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Abstract

Diffusion magnetic resonance imaging (MRI) methods for axon diameter mapping benefit from 

higher maximum gradient strengths than are currently available on commercial human scanners. 

Using a dedicated high-gradient 3 T human MRI scanner with a maximum gradient strength of 

300 mT/m, we systematically studied the effect of gradient strength on in vivo axon diameter and 

density estimates in the human corpus callosum. Pulsed gradient spin echo experiments were 

performed in a single scan session lasting approximately 2 h on each of three human subjects. The 

data were then divided into subsets with maximum gradient strengths of 77, 145, 212, and 293 

mT/m and diffusion times encompassing short (16 and 25 ms) and long (60 and 94 ms) diffusion 

time regimes. A three-compartment model of intra-axonal diffusion, extra-axonal diffusion, and 

free diffusion in cerebrospinal fluid was fitted to the data using a Markov chain Monte Carlo 

approach. For the acquisition parameters, model, and fitting routine used in our study, it was found 

that higher maximum gradient strengths decreased the mean axon diameter estimates by two to 

three fold and decreased the uncertainty in axon diameter estimates by more than half across the 

corpus callosum. The exclusive use of longer diffusion times resulted in axon diameter estimates 

that were up to two times larger than those obtained with shorter diffusion times. Axon diameter 

and density maps appeared less noisy and showed improved contrast between different regions of 

the corpus callosum with higher maximum gradient strength. Known differences in axon diameter 

and density between the genu, body, and splenium of the corpus callosum were preserved and 

became more reproducible at higher maximum gradient strengths. Our results suggest that an 

optimal q-space sampling scheme for estimating in vivo axon diameters should incorporate the 
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highest possible gradient strength. The improvement in axon diameter and density estimates that 

we demonstrate from increasing maximum gradient strength will inform protocol development 

and encourage the adoption of higher maximum gradient strengths for use in commercial human 

scanners.

1. Introduction

Axons are the structural and physiological conduit for signal transmission in the brain and 

therefore are one of the fundamental elements of brain function. The diameter of both 

myelinated and unmyelinated axons is related to the speed at which action potentials are 

conducted along the length of the axon (1, 2). In unmyelinated axons, a large diameter 

provides more ion channels per unit length and therefore a more rapid means of changing 

the inner to outer ion concentrations. This rate of change in the intra- versus extra-axonal ion 

concentration is what governs the conduction velocity of action potentials. Myelination 

increases conduction velocity through an entirely different mechanism known as saltatory 

conduction. For myelinated axons, ion channels and action potentials occur only at the gaps 

between the myelin, known as the nodes of Ranvier. Between these nodes of Ranvier, the 

current flows passively through the insulating myelinated portions, leading to an increased 

rate of conduction. In 1939, Hursh (2) showed the conduction velocity to be proportional to 

the square root of the diameter of unmyelinated axons and directly proportional to the inner 

membrane diameter of myelinated axons. In the peripheral nervous system, axon diameters 

range from 0.1 µm to about 20 µm, with unmyelinated axons being smaller than 2 µm and 

myelinated axons larger than 1 to 2 µm (3). In the central nervous system, myelinated axons 

as small as 0.2 µm have been observed (4), with axons below this size generally being 

unmyelinated. Variations in axon diameter are thought to be closely tied to function, with 

networks that demand fast response times (such as motor networks) demonstrating larger 

axon diameters. Therefore, a non-invasive method of mapping axon diameters would 

provide new insight into brain function and connectivity.

The ability to map axon diameters noninvasively in vivo has potential utility in tracking 

development, aging, and diseases of the central nervous system. Axon diameters have been 

shown to increase with age (5) and correlate with the stages of development (6). Prior 

studies indicate that smaller axons are more vulnerable to damage in multiple sclerosis (7, 

8), whereas larger diameter axons are selectively affected in amyotrophic lateral sclerosis (9, 

10). There is also a strong potential utility for axon diameter mapping in the study of 

psychiatric disorders, which are often hypothesized to be the result of abnormal signaling. 

Several studies have focused on the possibility of disconnections in psychiatric disorders 

(11, 12) and autism (13, 14); however, abnormal signaling rates due to differently sized 

axons could also contribute to symptoms in diseases such as schizophrenia (15).

Recognizing the potential impact of an MRI technique to map axon diameters, several 

groups have started to exploit the sensitivity of diffusion-weighted MRI (DW-MRI) to tissue 

microstructure for the purpose of estimating axon diameter distributions and fiber density in 

white matter bundles (16–28). DW-MRI is well-established clinically and plays a key role in 

the diagnosis of several neurological conditions including acute stroke (29–31) and the 
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evaluation of brain tumors (32, 33) and traumatic brain injury (34, 35). DW-MRI is also 

used to map the orientation of white matter tracts, which can be achieved by measuring 

diffusion along multiple orientations and applying an analysis scheme such as diffusion 

tensor imaging (36), high-angular resolution diffusion imaging (HARDI) (37), q-ball (38) or 

diffusion spectrum imaging (39). It is only more recently, however, that there has been a 

heightened focus on using DW-MRI measurements to quantify the size of restrictive spaces 

in brain tissue.

One such genre of techniques focuses on the quantification of axon diameters and density in 

white matter (16–28). These methods generally acquire diffusion-weighted images with a 

range of q-values (diffusion-encoding gradient areas) and diffusion times (time between 

diffusion-encoding gradients). A model for intra- and extra-axonal diffusion signal decay is 

then fitted to the data. Large q-values are needed to resolve small differences in spin 

displacements, and short diffusion times are needed to capture restricted diffusion in small 

compartments. The simultaneous need for short diffusion times and large q-values places 

strong demands on MRI gradient hardware. The advent of higher maximum gradient 

strengths (Gmax) on human MRI scanners (40–43) has enabled the translation of these 

methods from animal (21, 22, 44, 45) and ex vivo studies (19, 23, 24, 26, 28) to the in vivo 

human brain (23, 25, 27, 46). Recent simulation and ex vivo experimental results suggest the 

key role of Gmax in detecting small diameter axons (~µm) and enhancing contrast between 

axon diameter estimates (45). Recognizing the differences in relaxation and diffusion 

properties of fixed and in vivo brain tissue (47–49), these results motivated us to perform a 

systematic study of the effect of gradient strength on in vivo axon diameter estimates. While 

the benefits of high gradient strengths have been evidenced in the animal literature (24, 45), 

the actual demonstration of axon diameter mapping methods using high gradient strengths in 

humans in vivo confirms that the performance of the hardware is sufficiently robust to line 

up with the predicted theoretical benefits. In this work, we study how the precision and 

mean estimates of axon diameter change with gradual increases in maximum gradient 

strength. This type of study is also critical for understanding how to interpret data acquired 

on standard clinical systems with 40–60 mT/m maximum gradient strengths, which may 

provide useful information but be biased or insensitive to restrictive spaces below a certain 

size.

Here we use a novel 3 T human MRI equipped with Gmax of 300 mT/m (40) to acquire q-

space data with a range of Gmax values in the human corpus callosum in vivo. We find that, 

for the acquisition parameters, model and fitting routine used in our study, including higher 

Gmax measurements decreases the uncertainty in axon diameter estimates (i.e., posterior 

probability density functions are narrower) and that the exclusive use of longer diffusion 

times results in larger axon diameter estimates. Axon diameter and density maps also appear 

less noisy and show improved contrast between different regions of the corpus callosum 

with higher maximum gradient amplitudes.
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2. Methods

2.1. Data acquisition

With approval from the institutional review board, three healthy volunteers were scanned on 

a dedicated high-gradient (AS302) 3 T MRI scanner (MAGNETOM CONNECTOM, 

Siemens Healthcare) with a maximum gradient strength of 300 mT/m and maximum slew 

rate of 200 T/m/s. The slew rate was de-rated to a maximum of 62.5 T/m/s during diffusion 

encoding to prevent physiological stimulation. A custom-made 64-channel phased array 

head coil was used for signal reception (40). The experimental protocol consisted of sagittal 

2-mm isotropic resolution diffusion-weighted spin-echo echo-planar imaging acquisitions 

with 17 contiguous slices centered on the midline corpus callosum. The following 

parameters were used: TE/TR = 120/3000 ms, parallel imaging using generalized auto 

calibrating partially parallel acquisitions (GRAPPA) with an acceleration factor of R = 2, 

diffusion gradient pulse duration δ = 8 ms, 39 diffusion gradient increments (10–293 mT/m) 

and 8 averages. The experiment was repeated for five different diffusion times Δ: 16, 25, 35, 

60 and 94 ms. Diffusion gradients were applied in the z-direction orthogonal to the callosal 

fibers. Interspersed T2-weighted (b = 0) images were acquired for each diffusion gradient 

increment and diffusion time combination. The maximum b-value at the longest diffusion 

time was 35,690 s/mm2. The total acquisition time for each subject was 118 minutes.

The temporal signal-to-noise ratio (SNR) was estimated using 195 interleaved b = 0 data 

acquired between diffusion-weighted images through a voxel-wise calculation of the mean 

of the 195 b = 0 images divided by the standard deviation of the b = 0 images. The complex-

valued data was combined across channels in the 64-channel coil, such that the magnitude 

bias could be estimated based on the correction for a single-channel coil (50). The mean 

temporal SNR within the genu ROI in the corpus callosum (shown in Fig. 2) was estimated 

to be about 10.

2.2. Data sets

The data were divided into the subsets listed in Table 1. These subsets represented data 

acquired with Gmax of 77, 145, 212, and 293 mT/m (data sets 1–4) and high q values with 

Gmax of 293 mT/m (data set 5), with q-space sampled using 16 linearly spaced q-values for 

each Gmax (see Table 1 for list of q-values sampled). Data sets 1–5 each included 80 

measurements. Additional subsets of the data represented different diffusion times, 

including short diffusion times Δ of 16 and 25 ms (data set 6), long diffusion times Δ of 60 

and 94 ms (data set 7), and all diffusion times (data set 8) using all acquired q-value data for 

each diffusion time.

2.3. Data preprocessing

Image warping caused by gradient nonlinearity was corrected by calculating the three-

dimensional displacements generated by nonlinear terms in the magnetic field for each 

gradient coil (51). Correction of eddy current-induced distortions was achieved using 

opposite polarity DWI pairs (52), which were registered one to the other, constraining for 

the expected translations and dilations in the phase-encoding direction and shears in the slice 

plane. The halfway transform was then calculated and applied. To correct for inter-scan bulk 
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motion, the T2-weighted images (b = 0) acquired with each diffusion gradient/time 

combination were used to co-register all images using FLIRT (www.fmrib.ox.ac.uk/fsl). 

Eddy current correction and motion correction transformations were applied in a single step 

to prevent further blurring.

2.4. Signal model

We modeled diffusion in the corpus callosum as occurring in three compartments: restricted 

diffusion within an intra-axonal compartment, hindered diffusion in an extra-axonal 

compartment, and free diffusion in cerebrospinal fluid (CSF). The overall diffusion-

weighted signal S was taken to be the sum of the restricted intra-axonal (Sr), hindered extra-

axonal (Sh), and CSF compartment (Scsf) signal models weighted by their respective volume 

fractions: S = frSr + fhSh + fcsfScsf, where fr is the fraction of water in the intra-axonal 

compartment, fcsf is the fraction of water in the CSF compartment, and fh = 1 − fr − fcsf is the 

fraction of water in the extraaxonal compartment.

Intra-axonal diffusion (Sr) was modeled by restricted diffusion in impermeable parallel 

cylinders of diameter a (53) as follows:

(1)

where S0 is the signal obtained at b = 0 without diffusion weighting, γ is the gyromagnetic 

ratio, G is the gradient strength of the diffusion-encoding gradients, Dr is the diffusion 

coefficient of water in the restricted compartment, δ is the diffusion gradient pulse duration, 

Δ is the diffusion time, a is the axon diameter, and αm are the roots of the equation J'1 

(αm(a/2)) = 0. J1´ is the derivative of the Bessel function of the first kind, order one. The 

summation in Equation 1 was taken up to m = 10, with the contribution of terms m > 10 

considered negligible. The signal model for intra-axonal diffusion accounts for diffusion 

during the gradient pulse (δ) using the Gaussian phase distribution approximation (53–56) as 

was done previously in Alexander et al. (23). Instead of assuming a gamma distribution of 

axon diameters (19), we fit the data to a single axon diameter as in (23).

Extra-axonal hindered diffusion was modeled by the one-dimensional Stejskal-Tanner 

equation (57): Sh = S0exp[−(γδG)2(Δ−δ/3)Dh], where Dh is the hindered diffusion 

coefficient. To model the effect of CSF, which may have been introduced through partial 

volume averaging and CSF pulsation, we included a CSF compartment, following the 

approach of (22, 23). Free diffusion in CSF was modeled as isotropic Gaussian diffusion 

occurring with diffusion coefficient Dcsf (22): Scsf = S0exp[−(γδG)2(Δ−δ/3)Dcsf].

2.5. Model fitting

Model fitting was performed on a voxel-wise basis in the midline sagittal slice of the corpus 

callosum using Markov chain Monte Carlo (MCMC) sampling, which generated posterior 

distributions of the model parameters given the data, similar to the approach of (20). A 

Rician noise model was adopted for parameter estimation as in (20, 23). The standard 

deviation of the noise σ = 0.1 was estimated from fitting the noise level in the data and 
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corresponded to an SNR of 10. The total number of MCMC samples calculated for each 

voxel was 1,800. MCMC samples were saved at intervals of 100 iterations after an initial 

burn-in period of 20,000 iterations.

The parameters that were estimated from the model fitting were: axon diameter a, volume 

fraction of the restricted compartment fr, volume fraction of the CSF compartment fcsf, and 

hindered diffusion coefficient Dh. Uniform priors with ranges given in parentheses were 

used for axon diameter a (0.2–40 µm), restricted fraction fr (0–1), CSF fraction fcsf (0–1), 

and hindered diffusion coefficient Dh (0.1–2 µm2/ms). The restricted diffusion coefficient Dr 

was set to 1.7 µm2/ms. The diffusion coefficient of CSF (Dcsf) was assumed to be that of 

free water at 37°C (3 µm2/ms). The mean and standard deviation of the estimates for axon 

diameter a, restricted fraction fr, CSF fraction fcsf, and hindered diffusion coefficient Dh 

were then calculated for each voxel by taking the mean and standard deviation over the 

MCMC samples.

Regions of interest (ROIs) of 9 voxels each were manually drawn by a radiologist in the 

genu, body, and splenium of the midline sagittal slice of the corpus callosum as determined 

from the contrast on b = 0 and diffusion-weighted images (see insets in Figure 2 for ROI 

delineation). The mean of the posterior distribution for each fitted parameter was calculated 

on a voxel-wise basis using a Rician noise model, as described above. The mean estimates 

of the fitted parameters obtained from the posterior distributions were then combined for the 

voxels within each ROI to derive summary statistics (i.e., mean and standard deviation 

across the ROI) of the fitted parameters (see Figs. 2 and 3).

3. Results

Figure 1 shows posterior distributions on axon diameter a, volume fraction of the intra-

axonal compartment fr, volume fraction of CSF fcsf, and hindered diffusion coefficient Dh 

for data sets 1–5 and 8 in Table 1 obtained with different Gmax and q values. The posterior 

distributions shown were obtained from a representative voxel in the body of the corpus 

callosum of subject 1. The posterior distributions on axon diameter, restricted fraction, CSF 

fraction, and hindered diffusion coefficient became narrower with increasing Gmax. The 

axon diameter estimate was larger (9.82 µm and 14.20 µm) for Gmax ≤ 145 mT/m (data sets 

1 and 2) and decreased (~4–5 µm) with increasing Gmax. The axon diameter estimates from 

Gmax of 293 mT/m (data set 4) matched most closely to the axon diameter estimate obtained 

when all of the acquired data was included in the fit (data set 8) (4.74 µm and 5.12 µm 

respectively). The histograms for axon diameter also showed relative invariance for axon 

diameters less than 3–4 µm, i.e., the low ends of the histograms tended to be flat (see Figs. 

1c–f), suggesting a lower bound below which axon diameters could be recognized as small 

but not necessarily distinguishable in size from one another. The estimates for restricted 

fraction, CSF fraction, and hindered diffusion coefficient were similar across all Gmax. 

These trends were representative of what was observed across subjects and in different 

regions of interest.

Figure 2 plots the mean and standard deviation of the axon diameter estimates for the genu, 

body, and splenium ROIs in the midline sagittal slice of the corpus callosum for data sets 1–
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5 and 8 in all three subjects. Again, it can be seen that the mean of the axon diameter 

estimates over each ROI decreased by two to three fold with increasing Gmax. The standard 

deviation of the axon diameter estimates across the voxels in each ROI decreased by more 

than half with increasing Gmax, suggesting improved spatial coherence in the parameter 

estimates for each ROI with increasing Gmax. A trend toward smaller mean axon diameters 

in the genu and splenium compared to the body was more clearly seen at higher Gmax, which 

is consistent with prior histological studies (58, 59).

Figure 3 shows the mean and standard deviation of the axon diameter estimates for short (Δ 

= 16 and 25 ms), long (Δ = 60 and 94 ms), and all diffusion times (Δ = 16, 25, 35, 60, 94 

ms) using data acquired at all gradient strengths up to Gmax of 293 mT/m for the genu, body, 

and splenium ROIs in the midline sagittal slice of the corpus callosum. The mean of the 

axon diameter estimates from data acquired with long diffusion times was up to two times 

larger than that obtained from data acquired with short diffusion times. The mean of the 

axon diameter estimates obtained using all the data (i.e., data set 8) was more similar in 

magnitude to the mean of the axon diameter estimates obtained from data acquired with 

short diffusion times. The axon diameter estimates at short and long diffusion times (data 

sets 6 and 7) also showed a larger standard deviation over each ROI by approximately two 

to three times on average compared to those obtained with all the data due to the smaller 

number of data points in data sets 6 and 7.

Figure 4 shows voxel-wise estimates of mean axon diameter, restricted fraction, CSF 

fraction and axon density for the midline sagittal slice of the corpus callosum of subject 1. 

The axon density was calculated by weighting the restricted fraction by the cross-sectional 

area of the axon, as described in (23). Regional variations in axon diameter and density 

became more pronounced at higher Gmax, with evidence of smaller diameter and more 

tightly packed axons in the genu and splenium compared to the body. Increasing Gmax also 

decreased the mean axon diameter estimate by half and the variation in axon diameter 

estimate between voxels by more than half. For Gmax > 70 mT/m, the restricted fraction, 

CSF fraction, and axon density were similar to the values obtained at the highest Gmax of 

293 mT/m.

Figure 5 compares the measurements at different q-values with predictions from the model 

fitted to the ROI-averaged signal from the genu, body, and splenium of the corpus callosum 

in subject 1. The fitted parameters provided an accurate prediction of the expected signal 

decay for q-values below 0.08 µm−1. However, the model underestimated the highest qvalue 

measurements by up to 10% for q-values above 0.08 µm−1, especially for the longest 

diffusion time of Δ = 94 ms.

4. Discussion

We demonstrate the effect of gradient strength on in vivo axon diameter estimates in humans 

by performing a comprehensive set of measurements on a clinical MRI system equipped 

with 300 mT/m gradients. We find that the uncertainty in mean axon diameter estimates 

decreased with increasing Gmax for the model and fitting method used here. Furthermore, 

increasing Gmax appeared to decrease the axon diameter estimates throughout the corpus 

Huang et al. Page 7

Neuroimage. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



callosum. Known differences in axon diameter and density between the genu, body, and 

splenium of the corpus callosum became more reproducible at higher Gmax.

This study represents the first empirical in vivo study of gradient strength on axon diameter 

estimates in humans and serves as a complement to the work of Dyrby et al. (45), which 

examined the effect of Gmax on axon diameter index obtained from optimized multi-shell 

HARDI protocols for Gmax of 60, 140, 200, and 300 mT/m in fixed monkey brain. Rather 

than applying an optimized protocol with orientationally invariant sampling of q-space, we 

focused on systematically incrementing through Gmax and Δ. To minimize the number of 

required measurements such that all data could be acquired in a single scan session (118 

minutes), we chose to keep the diffusion-encoding fixed along the craniocaudal direction 

(orthogonal to the fibers of the corpus callosum), as in the original AxCaliber 

implementation (19, 22). Prior studies from other groups have demonstrated bending and 

fanning of fibers at the genu and splenium of the corpus callosum (60, 61). Intra-voxel 

bending and fanning patterns can confound estimates of axon diameters that depend only on 

a single diffusion-encoding orientation assumed to be orthogonal to the white matter bundle 

at all locations. This is a potential confound in our measurements; however, in order to 

mitigate the influence of heterogeneous fiber orientations, we limited our measurements to 

the midline of the corpus callosum as closely as possible. We also fixed the gradient pulse 

width δ and echo time for all experiments to allow for direct comparison between axon 

diameter estimates obtained at different Gmax and Δ.

The variance in axon diameter estimates for the lowest Gmax of 77 mT/m was at least two 

times larger than for axon diameter estimates obtained at higher Gmax, similar to results 

found by Dyrby et al. (45). In our experiments, since the diffusion gradient pulse duration 

(δ) and echo time were kept constant (leading to the same T2 weighting for all 

measurements), the large variance in axon diameter estimates at lower Gmax could be 

attributed to the lower diffusion weighting that was used to acquire the data. We hypothesize 

that the low q-values did not provide sufficient diffusion resolution to resolve restricted 

diffusion occurring in smaller diameter axons and therefore produced larger variance in the 

estimates of the mean axon diameter. Dyrby et al. (45) also observed less consistent 

measurements of axon diameter index at Gmax of 60 mT/m using wider gradient pulses with 

longer diffusion gradient pulse duration (δ), diffusion time (Δ) and echo time compared to at 

higher Gmax.

Regarding the effect of diffusion time on axon diameter estimates, the data obtained with 

longer diffusion times (Δ = 60 and 94 ms) yielded axon diameter estimates that were up to 

two times larger than axon diameter estimates obtained with shorter diffusion times (Δ = 16 

and 25 ms) and all diffusion times (Δ) (Fig. 3). In order to choose an appropriate range of 

diffusion times, the diffusion time should be long enough such that the intra-axonal water 

will have sufficient time to probe the axonal boundaries, roughly on the order of a2/2Dr (62). 

The diffusion times Δ used here ranged from 16 to 94 ms and therefore correspond to mean 

diffusion displacements of 7–18 µm, respectively, assuming an intra-axonal diffusivity of 

1.7 µm2/ms. Our results suggest that longer diffusion times (Δ > 60 ms) may lead to larger 

estimates of compartment size. Therefore, it is possible that other regions of the brain or 
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spinal cord with different-sized axons may require sampling a different range of diffusion 

times.

4.1. Model assumptions and limitations

The estimates of axon diameter and density are dependent on the model used, and much 

work has been invested in testing and validating different biophysical models of axons in 

white matter (16–28). To model intra-axonal diffusion, we used the model of Neuman and 

others (53–56), which calculates the signal decay due to restricted diffusion in impermeable 

cylinders and includes a Gaussian phase approximation for diffusion during the gradient 

pulse. The availability of Gmax up to 300 mT/m enabled us to achieve strong diffusion 

weighting with a relatively short gradient pulse duration (δ) of 8 ms; however, even the short 

δ used in our experiments may not have satisfied the short pulse approximation, particularly 

for the shortest diffusion time sampled here (Δ = 16 ms). The effects of exchange were not 

accounted for and could represent another potential confounding factor by blurring the 

compartment size estimate, particularly at longer diffusion times. Diffusion in the extra-

axonal compartment was modeled as one-dimensional Gaussian diffusion, which was 

considered a reasonable first approximation. However, other groups have shown that this 

assumption is not strictly correct due to the time-dependence of the diffusion coefficient 

(63–65), which may cause the diffusivity to vary for different diffusion times and pose a 

potential confound to our quantitative accuracy. We also incorporated a CSF compartment 

in order to account for partial volume effects given the proximity of the corpus callosum to 

the ventricles, following the approach of (22). The CSF fraction was below 0.2 for the 

majority of the voxels in the corpus callosum, consistent with results obtained by others (22, 

23).

This study uses a Rician noise model for parameter estimation in all measurements. We 

acknowledge that the noise may not be completely accounted for by a Rician distribution, 

given that the signal was averaged 8 times for each q-value and diffusion time combination 

prior to analysis and data were acquired with a phased-array coil and parallel imaging (66). 

Yet, the MCMC fitting was not very sensitive to the noise model with both Gaussian and 

Rician noise models showing similar results. The Rician noise model was chosen as it was 

considered a better approximation for the expected noise in the voxel-wise parameter 

estimates.

The axon diameters obtained from the measurements and model-fitting adopted here are on 

the same order as those reported from histology (58, 59) and are close to the values 

calculated from histology by Alexander et al. (23), accounting for shrinkage during 

histological preparation. It must be acknowledged that the measurements shown here may 

not be sensitive to small diameter axons below a threshold of approximately 3–4 µm, as 

shown in the histograms of Figure 1. This finding reflects constraints in the experimental 

parameters needed to distinguish very small diameter axons, including the need for very 

short diffusion times to probe the transition between free and restricted diffusion within 

small axons (in our experiments, Δ = 16 ms represented the lower bound on the diffusion 

time) as well as the need for even higher diffusion weighting to distinguish very small 

compartment sizes. Our results suggest a limit to the sensitivity of pulsed gradient spin echo 
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experiments to very small diameter axons, in agreement with simulation and experimental 

results reported by others (19, 20, 23, 45). The lower bound is expected to decrease with 

higher Gmax or possibly with the use of oscillating gradients that would enable shorter 

diffusion times to probe smaller displacements (67–69). Sequence optimization approaches 

have also been shown to improve compartment size estimation and increase sensitivity to 

small pore sizes compared to the standard pulsed gradient spin echo, particularly at lower 

maximum gradient strengths (70–72).

4.2. Future applications

Our results support the use of the highest available Gmax to decrease variation in axon 

diameter estimates and improve contrast in axon diameter and density between different 

regions of the corpus callosum. Although measurements performed with lower Gmax showed 

larger variation in the resulting axon diameter estimates and a bias toward larger mean axon 

diameters, the relative differences in axon diameter estimates within subregions of the 

corpus callosum may still provide useful information regarding the underlying white matter 

microstructure. The results suggest that quantitative measures of axon diameter are 

influenced by the selection of q and Δ, but relative differences between different regions of 

the corpus callosum appear to be preserved, especially at Gmax above 145 mT/m. 

Furthermore, the estimates of the restricted and CSF fractions and axon density appeared to 

be less dependent on Gmax and relatively invariant above Gmax of 70 mT/m. These measures 

have been shown to be less sensitive to small axon diameters (23) and may represent 

relatively robust parameters for assessing white matter microstructure regardless of Gmax. 

Axon density in particular could serve as a potential biomarker for axonal dropout in 

diseases such as multiple sclerosis and amyotrophic lateral sclerosis, in which axonal 

damage and loss are postulated to be the underlying substrate of clinical disability and 

neurodegeneration (8–10).

The importance of high Gmax for accurate in vivo characterization of tissue microstructure 

motivates the development of stronger gradients for clinical MRI systems. A growing 

number of research scanners equipped with strong gradient systems have emerged in recent 

years (40, 41). Customized gradient coil inserts such as the Siemens SC72 gradient insert 

that is part of the Washington University-Minnesota consortium Human Connectome 

Project scanner are capable of generating maximum gradient strengths of 100 mT/m (41). 

The most recent generation of commercial scanners such as the Siemens Prisma and Philips 

Achieva 3T X-series (Quasar Dual gradient system) will feature integrated gradient systems 

with Gmax of 80 mT/m and maximum slew rates of 200 and 100 mT/m/s, respectively. Still, 

the gradient strengths currently available on most clinical scanners remain in the range of 

40–60 mT/m. Therefore, there is a great need for studies such as the one presented here that 

improve our understanding of how axon diameter estimates change at lower Gmax and will 

help to facilitate translation of microstructural imaging methods to the clinical arena.

5. Conclusion

We present the first comprehensive empirical study from a clinical MRI system equipped 

with 300 mT/m gradients that demonstrates the effect of gradient strength on in vivo axon 
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diameter estimates in humans. Our results suggest that an optimal q-space sampling scheme 

for estimating axon diameters should incorporate the highest possible gradient strengths. 

The smaller variance of axon diameter estimates at higher Gmax agrees with findings from 

recent simulations and ex vivo experiments (45). The trends in axon diameter and density 

seen in different regions of the corpus callosum emerged at higher Gmax > 145 mT/m and 

were consistent with those observed from histology (58, 59). The improvement in axon 

diameter and density estimates that we demonstrate from increasing Gmax will inform 

protocol development and is one reason to encourage the adoption of higher gradient 

systems for use in human scanners.
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Highlights

• The effect of gradient strength on in vivo human axon diameter estimates was 

studied.

• Experiments were performed on a novel 3 T MRI with maximum gradients of 

300 mT/m.

• Higher gradient strengths resulted in smaller, more robust axon diameter 

estimates.

• Shorter diffusion times resulted in smaller axon diameter estimates.
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Figure 1. 
Posterior distributions on (a–f) axon diameter a, (g–l) restricted fraction fr, (m–r) CSF 

fraction fcsf, and (s–x) hindered diffusion coefficient Dh from a representative voxel in the 

body of the corpus callosum for data from subject 1 acquired at different Gmax and q: (a, g, 
m, s) data set 1 (Gmax = 77 mT/m); (b, h, n, t) data set 2 (Gmax = 145 mT/m); (c, i, o, u) 
data set 3 (Gmax = 212 mT/m); (d, j, p, v) data set 4 (Gmax = 293 mT/m); (e, k, q, w) data 

set 5 (high q values); and (f, l, r, x) data set 8 (all data). The mean axon diameter, restricted 

fraction, CSF fraction, and hindered diffusion coefficient for each histogram is indicated by 

the green x along the x-axis and numerical value at the top right of each histogram. The bin 

size was set to 2 µm for the axon diameter estimates in (a) and (b) and 0.8 µm for the axon 

diameter estimates in (c), (d), and (e); 0.05 for the restricted fraction estimates in (g–l); 0.02 

for the CSF fraction estimates in (m–r); and 0.025 µm2/ms for the hindered diffusion 

coefficient estimates in (s–x).
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Figure 2. 
Effect of Gmax and q on mean axon diameter estimates in all three subjects. Mean and 

standard deviation of axon diameter estimates for data sets 1–5 and 8 within the genu, body, 

and splenium ROIs in the midline sagittal slice of the corpus callosum for (a) subject 1, (b) 
subject 2, and (c) subject 3. (Insets) Delineation of ROIs placed in the genu, body, and 

splenium of the midline sagittal slice of the corpus callosum overlaid on representative b = 0 

images for each subject.
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Figure 3. 
Effect of diffusion time Δ on mean axon diameter estimates in all three subjects. Mean and 

standard deviation of axon diameter estimates for data sets 6–8 within the genu, body, and 

splenium ROIs in the midline sagittal slice of the corpus callosum for (a) subject 1, (b) 
subject 2, and (c) subject 3.
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Figure 4. 
Voxel-wise estimates in the midline sagittal slice of the corpus callosum of subject 1 for (a–
f) axon diameter, (g–l) restricted fraction, (m–r) CSF fraction, and (s–x) axon density for 

different Gmax, high q and all data (data sets 1–5 and 8). The voxel-wise axon diameter a, 

restricted fraction fr, and CSF fraction fcsf values represent the means of the posterior 

distribution on a, fr, and fcsf, respectively. The axon density represents the restricted fraction 

weighted by the cross-sectional area calculated from the mean axon diameter (23).
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Figure 5. 
Plots of the ROI-averaged signal in the genu, body, and splenium from the midline sagittal 

corpus callosum in subject 1 for different q and Δ listed in the legend. The solid lines 

represent the predicted signals from the fitted model. All measurements were normalized by 

the corresponding estimate of S0 obtained at b = 0.
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