

> table(bmt$cause)

0 1 2

160 161 87

Calling CIFsm() on the bmt dataset using the default options to compute the risk difference 

using the even weight function and to request the confidence band cutpoint from 1000 

simultations

out <- CIFsm(bmt, n.sim = 1000)

produces the estimates for the cumulative incidence of TRM for the two platelet groups and 

the integrated difference in TRM incidence using the even weight function (p = 0, q = 0). 

Plot of the cumulative incidence of TRM by treatment group (out$f1 and out$f2 for group 1 

and 2, respectively) against time (out$tjp) in Figure 5 shows that higher platelet counts at 

transplantation (> 100 × 109/L) was associated with lower non-relapse mortality.

The following output

> out$method

[1] “dif”
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confirms that the comparison was based on the risk difference. Plot of the risk difference 

comparing high platelets to low platelets (out$dif) in Figure 6 suggests that the largest 

survival advantage associated with higher platelet counts occurred in the first 40 months 

post transplant. The 95% pointwise confidence intervals for the risk difference (solid lines in 

Figure 6, computed as out$dif ±1.96*out$dif.se) indicate that the pointwise differences in 

TRM were significantly lower than zero at all time points.

The comparison region and the confidence band cutpoints (for the risk difference, the 

relative risk, and the odds ratio, respectively) from 1000 simulations can be obtained by

> out$region

[1] 0.164 70.625

> out$cbcut

[1] 3.016650 2.953812 2.952391.

The 95% confidence bands (dashed lines in Figure 6, computed as out$dif ± out$cbcut[1] * 

out$dif.se) suggest that the survival advantage diminished and was no longer significant 

after 40 months post transplant.

The integrated difference in TRM between the platelet groups using even weight was 

estimated to be −0.14 with a 95% confidence interval of (−0.24, −0.05) and a p–value of 

0.0023.

> summary(out)

Method: dif

Weight: 0 0

Summary statistics:

est se ci95l i95u pval

-0.14467 0.04741 -0.23759 -0.05175 0.00228

However, the risk difference focusing on an early time period using the weight function (p = 

2, q = 0) was more significant with a p–value < 0.0001 as expected due to a larger TRM 

difference in the early period.

out20 = CIFsm(bmt, method=“dif”, pp=2, qq=0)

> summary(out20)

Method: dif

Weight: 2 0

Summary statistics:

est se ci95l ci95u pval

-1.16e-01 2.90e-02 -1.73e-01 -5.94e-02 6.05e-05
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As noted at the end of Section 3, weight functions with much higher values of p focus the 

comparison on much earlier time post transplant. As seen in Figure 6, the risk difference in 

the first month or two post transplant was small. The p–value from the comparison with (p = 

5, q = 0) was 0.0002 which was still significant but was larger than the p–value with (p = 2, 

q = 0) whereas the p–value in the comparison with (p = 10, q = 0) increased to 0.006.

Similar effects on non-relapse mortality were observed when the relative risk and the odds 

ratio were used as the summary statistics. The risk of TRM was lower in patients with 

platelet counts > 100 × 109/L at the time of transplant. The risk and the odds of TRM using 

the even weight function were significantly lower in the high platelet group compared to the 

low platelet group. Similar results were observed for (p = 1, q = 0). However, the relative 

risk and the odds ratio became less significant in the comparisons with an early weight, (p = 

2, q = 0). The p–values for the relative risk and the odds ratio were 0.031 and 0.025, 

respectively.

out.rr = CIFsm(bmt, method=“rr”)

> summary(out.rr)

Method: rr

Weight: 0 0

Summary statistics:

est se ci95l ci95u pval

0.355580 0.099233 0.205772 0.614454 0.000211

out.or = CIFsm(bmt, method=“or”)

> summary(out.or)

Method: or

Weight: 0 0

Summary statistics:

est se ci95l ci95u pval

0.27949 0.10841 0.13068 0.59778 0.00101

5. Discussion

In this work, we extended the summary statistics proposed by Zhang and Fine [15] to 

include a class of flexible weight functions. While the summary statistics allow direct 

comparison of the cumulative incidence functions between two treatment groups, the 

proposed weight functions allow the investigators to focus their comparison on an early or a 

late time period as relevant to their study. From our simulation study, we found that the 

summary statistics based on the relative risk and the odds ratio are sensitive to the time 

region of comparison. This sensitivity results from the cumulative incidences with values 

close to zero in the very early period post treatment. This sensitivity can be minimized by 

choosing the comparison time interval such that the cumulative incidences of interest are not 

too small. Unlike the relative risk and the odds ratio, the summary statistic based on the risk 

difference provides a more stable basis for comparison. Therefore, we recommend using the 

summary statistics based on the risk difference.
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Our simulation study showed a large improvement in power when comparing cumulative 

incidence functions with an early difference using weight functions that focus on an early 

time period. However, the improvement in power was more moderate when the late weight 

functions were used to compare cumulative incidence functions with a late difference. An 

explanation for the moderate improvement with the late weight functions is due to the large 

variance of the cumulative incidence estimates later in the time course.

The proposed weighted summary statistics can be easily applied using the R-CIFsmry 

package. The CIFsmry package allows the users to specify the summary statistics and the 

weight functions of choice. As illustrated in Section 4, the cumulative incidence estimates, 

the risk difference, the relative risk, the odds ratio, the confidence intervals, the confidence 

bands, and the weighted integrated summary statistics can be obtained by simply calling the 

CIFsm() function. Implementation of the proposed approach in the R-CIFsmry package 

makes our method readily accessible to users.
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Figure 1. 
Three alternative scenarios considered in simulation study
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Figure 2. 
Cumulative incidence curves for cause 1 under the proportional subdistribution hazards 

alternative
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Figure 3. 
Cumulative incidence curves with difference in the first two years
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Figure 4. 
Cumulative incidence curves with difference after the first two years
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Figure 5. 
Cumulative incidence of treatment-related mortality for the two platelet groups
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Figure 6. 
Estimated TRM risk difference between high platelet group versus low platelet group
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