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Abstract

Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to 

mapping the brain’s intrinsic functional organization. Blood oxygen level dependent (BOLD) and 

arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain 

networks associated with individual differences, behavior and psychopathology. While the BOLD 

signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of 

the physiology and metabolism of specific networks. This study systematically investigated the 

similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2 × 2 × 2 

factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI 

scans on two occasions on two MRI scanners respectively. Both independent and joint FC 

analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of 

spatial overlap, verified by Dice Similarity Coefficients. Test–retest analyses indicated more 

reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 

0.905 ± 0.033 between-sessions; 0.885 ± 0.052 between-scanners) than ASL (0.545 ± 0.048; 0.575 

± 0.059). Nevertheless, ASL provided highly reproducible (0.955 ± 0.021; 0.970 ± 0.011) 

network-specific CBF measurements. Moreover, we observed positive correlations between 

regional CBF and FC in core areas of all RBNs indicating a relationship between network 

connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-

fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties 

of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical 

populations that are carried out across time and scanners.
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Introduction

Since the seminal work by Biswal et al. in 1995 (Biswal et al., 1995), the study of resting 

brain networks (RBN) based on functional connectivity (FC) in resting state fMRI (rs-

fcMRI) has experienced an upsurge from basic to clinical neuroscience. The majority of rs-

fcMRI studies have used blood oxygen level dependent (BOLD) contrast due to its technical 

simplicity, high sensitivity and temporal resolution. Recently, a growing number of rs-

fcMRI studies have employed arterial spin labeled (ASL) perfusion MRI (Chuang et al., 

2008; Dai et al., 2013; Jann et al., 2013; Liang et al., 2011, 2012; Zou et al., 2009), which 

measures cerebral blood flow (CBF) using magnetically labeled arterial blood water as an 

endogenous tracer (Detre et al., 1992). Compared to BOLD, perfusion-based FC analysis 

provides more direct and quantitative measures of the physiology and metabolism of 

specific networks (Buxton et al., 2004). The inherently quantitative nature of ASL allows for 

the assignment of biologically meaningful values to the networks, thus may complement 

BOLD by providing a more interpretable biomarker.

To date, however, the application of perfusion-based rs-fcMRI in clinical neuroscience has 

been hampered by the relatively low sensitivity and temporal resolution of ASL compared to 

BOLD. The recent development of pseudo-continuous ASL (pCASL) with background 

suppressed (BS) 3D acquisitions (e.g. GRASE — a hybrid of spin and gradient echo and 

Stack-of-Spirals) has dramatically improved the sensitivity and temporal SNR of perfusion 

imaging series (Alsop et al., 2014; Fernandez-Seara et al., 2008), allowing the detection of 

CBF based RBNs while minimizing potential BOLD contaminations (Du et al., 2012; Liang 

et al., 2012). Another appealing feature of perfusion based rs-fMRI using pCASL with 3D 

BS GRASE or Stack-of-Spirals is the improved visualization of RBNs involving brain 

regions affected by susceptibility artifacts at the tissue–air interfaces (Fernandez-Seara et al., 

2005).

Given the complementary nature of BOLD and perfusion rs-fcMRI —higher sampling rate/

temporal resolution in BOLD and absolute CBF quantification in ASL, the combination of 

the two contrasts may offer a powerful tool for rs-fcMRI studies to fully characterize the 

spatiotemporal and quantitative properties of RBNs. The primary purpose of this study was 

to present a framework for independent and joint FC analyses of BOLD and perfusion based 

rs-fcMRI data to identify common and modality specific RBNs, using rigorous statistical 

approaches. For future applications of BOLD and perfusion-based functional connectivity 

analyses in clinical studies, it is critical to establish the reliability of RBNs across time 

(Meindl et al., 2010; Shehzad et al., 2009; Zuo et al., 2010), scanner platforms (Van Dijk et 

al., 2010) and modalities as well as their dependencies on imaging parameters (Birn et al., 

2013; Patriat et al., 2013; Van Dijk et al., 2010)). For this purpose, a 2 × 2 × 2 factorial 

design was employed in the present study using repeated BOLD and ASL rs-fcMRI scans on 
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two occasions on two MRI scanners respectively. We hypothesized that BOLD and ASL rs-

fcMRI should show common RBNs that are reproducible across time and scanners. The 

overall FC in BOLD RBNs is stronger than that of ASL RBNs, yet ASL networks show 

higher FC in specific brain regions (e.g. orbitofrontal cortex). Finally, network specific 

quantitative CBF measured by ASL may indicate the baseline metabolic activity and may be 

associated with (or underlie) the strength of functional connectivity of the corresponding 

network (Aslan et al., 2011; Liang et al., 2013; Tomasi et al., 2013).

Materials and methods

Participants and data acquisition

Ten healthy volunteers (6f/4 m; Age [mean ± std] = 22 ± 3 years) underwent repeated MRI 

scans on two 3T Siemens TIM Trio MR systems using the standard 12-channel head coils 

and identical pulse sequences. A 2 × 2 × 2 factorial design was employed, i.e., 2 repeated 

scans on 2 scanners using 2 modalities (ASL and BOLD). On the first day they participated 

in two sessions approximately one hour apart on one of the two scanners, and on the second 

day (2.1 ± 1.3 days apart) the protocol was repeated on the other scanner (scanner order was 

counterbalanced across participants). Each session included resting state (rs-) BOLD 

imaging with 2D EPI readout and the following parameters: Volumes = 240, Matrix = 64 × 

64, Slice Thickness = 4 mm with 1 mm gap, 30 slices, Repetition Time/Echo Time (TR/TE) 

= 2000/30 ms, Flip Angle = 77°, Pixel Bandwidth = 2298 Hz, Field of View = 220 mm; 

resting state pseudo-continuous ASL (rs-pCASL) with single-shot 3D background 

suppressed GRASE readout and the following parameters: Volumes = 120 (60 label/control 

pairs), Matrix = 64 × 64, Slice Thickness = 5 mm, 26 slices, Repetition Time/Echo Time/

Label Time/Post Label Delay (TR/TE/τ/PLD) = 4000/22/1200/1000 ms, Pixel Bandwidth = 

2003 Hz, Field of View = 220 mm, labeling offset = 9 cm, and 2 global inversion pulses 

were applied during the PLD for background suppression (the first BS pulse was applied 

immediately after the labeling pulses, the second BS pulse 700 ms after the labeling pulses. 

Overall these two BS pulses achieved ~85% suppression for gray and white matter signals. 

The residual image intensity was necessary for motion correction as well as to avoid zero 

crossing signals for subtraction between label and control images) (Kilroy et al., 2013; St 

Lawrence et al., 2012). For CBF quantification an additional volume (M0, equilibrium 

magnetization image) with the same parameters as described for pCASL but with a long 

PLD of 4000 ms and without BS was acquired. Finally, a T1 weighted, high resolution, 

anatomical scan was performed (MP-RAGE, 192 sagittal slices with 1 mm isotropic voxels, 

TR/TE/TI = 2170/4.33/1100 ms). Resting state was defined as lying still with eyes open 

while fixating a white cross at the center of a dark screen.

Data processing

Analysis of the MRI data was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) 

and in-house Matlab (The MathWorks, Natick, USA) routines. Statistical analyses were 

performed using Matlab Statistics Toolbox, R Programming Project (http://www.r-

project.org/) and IBM SPSS Statistics (Version 19).
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CBF quantification

Raw pCASL GRASE images were motion corrected separately for control and label images 

(Wang et al., 2008) before perfusion-weighted time series were created by sinc-subtraction 

of label and control images (ΔM). Notably, sinc-subtraction has been demonstrated to 

efficiently minimize spurious BOLD contaminations within the ASL signal (Aguirre et al., 

2002; Chuang et al., 2008; Liu and Wong, 2005). The computation of the quantitative CBF 

signal was based on a single compartment kinetic model (Chen et al., 2011; Wang et al., 

2003, 2005). After quantification, the CBF images were co-registered to the individuals’ 

anatomical scans, normalized into MNI standard space (thereby resampled into 2 × 2 × 2 

mm voxel resolution) and spatially smoothed with an 8 mm full-width at half maximum 

(FWHM) Gaussian Kernel.

BOLD images were first slice-time and motion corrected followed by coregistration, 

normalization and spatial smoothing identical to the CBF images. Anatomical images were 

normalized into standard MNI space and segmented into gray matter, white matter and 

cerebrospinal fluid (GM/WM/CSF) using the algorithms provided by SPM8. The individual 

GM images were averaged and thresholded at 0.3, providing a binary mask representing 

gray matter voxels only (GM mask).

Network decomposition using ICA

Networks were identified by means of the Group ICA of fMRI Tool-box (GIFT) using a 

concatenated group level ICA approach (Calhoun et al., 2001, 2004).

First, separate group ICAs for BOLD and ASL data were performed. The individual time 

series were zero-meaned and the GM mask was applied for the ICA infomax algorithm (Bell 

and Sejnowski, 1995). The ICA model order was estimated using the AIC/MDL criterion, 

which yielded an optimal number of components for each individual dataset with a median 

of 36 for BOLD and 20 components for ASL datasets. Group- and subject-specific maps (as 

back — reconstructed by the GICA procedure) were stored as z-maps. RBNs were identified 

by means of conjoint template correlation (GIFT) and visual inspection of the component 

maps according to the spatial distribution given in the literature (Beckmann et al., 2005; 

Franco et al., 2009).

Since different ICA model orders can lead to unequal decompositions thus splitting 

components into subnetworks or merging of networks (Abou-Elseoud et al., 2010; Calhoun 

et al., 2009), matching and ordering of components across ICA runs are not a 

straightforward procedure from a mathematical point of view. To address this issue on 

drawing inferences about, and comparisons between subject cohorts, group approaches and 

joint ICA approaches have been suggested (Calhoun et al., 2001, 2009), which perform the 

unmixing on the temporally concatenated dataset. These approaches assure that subject or 

modality specific components are based on the same group component hence enabling 

comparative statistics for BOLD and ASL derived networks without bias of separate 

decompositions. Accordingly we employed a joint-ICA where the BOLD and CBF datasets 

were assigned to 8 (i.e., 2 × 2 × 2) sessions per subject and temporally concatenated. The 

same ICA parameters were used for this approach with subsequent back-reconstruction for 
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sessions and modalities. The MDL criterion for the joint dataset yielded a median of 16 

components for the aggregated group dataset.

We computed t-maps to display the separate BOLD and ASL RBNs in joint and separate 

ICA. Specifically in the joint ICA the group component is the same for ASL and BOLD as it 

is computed across all datasets. The back-regressed individual subject and session IC-maps 

were then used to generate modality specific ASL and BOLD RBNs using one-sample t-

tests against zero (significance set at p < 0.001). While the t-maps were used for displaying 

the networks, the z-scores representing the ICA group components were used to generate 

RBN-masks that were used in the analyses below.

Statistics

Spatial similarity and overlap of BOLD and ASL based RBNs were assessed by Dice 

Similarity Coefficients (DSC), while test–retest repeatability of ASL and BOLD based 

RBNs was estimated using Intraclass Correlation Coefficients (ICCs). Statistical analyses 

were performed on the network as well as on a voxel-wise level. Repeated-measures 

ANOVAs and post-hoc t-tests were computed to identify differences between modalities, 

scanners and sessions, as well as possible interaction effects. A schematic overview of 

analyses is given in Fig. 1.

Statistical maps were corrected for multiple comparisons (type I errors) using AlphaSim 

(Ward, 2000). This procedure estimates the distribution of random cluster sizes given a 

statistical map and threshold taking into consideration the spatial smoothness of the data 

(Bennett et al., 2009; Forman et al., 1995). Accordingly, it provides the minimal cluster size 

required for clusters to be at a level above random clustering at a chosen correction level. 

We performed 1000 iterations and selected the correction level at alpha < 0.05.

Dice Similarity Coefficients (DSC) of RBNs: To quantify the degree of similarity and 

spatial overlap of RBNs, we computed the Dice’s Similarity Coefficient (DSC) (Dice, 1945; 

Zhu et al., 2013) according to the formula:

(1)

where, A and B represent sets of voxels within two given RBNs (thresholded at z > 2) and 

the parallel brackets denote the number of voxels in the set within the brackets.

Network based CBF: Mean network perfusion was defined as the spatially and temporally 

averaged CBF values across all voxels within the group RBN map where z > 2, here dubbed 

as RBNCBF. The resulting four RBNCBF metrics (one for each of the four ASL scans) per 

subject were subjected to a 2 × 2 repeated measures ANOVA with within-subject factors of 

site (1; 2) and session (1; 2) to test for the consistency of CBF quantification for each 

network respectively.

Network Amplitudes of Low Frequency Fluctuations (ALFF): In addition to RBN-CBF 

we also computed the Amplitudes of Low Frequency Fluctuations (ALFF) (Zang et al., 
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2007), which provides a measure of regional spontaneous activity fluctuations. Using 

dynamic CBF to compute ALFFs instead of relative BOLD signal fluctuations, the ALFFs 

have a direct physiological meaning and a quantitative unit (i.e. ml/100 g/min). Accordingly 

we computed the CBF-ALFF for each session in each subject respectively, and extracted the 

corresponding mean ALFF in each network. ALFF differences across networks and subjects 

were then tested using an ANOVA. Additionally, we normalized the ALFF values with 

regard to subjects’ specific RBN-CBF (adjusted for global GM-CBF) providing a %ALFF 

for each subject with respect to their baseline RBN-CBF values (Chuang et al., 2008). These 

%ALFF measurements were also subjected to an ANOVA.

Intraclass Correlation Coefficient (ICCs)

Voxel wise maps for FC and regional CBF: The ICC estimation was based on a repeated-

measure mixed effects ANOVA model with absolute agreement of values (A-k) (Landis and 

Koch, 1977; McGraw and Wong, 1996; Shrout and Fleiss, 1979). The ICC measures the 

proportion of total variance that is accounted for by the variation between subjects against 

the variance associated with either between-site or within-site effects. Hence, ICC over 0.5 

indicates that scanner or session variation is lower than between-subjects variance. ICC was 

calculated by

(2)

where MSw and MSb are the within- and between-subject errors respectively, MSe is the 

mean residual error and n is the sample size.

Voxel-wise maps of ICC for either FC or CBF were computed for within-site (averaging z-/

CBF-maps across sites) and between-site (averaging z-/CBF-maps across sessions) variance. 

Further, to facilitate interpretation, we calculated a single ICC value for each network (using 

only voxels within a given RBN where z > 2) by taking the mode of the ICC value 

distribution histogram between 0 and 1 (Zuo et al., 2010). The mode of a histogram 

distribution represents the most prevalent value in the distribution. Besides the modal-ICC 

we also computed the percentage of voxels with ICC > 0.6 within each RBN as compared 

the total number of voxels within this RBN (threshold z > 2).

ANOVA

Voxel-wise maps for FC: As separate ICAs can result in unequal decompositions of 

networks as outlined in Materials and methods, the statistical comparison of RBNs was 

performed using single-subject maps resulting from the joint ICA. This assured that different 

model orders, component unmixing, network splitting/merging or component matching 

across ICA runs does not bias possible network differences.

We performed voxel-wise 2 × 2 × 2 repeated measures ANOVAs on the single subject z-

maps with within-subject factors of modality (BOLD; CBF), site (1,2) and session (1,2) for 

each RBN. Statistical thresholds for main and interaction effects were set at p < 0.01 (F (1,9) 
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= 10.56). Maps with significant effects were further subjected to two-sample two-sided post-

hoc t-tests (significance level p < 0.001).

Correlation between RBNCBF and network z-scores—To assess the potential 

relationships between individual network connectivity and baseline network perfusion, we 

computed the voxel-wise Pearson correlation between the RBN z-scores and the respective 

regional (voxel-level) CBF from the same scan session. In addition, we compared the 

network connectivities between the two modalities by correlating the average z-scores of all 

joint BOLD-RBNs (10 subjects across 4 sessions) to those of the corresponding ASL-RBNs. 

Using ICA as compared to Seed Based Approaches (SBA) where a direct correlation 

between any two specified brain areas is computed and considered as FC strength, the FC 

strength used here (ICA z-scores) represents the degree to which a given voxel is integrated 

within a given network component, i.e. its relative connectivity strength to all other voxels 

in the specific network. To provide an estimate of how prevalent an CBF-FC relation is 

within each RBN, we also computed the percentage of voxels with significant correlations 

above r > 0.4 within each RBN as compared to the total number of voxels within this RBN 

(threshold z > 2).

Results

Common RBNs in BOLD and ASL rs-fMRI

The three different ICA decompositions (i.e., ASL-only, BOLD-only and joint ASL/BOLD) 

revealed five common RBNs: the Default Mode Network (DMN, correlation of ICA group 

component to template networks for: BOLD-only ICA R = 0.37, ASL only ICA R = 0.37, 

joint ICA R = 0.28), the two lateralized Executive Control Networks (ECNs) (RECN; 

RBOLD = 0.36, RASL = 0.22, Rjoint = 0.28/LECN; RBOLD = 0.33, RASL = 0.24, Rjoint = 0.24) 

the Occipital Visual Network (OVN; RBOLD = 0.34, RASL = 0.28, Rjoint = 0.35) and the 

Auditory Network (AUN; RBOLD = 0.32, Rjoint = 0.18). The spatial pattern of the 5 

networks is depicted in Fig. 2 for separate ICAs and Fig. 3 for joint ICA (multi-slice views 

of RBNs displayed in Fig. S1) respectively. The results consistently showed similar RBNs in 

each modality and assessment of spatial similarity using DSC demonstrated a moderate to 

high level of overlap for all RBNs across ICA runs (Table 1, Fig. S6).

Between BOLD-only and ASL-only RBNs, the left and right ECN (DSC = 0.42/0.56) and 

the DMN (0.35) showed a moderate to high level of overlap, whereas the OVN and AUN 

appeared as a single component in ASL-only ICA and a direct quantitative comparison was 

thus inappropriate (Fig. 3). Comparing the RBNs detected by separate ICA to the joint-ICA 

networks revealed a high level of agreement between BOLD-only and joint RBNs (average 

DSC across networks [mean ± SD] = 0.58 ± 0.05), while for ASL-only ICA the two ECNs 

reached the same high degree of similarity (R/L-ECN = 0.65/0.60) but the DMN (0.30) and 

OVN (0.45) had reduced spatial overlap with the corresponding networks in joint ICA. 

Finally, RBNs from joint-ICA for BOLD and ASL showed the highest agreement to the 

common group component (DSC range 0.76–0.94) as well as between each other (DSC 

range 0.59–0.71). Although this high agreement is somewhat expected as the RBNs were 
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derived from the same concatenated ICA decomposition, it is required to compare networks 

across modalities while ruling out effects of different ICA model orders and decompositions.

Repeatability of RBNs across time and scanner

Test–retest repeatability of ASL and BOLD based RBNs was estimated using ICCs on a 

voxel-wise basis. The spatial distribution of ICC values overlapped with the pattern of z-

maps for the respective networks (Figs. 2 & 3 and S2 & S3). Higher ICCs were found in 

areas with high FC. Separate ICA for BOLD and ASL demonstrated good to excellent ICCs 

in BOLD (average modal ICCs across RBNs: between sessions 0.800 ± 0.094; between 

scanners 0.735 ± 0.074), while ASL yielded lower but still fairly reliable ICC values (0.619 

± 0.080/0.506 ± 0.109) (Table 2). For joint-ICA based RBNs reliability was higher for 

BOLD RBNs showing average modal ICCs of 0.905 ± 0.033 between sessions and 0.885 ± 

0.052 between scanners, and modal ICCs for ASL RBNs were similar to ASL-only for 

reliability between sessions (0.545 ± 0.048) and between scanners (0.575 ± 0.059) (Table 2). 

Voxel-wise display of ICC maps showed reliable test–retest repeatability between sessions 

and scanners (ICC > 0.6, threshold in Figs. 2 & 3) for all networks within their core areas 

(Table 3a).

Analysis of quantitative CBF within RBNs

Quantitative CBF values were obtained within masks of the gray matter (GMCBF = 62.1 ± 

13.1 ml/100 g/min) and the identified RBNs (RBNCBF) by joint ICA respectively (DMN 

71.1 ± 3.0 ml/100 g/min; LECN 62.2 ± 2.83 ml/100 g/min; RECN 61.7 ± 3.6 ml/100 g/min; 

OVN 61.7 ± 4.4 ml/100 g/min; AUN 71.6 ± 5.9 ml/100 g/min; see Fig. 4).

The 2 × 2 repeated measures ANOVAs of global mean GMCBF as well as GM-adjusted 

RBNCBF values for the DMN, the L-ECN and the AUN did not show a statistically 

significant effect of scanner or session. The R-ECN showed an interaction effect of scanner 

* session (Fscanner = 9.13, p = 0.01/Fsession = 2.33, p = 0.16/Fscanner * session = 10.88, p = 

0.01) while the OVN showed an effect of session only (Fscanner = 2.04, p = 0.19/Fsession = 

5.29, p = 0.05/Fscanner * session = 0.18, p = 0.68). Furthermore, a main effect of network on 

RBNCBF values was observed (F(4,36) = 14.97, p < 0.001) indicating that mean baseline 

perfusion varies significantly across brain networks, with the DMN and the AUN exhibiting 

higher CBF than the other 3 RBNs.

Repeatability of RBNCBF values across time and scanner was further evaluated by ICC and 

showed highly reproducible global mean GMCBF (modal ICC = 0.915 between sessions and 

0.914 between scanners, voxel-wise maps of CBF ICCs can be found in Fig. S7). Average 

modal ICC values across RBNCBF were 0.955 ± 0.021 between sessions and 0.970 ± 0.011 

between scanners (see Table 2 bottom right).

Analysis of CBF based ALFF

The ALFF analysis (Fig. 5A) revealed significant differences across networks (ANOVA F-

statistic F = 5.69, p < 0.001) and post-hoc t-tests (Tukey–Kramer) revealed that R/L-ECNs 

were significantly different from OVN and AUN at p < 0.05 level, whereas DMN did not 

show differences to any other network. Furthermore, RBN-ALFF was significantly different 
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across subjects (F = 4.37, p < 0.0005). Similarly, the normalized ALFF (%ALFF signal of 

respective RBN-CBF; Fig. 5B) showed also a significant effect of RBN (F(4) = 8.9 p < 

0.00003) with significant differences between RECN and DMN, OVN and AUN, as well as 

LECN and AUN, where the two ECNs showed higher % fluctuations than other networks. 

Furthermore, the %ALFF with regard to RBN-CBF was different across subjects (F(9) = 

2.92, p < 0.01).

Differences in RBNs between BOLD and ASL

Analyses of the variations of the FC strength (or z values) of the detected joint-ICA based 

RBNs (between modalities, scanners and sessions, as well as associated interaction effects) 

were performed on a voxel-wise level, using repeated-measures ANOVAs and post-hoc t-

tests. These analyses indicated a significant main effect of modality (BOLD vs. ASL) in all 

networks. The majority of the differences between BOLD and ASL RBNs were observed 

within the brain areas constituting the corresponding networks. In general, BOLD networks 

showed a stronger overall level of FC, with the exception of higher FC in several specific 

regions of CBF networks (Figs. 3 & S4):

• The DMN showed higher FC for BOLD in the posterior areas (Precuneus and 

bilateral angular gyrus) but higher FC in orbital-medial frontal cortex in ASL.

• The two ECNs displayed higher FC in BOLD within network areas on the 

respective hemisphere (inferior and superior frontal gyri as well as temporal gyrus), 

but increased FC on the contralateral homotopic areas in ASL.

• The AUN showed a difference in areas of the DMN (Precuneus and medial frontal 

gyrus) where ASL showed higher FC.

• The OVN showed significantly stronger FC for BOLD in the primary visual cortex.

The coordinates and cluster sizes of detected significant FC differences are reported in Table 

4.

Relationship between regional CBF and FC (z-scores)

Correlation between the network average z-scores for BOLD and ASL RBNs revealed a 

significant correlation (r = 0.2; p < 0.005). The voxel-wise correlations between RBN z-

scores and the corresponding regional CBF of the same sessions resulted in significant 

correlations within the network specific nodes of each RBN from separate as well as joint 

ICA for both ASL and BOLD modalities (r > 0.4; p < 0.05) (Figs. 2, 3 & S5). It is worth 

noting that the correlation between regional CBF and FC was more pronounced in ASL than 

in BOLD RBNs, and specifically the correlation was more prevalent within the DMN, OVN 

and LECN (Table 3b).

Discussion

ASL perfusion MRI has received considerable attention in clinical neuroscience due to its 

quantitative and non-invasive nature. Absolute CBF values obtained using ASL in the whole 

brain and specific brain regions have been shown to be reproducible across time scales of 

minutes, hours to days (Chen et al., 2011; Jain et al., 2012; Jann et al., 2013; Wu et al., 
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2011). There is a good correlation between ASL CBF and the gold standard of 15O-PET in 

both resting state and activation studies (Feng et al., 2004; Kilroy et al., 2013; Ye et al., 

2000). Besides providing a robust mean CBF averaged across a few minute scan, it has been 

shown to be feasible to perform dynamic FC analysis of the ASL perfusion image series 

(Chuang et al., 2008; Dai et al., 2013; Jann et al., 2013; Liang et al., 2012; Zou et al., 2009), 

similar to BOLD FC analysis. To date, however, very few studies have systematically 

addressed the similarity of RBNs detected using BOLD and ASL contrasts, as well as their 

reliability across sessions and scanners. The present study attempted to fill in this gap using 

the state-of-the-art pCASL with single-shot 3D BS GRASE pulse sequence as well as 

rigorous statistical approaches to evaluate the similarity and repeatability of RBNs in BOLD 

and ASL rs-fcMRI.

Spatial similarity and repeatability of RBNs

The five RBNs analyzed in this study represented the DMN, left and right ECNs, OVN and 

AUN. Their spatial pattern was consistent with commonly reported networks in literature 

(Beckmann et al., 2005). Specifically, these five networks were identified objectively by 

spatial correlation of the ICA results to reference networks (Shirer et al., 2012). Regarding 

the spatial similarity between BOLD and ASL RBNs, we found a moderate to high level of 

concordance between ASL and BOLD RBNs using both independent and joint ICA. DSC 

values indicated substantial overlap between RBNs of BOLD-only and joint-ICA. For ASL-

only ICA, however, while ECNs presented similar spatial patterns to the remaining ICA 

runs, DMN, OVN, and AUN revealed differences. Specifically, the DMN showed more 

widespread involvement of anterior areas whereas AUN and OVN did not separate in ASL-

only ICA but were represented as a single component. This represents a well known 

problem in ICA where different model orders can lead to splitting networks into 

subnetworks or merging them into one component (Abou-Elseoud et al., 2010; Calhoun et 

al., 2001, 2009; Kiviniemi et al., 2009). These differences in ICA decompositions resulting 

in heterogeneous RBNs pose a problem when matching RBNs from different ICA runs and 

consequentially can bias further statistical analyses. Hence, to avoid such a bias for 

statistical comparison of ASL and BOLD RBNs, single subject maps for both modalities 

have to be computed within the same framework. This can be achieved using identical seeds 

(Viviani et al., 2011) or by integrating both modalities into a common ICA. The joint group 

ICA computed all networks simultaneously across modalities, which substantially improved 

their spatial concordance (i.e. DSCs). Thus, while separate and joint analyses demonstrated 

that ASL-based FC analysis is feasible and yields group RBNs consistent with known 

BOLD-RBNs, only joint-ICA provided an unbiased decomposition necessary for performing 

a proper statistical comparison. The voxel-wise ANOVA comparing the RBNs of individual 

subjects computed by the joint-ICA revealed a significant main effect of modality in all 

studied networks that was attributed to generally lower FC (z-scores) in ASL as revealed by 

the post-hoc t-test, while scanner and session effects were negligible. Lower FC in ASL has 

been previously observed in seed-based network analyses (Viviani et al., 2011) and thought 

to be related to lower SNR or fewer volumes, as discussed below.

The test–retest repeatability of BOLD-RBNs was found to be high, both between sessions 

and scanners (short (hours) and long (days) term reliability; Figs. 3 & 4 and Table 1). This 
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finding was consistent with earlier studies showing that RBNs can be reliably identified 

across time (Shehzad et al., 2009) and resting conditions (i.e., eyes open, closed or fixating 

on a cross) (Patriat et al., 2013) using BOLD rs-fcMRI. Moreover, BOLD-RBNs showed 

higher reliability than components related to physiological noise and imaging artifacts (Zuo 

et al., 2010). These findings further established/corroborated the reliability of ICA-based FC 

analyses in BOLD rs-fcMRI data. In the present study, RBNs from ASL-only ICA exhibited 

relatively smaller yet still adequate test–retest repeatability across sessions and scanners. 

Joint-ICA showed generally slightly increased modal ICCs for both BOLD and ASL, but 

markedly reduced the standard deviation of ICC values within a network. These findings 

herald the potential of performing rs-fcMRI studies in individual subjects using BOLD and 

ASL contrasts, although to a lesser degree with the latter. Furthermore, since ASL showed 

stronger FC in medial prefrontal regions of the DMN compared to BOLD due to reduced 

sensitivity to susceptibility artifacts (Fernandez-Seara et al., 2005; Liang et al., 2012), it may 

be particularly valuable in studying psychiatric disorders involving the orbitofrontal cortex.

To make a note of caution, functional connectivity analyses present a coarse measure of 

brain organization while the true organization of brain networks is still unknown. Moreover, 

since BOLD and ASL measure different contrasts of neurovascular coupling but are 

physiologically related and reflect hemodynamic fluctuations, it is reasonable to assume that 

they share common RBNs. It is likely that both resting state BOLD and ASL data will be 

acquired in future neuroimaging studies. The proposed joint ICA may offer an appealing 

approach to identify more reliable findings in terms of network connectivity, since the 

findings need to be replicated in both BOLD and ASL data, compared to performing ICA on 

each modality separately.

Reliable network-specific CBF quantification

While the spatial pattern of RBNs appears more reliable using BOLD, ASL provides 

network specific CBF measurements, a physiologically meaningful parameter inaccessible 

by BOLD. We found that both global and network CBF can be reliably assessed between 

sessions and scanners (modal ICCs above 0.9). This high modal ICC might be due to the 

fact that global CBF differences contribute to a large inter-individual variance compared to 

intra-subject variance thus increasing voxel-level ICCs. This finding has implications for rs-

fcMRI studies in clinical populations. Specifically, the capability for reliable CBF 

quantification becomes crucial in patient studies where pathophysiology (Alsop et al., 2010; 

Detre et al., 2012; Detre et al., 2009; Grieder et al., 2013) or medication (Chen et al., 2011; 

Wang et al., 2011) is likely to alter global or regional CBF. In support for this notion, the 

major RBNs exhibit consistent, systematic differences in baseline CBF levels, regardless 

whether correction for global CBF is performed or not.

The DMN and the AUN showed the highest levels of CBF among all networks, which were 

also higher than the global CBF. This finding is consistent with earlier work measuring CBF 

in brain networks and suggests that the DMN may retain a higher level of metabolic activity 

during baseline (Li et al., 2012b), which is suppressed during task performance (Rao et al., 

2007; Zhu et al., 2013). The DMN initially was described as a network that exhibits higher 

metabolic activity (in FDG-PET) during rest and shows deactivation during task execution 

Jann et al. Page 11

Neuroimage. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(Raichle et al., 2001). For the AUN it is argued that it is not completely at rest since there is 

continuous sound as a consequence of scanning. CBF is proposed as a close marker for 

metabolic activity as it is normally coupled with glucose uptake of neuronal populations 

during activity (Fox et al., 1988) and further highly correlates with baseline GABA 

concentrations and thus indicates changes in excitatory (glutamatergic) and inhibitory 

(GABA-ergic) neurotransmitters fundamental to the regulation of neuronal firing rates 

(Donahue et al., 2010) (for review see (Raichle, 1998)). To sum, these findings suggest that 

network specific CBF may represent the metabolic activity of the associated network that is 

inaccessible by BOLD rs-fcMRI. Since the repeatability of both BOLD RBNs and network 

specific ASL CBF were high, the combination of ASL and BOLD into a joint FC analysis 

may provide a powerful tool in future rs-fcMRI studies carried out across time and scanners.

Besides baseline metabolism of brain areas within a network assessed by CBF, the 

amplitudes of fluctuations have been argued to present another characteristic of networks 

and brain areas. ALFF was introduced as a measure related to the amount of spontaneous 

neuronal activity within brain areas (Zang et al., 2007). However, while conventionally 

computed on relative BOLD signal fluctuations these amplitudes have no unit, performing 

the computation on CBF fluctuations however, it becomes possible to attribute a quantitative 

physiological unit [ml/100 g/min] to these fluctuations. Our results show that there are 

systematic differences between subjects as well as across networks in the amplitudes of their 

fluctuations. Notably, the %ALFF normalized to RBN-CBF (Chuang et al., 2008) showed a 

similar pattern as the absolute ALFF, suggesting that ALFFs are independent of baseline 

CBF and might provide an additional physiological marker to characterize temporal 

fluctuations of RBNs in future studies.

Relation between network CBF and network functional connectivity

The correlation analysis between regional CBF and ASL-FC strength (z-scores) revealed a 

positive relation between these two physiological measures in certain areas specific for the 

distinct networks. These observations are in line with recent reports showing evidence for 

specific coupling between regional CBF and functional connectivity from separate ASL and 

BOLD scans in certain nodes of a network (Li et al., 2012c; Liang et al., 2013). 

Accordingly, these findings of FC–CBF relationships indicate that CBF and FC provide 

complementary yet related information on the brain’s baseline functional organization. 

Recent reports suggest that rCBF in specific network nodes present the cost to maintain 

proper network integrity (Liang et al., 2013; Tomasi et al., 2013) and that in disease both 

markers show alterations (Kindler et al., 2013). In line with this notion, a study in 

Alzheimer’s disease patients showed an association of CBF and FC in nodes of the DMN 

that were correlated with cognitive performance. Furthermore, medical treatment enhanced 

both measures along with reductions in disease severity (Li et al., 2012a). Hence including 

global and regional CBF into FC analysis might contribute to the understanding of inter-

individual variability, specifically in clinical populations where alterations in both 

characteristics have been observed and might influence each other as well as BOLD 

responses during task performance (Liu et al., 2012).
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Study limitations and further development of ASL rs-fcMRI

Besides considerable overlap between ASL and BOLD RBNs, there are significant 

differences in their spatial patterns in specific areas of the RBNs. These differences 

primarily arise from the imaging modality rather than effects of different scanners or 

sessions. There are several potential causes underlying the overall lower connectivity 

strength in ASL and its lower reliability. First, although recordings had the same duration 

(i.e. 8 min) ASL had only one fourth of the image volumes of the BOLD scan. This is due to 

the requirement of ASL for labeling of the inflowing blood, a post-labeling delay to account 

for arterial transit times and the fact that always a control and a label image have to be 

acquired in order to quantify CBF. Secondly, ASL has lower SNR compared to BOLD 

(Aguirre et al., 2002) which hampers FC analysis using ICA or cross-correlation. To explore 

if the lower FC in ASL was due to reduced temporal resolution or SNR we explored the 

effects of both possible causes. We subdivided (chopped) the BOLD timeseries to match the 

temporal resolution of ASL by taking every fourth volume of the BOLD run (see 

Supplemental Material). Performing ICA and subsequent analyses on the chopped BOLD 

datasets, we found only minor reductions in modal ICCs (Table 2) and DSCs (Table S1). 

These results confirm earlier studies demonstrating that temporal resolution has minor 

effects on FC analysis and that rather the total scan time (which was the same for all datasets 

in the present study) is a critical factor affecting FC reliability (Birn et al., 2013; Van Dijk et 

al., 2010). The analysis of temporal SNR revealed that BOLD rs-fcMRI had overall higher 

temporal SNR than CBF (see Supplemental Material). However, the t-test also revealed 

medial and orbitofrontal areas with higher SNR in CBF, the same area that showed 

increased CBF functional connectivity (Fig. S8. (Liang et al., 2012)). This increased 

sensitivity in areas close to tissue–air boundaries are known to cause susceptibility artifacts 

in EPI image acquisition which are greatly alleviated in 3D GRASE readout (Vidorreta et 

al., 2012). While increased FC in areas of susceptibility can be explained by the better 

sensitivity of ASL in these areas, each RBN showed additional clusters of increased FC in 

ASL. These clusters are mostly outside the z-maps of the distinct RBNs and could suggest 

decreased sensitivity of ASL to separate RBNs. The reduced tSNR combined with shorter 

timeseries might cause fluctuations across voxels to share more mutual information and 

hence increased correlation with the group component template fluctuation. As a 

consequence, ASL-RBNs might show more widespread and less well segregated networks 

than BOLD since the information content of voxel timeseries is less separable than in 

BOLD. This limitation might be overcome in future studies by using longer CBF timeseries 

or increasing the model-order of the ICA for ASL.

Another issue that is known to influence FC is motion (Power et al., 2012; Van Dijk et al., 

2012). Especially if systematic motion differences exist between two groups or, in the case 

of the present study, modalities this has to be considered. However, statistical analyses of 

translational and rotational motion yielded neither significant differences between modalities 

nor between sessions or scanners (see Supplemental Material). Hence, the differences in FC 

between BOLD and ASL RBNs might be mainly attributed to SNR. We did not report motor 

networks due to the presence of wrap around signals in the top slices of 3D GRASE images. 

While possessing great promise for rs-fcMRI studies, the spatial resolution and image 
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coverage still need to be improved in pCASL with single-shot 3D BS GRASE for 

widespread applications in clinical neuroscience.

Conclusion

To conclude, the combination of quantitative information on network metabolism from ASL 

and spatial organization of functional networks from BOLD rs-fMRI provides a powerful 

tool for characterizing RBNs. While BOLD RBNs showed excellent test–retest reliability 

across sessions and scanners in their spatial pattern, ASL RBNs showed reduced yet still 

adequate repeatability. The highly reproducible network-specific ASL CBF measurements 

may complement BOLD rs-fMRI by providing quantitative CBF as an index of the 

metabolic activity of specific networks.

Moreover, we found that FC strength in RBNs is correlated with the baseline CBF in core 

areas of the corresponding networks. This suggests that joint FC and network CBF analyses 

using BOLD and ASL may fully characterize the spatiotemporal and quantitative properties 

of RBNs that are especially desirable for longitudinal rs-fcMRI studies, pharmacological 

MRI studies as well as for the comparison of RBNs across different subject groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic workflow of ICA of BOLD and ASL data. ICA decompositions were performed 

separately for BOLD and ASL datasets as well as in a combined joint-ICA to compute 

Resting Brain Networks (RBNs). Dice Similarity Coefficients (DSC) were calculated to 

compare spatial overlap of resulting RBNs across different ICA runs. Test–retest reliability 

of RBNs across session and scanner was estimated by means of Intra-class correlation 

coefficients (ICC). An ANOVA with post-hoc t-test was employed to statistically compare 

RBNs from BOLD and ASL. Finally, baseline activity of RBNs (RBNCBF) was calculated 

and associations between RBNCBF and functional connectivity strength were tested by 

Pearson correlation coefficients.
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Fig. 2. 
Results from separate ICAs for BOLD and ASL. Modality specific group RBNs were 

computed as one-sample t-test across the specific single subject maps. Left column displays 

BOLD RBN results while right column those for ASL. Five common RBNs were analyzed: 

Default Mode Network (DMN), left and right Executive Control Networks (L/R-ECNs), 

Occipital Visual Network (OVN) and Auditory Network (AUN). Test–retest reliability 

between sessions and scanners are displayed as Intraclass Correlation Coefficient (ICC) 

maps for BOLD and ASL networks (ICC maps were masked by ICA group RBN maps 

thresholded at z > 2). Differences between the two modalities (BOLD vs. ASL) were 

assessed by means of two-sample two-sided t-tests (significance threshold was set at p < 

0.001). The bottom row displays voxel-wise correlation maps for CBF and Functional 

Connectivity strength (z-scores) for the five distinct networks (only significant (p < 0.05) 

correlations above r > 0.4 are displayed. Correlation maps have been masked by ICA group 

RBN maps thresholded at z > 2). Multi-slice views of all analyses can be found in 

Supplemental Figs. S1–S5.
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Fig. 3. 
Results from joint-ICAs for BOLD and ASL (Display, organization and color-scaling are 

analog to Fig. 2). Modality specific group RBNs were computed as one-sample t-test across 

the specific single subject maps. Left column displays BOLD RBN results while right 

column those for pCASL. Five common RBNs were analyzed: Default Mode Network 

(DMN), left and right Executive Control Networks (L/R-ECNs), Occipital Visual Network 

(OVN) and Auditory Network (AUN). Test–retest reliability for session and scanner are 

displayed as Intraclass Correlation Coefficient (ICC) maps for BOLD and ASL networks 

(ICC maps were masked by ICA group RBN maps thresholded at z > 2). Differences 

between the two modalities (BOLD vs. ASL) were assessed by means of two-sample two-

sided t-tests (significance threshold was set at p < 0.001). The bottom row displays voxel-

wise correlation maps for CBF and Functional Connectivity strength (z-scores) for the five 

distinct networks (only significant (p < 0.05) correlations above r > 0.4 are displayed. 

Correlation maps have been masked by ICA group RBN maps thresholded at z > 2). Multi-

slice views of all analyses can be found in Supplemental Figs. S1–S5.
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Fig. 4. 
Mean CBF values for RBNs (bar-plot). Line-plot represents mean values of separate ASL 

sessions. Default Mode Network (DMN), left and right Executive Control Networks (L/R-

ECNs), Occipital Visual Network (OVN) and Auditory Network (AUN).
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Fig. 5. 
A) Average CBF-ALFF for each network and subject. B) %ALFFs with respect to RBN-

CBF (adjusted for global GM-CBF). Subjects were ordered according to their overall mean 

ALFF. ANOVA revealed significant ALFF differences across RBNs and subjects for both 

absolute and normalized ALFF.
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Table 1

Dice Similarity Coefficients (DSCs) between RBNs resulting from different ICA runs (joint-ICA group 

component GC, joint-ICA ASL networks, joint-ICA BOLD networks and RBNs from separate BOLD 

(BOLD-only) or ASL (ASL-only) ICAs. Highlighted are the DSCs between RBNs from ASL and BOLD 

based on the joint-ICA approach indicating high concordance of network patterns.

Joint ASL Joint BOLD Only ASL Only BOLD

DMN

Joint GC 0.81 0.89 0.29 0.61

Joint ASL 0.71 0.35 0.57

Joint BOLD 0.27 0.61

Only ASL 0.35

RECN

Joint GC 0.76 0.82 0.67 0.62

Joint ASL 0.59 0.67 0.54

Joint BOLD 0.60 0.64

Only ASL 0.56

LECN

Joint GC 0.80 0.85 0.61 0.52

Joint ASL 0.66 0.61 0.45

Joint BOLD 0.58 0.55

Only ASL 0.41

OVN

Joint GC 0.77 0.94 0.46 0.69

Joint ASL 0.71 0.47 0.59

Joint bold 0.44 0.69

Only ASL 0.50

AUN

Joint GC 0.79 0.86 – 0.57

Joint ASL 0.66 – 0.47

Joint BOLD – 0.60

Only ASL –
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