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Abstract

Incorporating time-dependent covariates into tree-structured survival analysis (TSSA) may result 

in more accurate prognostic models than if only baseline values are used. Available time-

dependent TSSA methods exhaustively test every binary split on every covariate; however, this 

approach may result in selection bias towards covariates with more observed values. We present a 

method that uses unbiased significance levels from newly proposed permutation tests to select the 

time-dependent or baseline covariate with the strongest relationship with the survival outcome. 

The specific splitting value is identified using only the selected covariate. Simulation results show 

that the proposed time-dependent TSSA method produces tree models of equal or greater accuracy 

as compared to baseline TSSA models, even with high censoring rates and large within-subject 

variability in the time-dependent covariate. To illustrate, the proposed method is applied to data 

from a cohort of bipolar youth to identify subgroups at risk for self-injurious behavior.
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1. Introduction

Tree-structured survival analysis (TSSA) recursively identifies and executes binary splits on 

a sample to create covariate-based subsamples with more similar survival outcomes. One 

advantage of TSSA over other survival methods such as the Cox proportional hazards model 

is that TSSA provides clinically meaningful covariate cutoff values. However, one 

disadvantage of TSSA thus far is that there has been limited research on methods for 

including time-dependent covariates. Many covariate values change over the course of 

follow-up, and the incorporation of these updated measurements in a TSSA model may lead 

to more meaningful and accurate prognostic groups.

The use of updated measurements in TSSA is particularly relevant in biomedical 

applications. For example, when following a youth with bipolar disorder over time, it is 

important to repeatedly evaluate whether they are at risk for a suicide attempt so that 

medication and psychosocial treatments can be administered accordingly. Being in a 
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depressed mood state is a known predictor for a suicide attempt [1]. However, because 

bipolar disorder is specifically characterized by changing mood states, a bipolar youth's 

mood state measured only at baseline is not likely to be a useful predictor during follow-up. 

Incorporating time-dependent mood information into TSSA could allow researchers to more 

accurately identify which youths with bipolar disorder are at risk for a suicide attempt.

1.1. Tree Modeling with Baseline Covariates

Traditional tree-structured methods perform an exhaustive search over all binary splits on all 

variables to identify the optimal split. The earliest work in this area was performed by 

Morgan and Sonquist [2]. Breiman et al. [3] popularized the model through their statistical 

program and unified framework, CART. Methods for survival outcomes within this 

framework were proposed by Gordon and Olshen [4], Segal [5], David and Anderson [6], 

LeBlanc and Crowley [7, 8], and Ahn and Loh [9], among others. Typically, these trees are 

first grown to their maximum size and then pruning algorithms based on cross-validation are 

used to find the “right-sized” tree.

One problem with exhaustively searching all possible splits is that it can be biased towards 

selecting variables with more observed values [10]. This means that a noisy covariate, which 

naturally has more values on which to split, could be selected over a less noisy covariate that 

is actually more informative [11]. To solve this problem with fixed-time covariates, several 

researchers, including LeBlanc and Crowley [8] and Jenson and Cohen [12], suggested the 

use of permutation or randomization tests. These types of tests produce an unbiased p-value 

that can be compared across covariates of different scales.

Hothorn et al. [10] embedded many permutation-based methods for unbiased baseline 

variable selection into a larger framework called Conditional Inference, which is rooted in 

the asymptotic theory of permutation tests developed by Strasser and Weber [13]. At each 

node, a global null hypothesis test of independence is used to determine whether there is an 

association between the outcome and the set of covariates. This global hypothesis test 

controls for overfitting and thus eliminates the need for complicated pruning algorithms. If 

the global null hypothesis of independence is rejected, the variable with the strongest 

association with the outcome (i.e., the smallest p-value) is selected and used to identify a 

binary cut-point to divide the node. Since these p-values are calculated based on permutation 

tests, they are not impacted by the original scale of the variable. Thus, they provide unbiased 

variable selection for the tree model.

1.2. Existing Time-Dependent TSSA Methods

Although methods for baseline TSSA are plentiful, only a handful of time-dependent TSSA 

methods have been proposed. Bacchetti and Segal [14] and Huang et al. [15] developed 

time-dependent TSSA methods that perform an exhaustive search over all possible binary 

splits on all covariates to identify the optimal split at each node. These methods are based on 

the two-sample rank statistic and piecewise exponential survival distribution, respectively. 

Bertolet and Brooks [16] proposed the use of a time-varying Cox model to select a binary 

covariate to split each node.
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When time-dependent covariates are included in a TSSA model, there must be a method for 

handing subjects whose observations fall into different nodes throughout follow-up. 

Specifically, for a binary split C that divides a covariate into two disjoint subsets XL and XR, 

a single subject's repeatedly measured observations may fall into XL at some time points and 

into XR at other time points. Existing TSSA methods [14, 15, 16] handle this situation by 

dividing a subject's observations into two “pseudo-subjects”. The pseudo-subject with 

covariate values in XL is sent to the left node, hL, and the pseudo-subject with covariate 

values in XR is sent to the right node, hR. Additional details on the creation of pseudo-

subjects are provided by Bacchetti and Segal [14].

If a time-dependent covariate changes monotonically over time, a subject's observations can 

switch nodes at most once. This results in each pseudo-subject being assigned data from a 

consecutive set of time points. However, if a time-dependent covariate changes non-

monotonically over time, a subject's observations can switch between the left and right child 

node multiple times throughout follow-up. This results in each pseudo-subject being 

assigned a set of non-consecutive time points. There has been limited research on the impact 

of non-monotonically changing time-dependent covariates in TSSA, even though they are 

commonly observed in practice.

1.3. Proposed Time-Dependent TSSA Method

The existing time-dependent TSSA methods [14, 15, 16] provide an important 

methodological foundation. However, additional work is required to more confidently use 

time-dependent TSSA in practice. First, none of the available methods consider selection 

bias towards covariates with more possible split points. Since a time-dependent covariate 

will tend to naturally have more possible split points than its baseline counterpart 

(particularly if it is continuous), this is a critical next step for time-dependent TSSA. Second, 

to our knowledge, the accuracy of time-dependent TSSA methods with non-monotonically 

changing covariates has yet to be assessed through simulation studies. These types of 

covariates add complexity to the tree model and their impact needs to be investigated.

With this motivation, we present a novel TSSA method that incorporates both time-

dependent and baseline covariates. Unlike previous time-dependent TSSA methods, the 

proposed method utilizes the general Conditional Inference algorithm presented by Hothorn 

et al. [10]. Thus, we use permutation tests to perform a global null hypothesis test of 

independence at each node and to select the variable with the strongest association with the 

outcome. However, our time-dependent TSSA approach diverges from the Conditional 

Inference framework because, unlike the other methods incorporated into this framework, 

our proposed permutation test is not yet embedded within Strasser and Weber's asymptotic 

theory of permutation tests [13].

Similar to existing time-dependent time-dependent TSSA methods, the proposed method 

uses pseudo-subjects to accommodate time-dependent covariates. However, unlike the 

existing research, which focused on binary and/or monotonically changing time-dependent 

covariates, we focus on continuous, non-monotonically changing time-dependent covariates 

in both our simulation and application. This is because continuous, non-monotonically 

changing time-dependent covariates are common in practice and present a challenge with 
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respect to both variable selection bias and the impact of pseudo-subjects. However, the 

proposed methods can also be applied to non-continuous and/or monotonically changing 

time-dependent covariates.

The proposed time-dependent TSSA methodology is described in sections 2, 3, and 4. 

Section 2 provides an overview of the underlying model and the tree-growing procedure, 

section 3 presents the novel permutation test for time-dependent covariates, and section 4 

describes how to use the proposed permutation test to fit a time-dependent TSSA model. In 

section 5 we present a simulation study that assesses the method's accuracy under a variety 

of data scenarios, including different levels of within-subject variability and censoring. In 

section 6 we apply the proposed method to data from a cohort of bipolar youth to identify 

subgroups at risk for self-injurious behavior. Finally, in section 7 we discuss conclusions, 

limitations, and future directions.

2. Overview of the Tree-Growing Procedure

2.1. Notation and Underlying Model

Each subject i = 1, . . . , N is observed at times Ti = {tj : j = 1, . . . , Ji}, where Ti ⊆ T = {tj : j 

= 1, . . . , J}. That is, T is the set of all J time points at which each individual i may be 

observed. Covariates Xijk, k = 1, . . . , K, are observed for each subject i at each tj in Ti. A 

vector of observations across all i, j, and/or k is denoted by replacing the respective subscript 

with a “.”, e.g., Xi.k = [Xi1k, . . . , XiJik]·. Thus, the kth covariate observed across all i and tj is 

denoted by X..k = [X′
1.k, . . . , X′

N.K]′. If covariate k is measured at baseline only, then X.jk = 

X.1k for all j.

Each subject also has an event indicator δij at each of their Ji time points. At times t1, . . . , 

tJi−1, δij = 0 because the survival outcome has not yet occurred. At time tJi, the subject either 

has a survival event, δiJi = 1, or is censored, δiJi = 0. We assume that the censoring time is 

independent of the covariate values. The survival outcome for subject i is denoted by Yi = (Ti 

= tJi, δiJi). The survival outcome for all N subjects is denoted by Y = (T, δ).

The proposed model assumes that the set of observations {Xij. : i = 1, . . . , N, j = 1, . . . , J}, 

can be partitioned into H disjoint subsamples, or “terminal nodes” through a series of binary 

questions of the general form “Is Xijk ∈ XL?”. Each terminal node h is associated with a 

hazard rate λh, where h = 1, . . . , H. However, because an individual's covariate values may 

change over time, the terminal node to which they are assigned (and by extension, their 

hazard rate) may also change over time. The Li time points at which subject i switches 

terminal nodes are denoted by . The cumulative hazard function for an 

individual i at time tj given their time-dependent covariate values observed up to time tj is 

defined as
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where λi(tj) is the hazard rate for subject i at time tj,  denotes the time-dependent 

covariates for subject i measured through time tj, and .

When fitting a tree model, the aim is to identify the specific set of binary questions which 

lead to the H correct terminal nodes. This requires a method for identifying the correct 

covariate and cut-point on the full sample and then continuing this process recursively on 

each subsample until the best tree size has been obtained. After fitting the tree model, the 

terminal nodes can be summarized in order to characterize their survival distributions.

2.2. Algorithm

We adopt the general algorithm presented by Hothorn et al. [10] to identify the specific set 

of binary questions which lead to the H correct terminal nodes. Beginning at a node h, the 

steps in this algorithm are outlined below. Details of each step are provided in the 

subsequent sections.

1. Test the global null hypothesis of independence between the set of K covariates and 

the survival outcome Y using the methods proposed in section 3. If the null 

hypothesis is rejected, continue to step 2. Otherwise, do not split the node.

2. Select the covariate X..k* associated with the smallest significance level. Then 

identify the best binary split C* on X..k* . This split divides X..k* into two disjoint 

subsets,  and . Execute the split C* to create a left child node 

 and a right child node hR containing all other 

observations. Details of this step are presented in section 4.

3. Repeat steps 1 – 2 on nodes hL and hR.

3. Testing the Global Null Hypothesis of Independence at Each Node

At a node h, the global null hypothesis of independence assumes that the survival 

distribution does not depend on the covariate values. To test this global null hypothesis, we 

use permutation tests to obtain a significance level for each of the covariates and then 

combine these results to obtain an overall significance level. Therefore, in this section we 

first briefly review permutation tests for survival outcomes with continuous and non-

continuous baseline covariates, as proposed by Sun and Sherman [17]. Next, we present 

novel permutation tests adapted for survival outcomes with continuous and non-continuous 

time-dependent covariates. Finally, we discuss how to combine the individual permutation 

test results to obtain a significance level for the global null hypothesis of independence. We 

note that the permutation tests described in this section are repeated at each node, and thus, 
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the quantities that are used will differ for each node. However, for simplicity we suppress 

this notation.

3.1. Permutation Test for Baseline Covariates (Sun and Sherman [17])

For a baseline categorical variable X.1k with Mk predefined strata, the permutation statistic is 

calculated as

(1)

over m = 1, . . . , Mk and j′ = 1, . . . , J, where djm denotes the number of events at tj in 

stratum m, rjm denotes the number in the risk set at tj in stratum m, and wjm is a weight 

function selected to emphasize early or late events. Similarly, dj is the number of events over 

all strata at tj and rj is the size of the risk set over all strata at tj.

For an ordered baseline variable X.1k, first create Mk quantile-based strata. Ideally, each 

stratum should have at least 30 observations for sufficient power [17]. The permutation 

statistic is calculated as

(2)

over m′ = 1, . . . , Mk and j′ = 1, . . . , J, where dj, rj, djm, rjm, and wjm are defined as in 

equation (1). The subscripts on Sk and Uk indicate only that their values are expected to 

differ depending on the covariate k.

If there is no association between X.1k and Y , the permutation statistic is not expected to 

differ from the same statistic computed from a data set for which the N observations in X.1k 

have been permuted. Thus, by developing a permutation distribution for the statistic, one has 

a standard by which to judge its extremeness and calculate a significance level. To develop 

this permutation distribution, first create P permutations of X .1k, denoted , p = 1, ..., P. 

Then calculate a permutation statistic  or  from each  using equation (1) or (2).

After the permutation distribution has been developed, the significance level of the 

relationship between Y and a continuous baseline covariate X.1k is calculated as

(3)

If X.1k is a categorical covariate, the statistics Sk and  in equation (3) are replaced with 

Uk and , respectively.
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3.2. Permutation Test for Continuous Time-Dependent Covariates

It is straightforward to extend the statistic Sk in equation (2) to accommodate a continuous 

time-dependent covariate X..k by allowing the risk sets rj and rjm to change at each tj. 

However, developing the permutation distribution for Sk with a time-dependent covariate is 

more challenging because: 1) the observations are clustered within each subject, 2) within 

each subject the observations may follow an individual trajectory, and 3) each subject may 

have a different number of observations.

Motivated by a method proposed by Field and Welsh [18] for bootstrapping clustered data, 

our strategy is to permute the random effects and residuals estimated from a mixed-effects 

model in order to predict permutations for each Xijk. To accomplish this, we assume that 

each Xi.k, i = 1, . . . , N, follows an individual trajectory

(4)

where β is a q(1) × 1 vector of fixed effects,  is a Ji × q(1) design matrix linking β to Xi.k, 

bi is a q(2) × 1 vector of random effects distributed as Nq(2) (0, ∑), and  is a Ji × q(2) 

design matrix linking bi to Xi.k. Each  is independent of the random effects 

bi. The specific model structure in equation (4) can vary for each covariate k; however, this 

notation has been suppressed for simplicity.

At each node, the model in equation (4) is fit using standard ML or REML methods for all N 

subjects. We use the lme function from the nlme package in R [19, 20]. From the results, 

extract the vector of marginal parameter estimates , the set of N vectors of empirical best 

linear unbiased predictions , and the set of  conditional residuals .

Create P permutations of the N vectors in the set . The vector of random effects 

associated with the pth permutation for subject i is denoted by . Independently, create P 

permutations of the  residuals in the set . The residual from the pth permutation 

for subject i at tj denoted by . Then, construct p permutation replicates of each Xijk as 

from the pth permutation for subject i at tj is denoted by . Then, construct P paermutation 

replicates of each Xijk as

(5)

where  and  are the jth rows of  and , respectively. This produces 

permutations , p = 1,...,P.
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To develop the permutation distribution for Sk, a permutation statistic  is calculated from 

each  using equation (2). The significance level of the relationship between Y and X..k is 

then calculated using equation (3).

3.3. Permutation Test for Non-Continuous Time-Dependent Covariates

For an ordered, non-continuous time-dependent covariate X..k, the statistic Sk in equation (2) 

is calculated using the Mk predefined ordered categories. If there are not enough 

observations in each predefined category, some categories could be combined to create 

fewer strata. For categorical time-dependent covariates, the statistic Uk in equation (1) is 

calculated.

We assume that that each non-continuous Xi.k follows a generalized linear mixed effects 

model,

(6)

where g(·) links the conditional mean of Xi.k to the linear predictor. In this linear predictor, β 

is a q(1) × 1 vector of fixed effects,  is a Ji × q(1) design matrix linking β to g{E(Xi.k|bi)}, 

bi is a q(2) × 1 vector of random effects distributed as Nq2 (0,Σ), and  is a Ji × q(2) design 

matrix linking bi to g{E(Xi.k|bi)}. The conditional variance of Xi.k is given by v{E(Xi.k|bi)}φ, 

where v(·) is a known variance function and φ is a dispersion parameter [21]. The specific 

model structure in equation (6) can vary for each covariate k; however, this notation has 

been suppressed for simplicity.

At each node, fit the model in (6) using all N subjects. Then extract the vector of marginal 

parameter estimates  and the set of N vectors of estimated random effects . Create P 

permutations of the N vectors in the set , where the vector of random effects associated 

with the pth permutation for subject i is denoted by . Next, create permutations

where  and  are defined as in equation (5). Finally, to get permutations of Xijk, 

sample each  from its distribution with mean , considering the dispersion 

parameter φ if necessary. For example, if Xijk is binary (φ = 1), sample 

. Because the conditional variance is defined as a function 

of the conditional mean, the residual does not need to be incorporated separately as was 

done for continuous .
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To develop the permutation distribution for Sk or Uk, a permutation statistic  or  is 

calculated from each  using equation (2) or (1), respectively. The significance level of 

the relationship between Y and X..k is calculated as shown in equation (3).

3.4. Combining Individual Permutation Test Results for the Global Null Hypothesis Test

We use a method proposed by Efron and Tibshirani [22] to test the global null hypothesis of 

independence between Y and the set of K covariates while accounting for multiple 

comparisons. This method provides the correct level of significance for a set of K 

permutation tests by comparing φk* = mink (φk) to its own permutation distribution.

To implement this method in TSSA, first apply a permutation test to each covariate under 

consideration for splitting the node. For each covariate k = 1, . . . , K, this produces a 

significance level φk, a test statistic Sk, and a permutation distribution , p = 1, . . . , P . 

(For simplicity of notation in this section, we generically use Sk to denote statistics from 

either continuous or categorical covariates.) Then, compute the proportion of the permuted 

statistics at least as extreme as each ,

Next, compute the permutation replicates for φk*,

Finally, compute the significance of the global null hypothesis test,

If φ is less than the selected type-1 error rate α, the global null hypothesis is rejected and the 

node is allowed to split.

Because the global null hypothesis at each node is adjusted for multiple comparisons, 

including too many unrelated covariates can mask the presence of a related covariate. For 

this reason, it is useful to carefully consider the set of covariates used in the proposed tree 

model. An exploratory approach for developing a pre-selected set of covariates is to first fit 

a tree model with a large α. Then, fit a second tree model using a more standard α and only 

include the covariates that entered into the first model. An alternative approach is to use 

clinical and research evidence to carefully specify an a priori hypothesis regarding a set of 

covariates that is expected to be related to the outcome and then grow the tree using only 

this set of covariates. We use the latter approach in the illustration in section 6.
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4. Detecting and Executing the Optimal Binary Split

If the global null hypothesis is rejected at a node, the covariate associated with φk* = mink 

(φk) is selected and denoted by X..k*. It is possible for two or more covariates to have the 

same significance level, resulting in uncertainty regarding which variable to select. Most 

commonly, this will occur when the true significance levels for two or more covariates are 

less than 1/P , thus making it impossible to differentiate among them. Increasing P can 

provide more sensitivity for distinguishing among the tied covariates; however, the tradeoff 

is that it increases computation time in the tree algorithm. If two or more covariates remain 

tied even with a very large P , one could select multiple covariates as having equally strong 

associations with the outcome and then identify the best split out of all selected covariates.

After identifying the covariate X..k* that has the strongest association with the outcome, the 

next step is to identify the best binary split on X..k*. We recommend a two-sample rank 

statistic in the Tarone-Ware family, such as the Log Rank statistic, because it is relatively 

straightforward to implement for both baseline and time-dependent covariates. Bacchetti and 

Segal [14] originally proposed the use of this splitting statistic for a time-dependent TSSA 

method that exhaustively searches all binary split on all covariates. We briefly summarize 

this method here, and refer the reader to Bacchetti and Segal [14] for additional details.

For each possible binary split C that divides X..k* into disjoint subsets XL and XR, calculate

where djL is the number of events among subjects with Xijk* ∈ XL at tj and the wj are 

weights. Setting wj = 1 for all j results in the Log Rank statistic. Under the null hypothesis of 

a non-informative cutoff value C, TW follows a hypergeometric distribution with

and

where rjL is the number of subjects at risk with Xijk* ∈ XL at tj, dj is the number of events at 

tj, and rj is the number of subjects at risk at tj. To accommodate time-dependent covariates, 

the risk sets are allowed to change at each time point [14].

The split C that produces the maximum absolute value TW statistic is denoted by C*. This 

split divides X..k* into disjoint subsets  and , thereby partitioning the sample into a left 
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child node  and a right child node hR containing all other 

observations. When X..k* is a time-dependent covariate, the observations for a subject i will 

be divided between hL and hR if there are some time points for which  and 

others for which . Observations from subject i sent to hL are indexed as pseudo-

subject iL; all other observations from subject i are sent to hR and indexed as pseudo-subject 

iR. At each tj, a subject i may exist in may exist in either hL or hR, but not both. Thus, the 

survival event can only contribute to a single child node [14].

5. Simulation Study

This simulation study assessed the accuracy of trees grown using the proposed time-

dependent TSSA method based on three levels of within-subject variability and three levels 

of censoring. After fitting each tree, we evaluated whether the correct covariate was selected 

to split each node and whether the cut-point was unbiased. We used an independent sample 

to determine whether the tree could accurately discriminate between two subjects with 

different survival outcomes. As a standard of comparison, we also fit trees that incorporated 

only baseline covariate values. All computing was performed in R.

5.1. Data Generation

For each of three levels of within-subject variability, , a continuous time-

dependent covariate was generated as , with bi ~ N(0, 20) and tj = 

0, . . . , 20. This resulted in intraclass correlations (ICCs) of .67, .50, and .33, corresponding 

to low, medium, and high within-subject variability, respectively. The ICC of .33 was 

selected to reflect the ICC of the “Percentage of Weeks in a Major Depressive Episode” 

time-dependent covariate from the Course and Outcome of Bipolar Youth (COBY) data 

presented in section 6. Although the maximum number of time points in the COBY study 

was 44, we used only 21 time points in the simulation study to shorten computational time. 

A fixed-time binary covariate X..2 was also generated by first sampling Xi12 ~ Bernoulli(.5) 

and then setting Xij2 = Xi12 for j = 2, . . . , 21. We included this binary covariate because the 

tree created with the COBY data split on a binary covariate and also because it emphasizes 

the utility of the proposed method with covariates measured on extremely different scales.

To generate the true event time T* (prior to any censoring), the simulated covariates X..1 and 

X..2 were first used to classify each subject's observations into a terminal node at each time 

point, as shown in Table 1. These hazard rates were selected so that the first split on Xij1 had 

a slightly larger hazard ratio than the second split on Xij2 and to ensure that data sets with 

10%, 30%, and 50% censoring could be created given the constraint of a maximum 

observed event time of 20 (the last time point at which the time-dependent covariate can be 

observed).

The time points at which subject i switches terminal nodes are denoted by . These 

terminal node switches divide the observation period into a series of discrete time domains 

, , ... . The corresponding ranges of 
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cumulative hazards over each domain are , 

, where λi(tj) represents the hazard for subject i at tj. The event time  is then generated for 

each i = 1, . . . , N based hazard distribution

where ti = − log(ui), with ui ~ Unif(0, 1) [23].

In the COBY data, some youth were censored at the end of the study observation period 

while others dropped out over the course of the study. To mimic this scenario, we generated 

the censoring distribution as Ci = Pi min(Gi, 20) + (1 − Pi)20, where Pi ~ Bernoulli(p) and 

Gi ~ Exp(.007). This resulted in approximately 10% censoring when p = 0, 30% censoring 

when p = .5, and 50% censoring when p = 1. The final observed survival time is denoted by 

.

For each of the nine data scenarios (three levels of censoring and three levels of within-

subject variability), 200 training and 200 testing data sets of N = 400 each were generated. 

This N was selected to reflect the COBY data. The relatively small number of simulations 

was a result of the computational intensity of the proposed methods.

5.2. Fitting and Evaluating the Tree Models

For each training data set, both a baseline tree and a time-dependent tree were fit. The 

baseline tree included only the baseline values of X..1 and the baseline covariate X..2. The 

time-dependent tree included the time-dependent covariate X..1 and the baseline covariate 

X..2. Although some tree simulations incorporate noise variables as competition, we included 

only the two relevant covariates because we have found that tree methods which require a 

global null hypothesis test at each node provide the most meaningful models when the set of 

covariates has been carefully selected a priori (see additional discussion in subsection 3.4). 

We wanted the simulation study to reflect this.

We used a linear mixed-effects model with only a fixed and random intercept to create each 

covariate's permutation distribution at each node. We set P = 1000 based on 

recommendations by Efron and Tibshirani [22], M = 5 based on simulations by Sun and 

Sherman [17], wjm = 1 for all j and m, and α = .05. We used the Log Rank statistic to select 

the optimal split and required at least 30 observations in each child node.
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To evaluate the structural accuracy of the models created using the training data, we 

calculated the proportion of trees that selected the correct covariate at the first split. 

Conditional on selecting the correct covariate at the first split, we calculated the bias of the 

cut-point at the first split and the proportion of trees that selected the correct covariate at the 

second split.

To evaluate the discriminative accuracy of the models, we used each baseline and time-

dependent tree created with training data to classify time-dependent observations from an 

independent testing data set. We then calculated the time-dependent Harrell's C 

discrimination index using the Kaplan-Meier survival estimates at each node [24, 25]. This 

statistic can be interpreted as a time-dependent AUC measure, with higher values indicating 

the model can more accurately discriminate between two subjects with different survival 

outcomes. If a model did not identify any splits, the time-dependent AUC was set to .5 to 

indicate that it could not provide any information for distinguishing between two subjects’ 

survival outcomes.

5.3. Results

Figure 1 shows the proportion of trees that selected the correct covariate at the first split. 

Regardless of the amount of censoring or within-subject variability, the proportion of time-

dependent trees that selected the correct covariate was estimated to be very high (between .

85 and 1). The baseline tree model performed better than the time-dependent tree model 

under 10% censoring and low within-subject variability. Under these specifications, the 

baseline value is likely to be highly predictive of the value observed at the time of the event, 

but without the added complexity of the time-dependent covariate. However, the accuracy of 

the baseline tree model dropped very rapidly with larger levels of censoring and within-

subject variability.

The bias of the selected cut-point at the first split is shown in Figure 2. The time-dependent 

trees had only a small estimated bias and had very tight confidence intervals, regardless of 

the level of censoring or within-subject variability. The baseline trees became more biased 

with larger confidence intervals as the within-subject variability increased. Because fewer 

baseline trees selected the correct covariate at the first split, there were fewer trees with 

which to estimate the bias of the cut-point. Thus, the wider confidence intervals for the 

baseline trees may reflect these smaller sample sizes.

The proportion of trees that correctly selected the binary baseline covariate at split 2, 

conditional on having also selected the correct covariate split 1, is shown in Figure 3. Both 

the baseline and time-dependent trees were less likely to select the correct covariate at split 2 

than at split 1. However, for the time-dependent trees, censoring and within-subject 

variability had a much greater impact at split 2 than at split 1. One explanation for this 

differential pattern is that the pseudo-subjects created at split 1 diminished the ability of the 

time-dependent tree model to select the correct covariate at subsequent splits. Another 

explanation is that the time-dependent covariate remained highly predictive even after the 

first split, and thus, the time-dependent trees continued to select it over the correct binary 

covariate.
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Figure 4 shows the time-dependent AUC. Note that the scale in this figure ranges only 

from .5 − 1. The time-dependent trees accurately discriminated between new subjects with 

different survival outcomes, with estimated AUCs ranging from .71 to .78. These values are 

all above the cutoff for a “large” effect size [26]. The relatively large AUC values at higher 

levels of censoring and within-subject variability (where the time-dependent trees were not 

likely to select the correct covariates at both splits) highlights an important feature of tree 

models. That is, even if the structure of the tree is not completely accurate, the model can 

still have good discriminatory abilities. The baseline trees were significantly worse at 

discriminating between subjects with different survival outcomes, with estimated AUCs 

ranging from .52 to .77. Overall, these findings indicate that incorporating time-dependent 

information can substantially increase the accuracy and clinical utility of TSSA models, 

especially with relatively large within-subject variability and high censoring rates.

6. Time to Self-Injury in Youth with Bipolar Disorder

The data used in this illustration are from a naturalistic, longitudinal study called “Course 

and Outcome of Bipolar Youth” (COBY) [27]. In our sample from this study, 386 youth 

with bipolar disorder were followed for up to 11 years. During this time, they had regular 

clinic assessments (approximately every 6 months) to retrospectively capture weekly data 

including their mood states (depressed, manic/hypomanic, or mixed), time spent in 

psychosocial inpatient or outpatient treatment, substance use, and any self-injury.

Previously, Goldstein et al. [1] used a time-dependent Cox model to explore factors 

associated with suicide attempts (self-injury with suicidal intent and/or lethality) using the 

COBY data. Because the weekly retrospective mood, treatment, and substance use data may 

be subject to recall bias and strong autocorrelation, they were summarized within 8-week 

intervals which were then used as time-dependent covariates in the Cox model. Results 

showed that having first-degree relatives with a mood disorder, spending more time in a 

depressed mood state, spending more time with mixed depression and mania/hypomania 

symptoms, spending more time with a substance use disorder, and spending less time in 

psychosocial treatment were all associated with increased risk of a suicide attempt. The use 

of 6- or 12-week summary intervals resulted in similar inferences.

To extend this work, our aim was to apply the proposed time-dependent TSSA method to 

the COBY data to identify subgroups with different levels of risk for self-injurious behavior. 

We focused on all incidents of self-injury instead of only those self-injurious behaviors with 

suicidal intent and/or lethality to increase the percentage of events (18% of youth had self-

injuries that were rated as suicide attempts, while 33% of youths had any self-injury). Prior 

to fitting the tree model, we examined plots of the time-dependent covariates created based 

on 8- and 12-week intervals. The covariates based on 12-week intervals could be better 

approximated using a linear model and they also resulted in residuals that were more 

normally distributed. Since Goldstein et al.[1] obtained similar results when using 8- or 12-

week intervals, we opted to use the covariates based on 12-week intervals for our analyses.
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6.1. Model Fitting

We fit a time-dependent TSSA model that included a baseline indicator variable for whether 

the youth had any first-degree family members with a mood disorder and four time-

dependent variables: 1) percentage of weeks spent in a depressed mood state, 2) percentage 

of weeks with mixed symptoms, 3) percentage of weeks with a substance use disorder, and 

4) percentage of hours in psychosocial treatment. For comparison, we also fit a time-

dependent Cox model and a baseline TSSA model. The time-dependent Cox model included 

the binary baseline covariate and continuous versions of the time-dependent covariates. The 

baseline TSSA model included the binary baseline covariate and only the baseline values of 

the time-dependent covariates (i.e., the observations from the first 12-week interval).

To develop a permutation distribution for each covariate at each node in the time-dependent 

TSSA model, we used linear mixed-effects models that incorporated only fixed and random 

intercept terms. This model was selected to provide a simpler illustration and also because 

COBY was a naturalistic study where youth were not necessarily expected to change 

systematically over time (this was also confirmed visually through plotting the data). Other 

TSSA model parameters were set equal to those used in the simulation study in section 5.

6.2. Results

The time-dependent TSSA model is shown in Figure 5. All covariates previously found to 

be significant for predicting self-injury by Goldstein et al. [1] entered into the time-

dependent TSSA model, confirming the relevance of these particular time-dependent and 

baseline covariates. Terminal nodes 1, 2, and 3 were associated with the lowest risk of self-

injury. Youth would be classified into one of these three nodes if they spent ≤ 9.09% of the 

past 12 weeks in a major depressive episode, ≤ 16.15% of the past 12 weeks with mixed 

mood symptoms, and ≤ 83.33% of the past 12 weeks with a substance use disorder. 

Terminal nodes 4, 5, and 6 were associated with the highest risk of self-injury. Youth would 

be classified into one of these nodes if they spent > 9.09% of the past 12 weeks in a major 

depressive episode or > 16.67% of the past 12 weeks with mixed symptoms or > 83.33% of 

the past 12 weeks with a substance use disorder.

When using only the baseline values of the time-dependent covariates, the global null 

hypothesis at the root node was not rejected (p = .082) so no splits occurred. Upon 

examining the individual permutation tests of the baseline covariates, the percentage of time 

spent in a mixed mood state during the first 12 weeks was significant (p = .032) and having 

a first degree relative with a mood disorder was also significant (p = .01). However, because 

the other three covariates had higher non-significant p-values, the global null hypothesis 

accounting for multiple comparisons was not rejected.

The results from the time-dependent Cox proportional hazards model are shown in Table 2. 

Spending more weeks in a major depressive mood state, spending more weeks with a 

substance use disorder, and having a first degree relative with a mood disorder were 

associated with a higher risk of self-injury. Neither the percent of weeks spent in a mixed 

mood state nor the percent of time in psychosocial treatment were significant predictors.
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The side-by-side comparison of the time-dependent Cox proportional hazards model and the 

time-dependent TSSA model emphasizes the benefits and the disadvantages of each. The 

time-dependent TSSA model is beneficial because it suggests specific cutoff values that 

indicate whether a youth is at higher or lower risk and also produces a simple, clinically 

meaningful algorithm for determining a new youth's risk group at any time across follow-up. 

Conversely, a benefit of the Cox model is that it quantifies the extent to which higher or 

lower values of each time-dependent covariate will change the risk of self-injury, which can 

also be meaningful. Thus, both models provide useful – but different – information on the 

impact that a particular covariate or set of covariates may have on a patient's survival.

Unlike the Cox model, the time-dependent TSSA model can easily accommodate more 

complex covariate relationships. Based on the Cox model results in Table 2 alone, it may 

appear that only three of the five covariates are meaningful for predicting time to self-injury. 

However, the time-dependent TSSA model reveals that the two variables which were not 

significant in the Cox model are actually predictive in some covariate-defined subsets of the 

data.

We compared the predictive abilities of the time-dependent Cox and TSSA models using the 

time-dependent AUC. The time-dependent TSSA model had an AUC of only .59, while the 

time-dependent Cox model had a much higher AUC of .71. These AUCs would likely be 

reduced if a second, independent sample (i.e., a sample not used to grow the tree) had been 

used for their estimation. The low AUC for the time-dependent TSSA model is not 

unexpected if one extrapolates the results of the simulation study, which was based on a 

much simplified version of the COBY data. Compared to the data used in the simulation, the 

actual COBY data used in this illustration had over double the number repeated measures, a 

larger proportion of censoring, and more time-dependent covariates. Thus, although the 

COBY data are ideal for highlighting the usefulness of the time-dependent TSSA model 

relative to the baseline TSSA model, the features of this data set provide a challenge with 

respect to the proposed model's predictive accuracy.

7. Discussion

This manuscript presents novel methodology for incorporating time-dependent covariates 

into tree-structured survival analysis (TSSA), including a new permutation test for time-

dependent covariates. Unlike currently available methods, the proposed method reduces 

variable selection bias by selecting the covariate on which to split based on unbiased 

significance levels from permutation tests. In addition, pruning the tree is not required with 

the proposed method because a node only splits when the test of the global null hypothesis is 

rejected. This simplifies the tree growing procedure and also provides a level of significance 

for each split. Prior to our work, research in time-dependent TSSA focused primarily on the 

simpler yet somewhat impractical scenario of monotonically changing time-dependent 

covariates. However, the simulation studies and illustration presented herein show that the 

proposed time-dependent TSSA method performs well even with non-monotonically 

changing time-dependent covariates.
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Although the proposed method has many benefits, there are also limitations to be 

considered. In particular, the proposed method is very computationally intensive because it 

requires a permutation test for each covariate at each node. The computational intensity is 

amplified when the data have a large number of subjects and/or a large number of 

observations per subject. There are also some restrictions on when the method would be 

appropriate. The censoring distribution should be independent of the covariates, and it must 

be reasonable to assume that the tree model would be constant over time. The illustration we 

presented was based on an observational study where the sample was not expected to change 

systematically, and thus, we believed that the assumption of a constant tree model over time 

was realistic. However, this may not be true for all studies.

The proposed method uses a mixed-effects model as a tool to create permutations for a time-

dependent covariate X..k. Therefore, the permutation test is limited by the accuracy of the 

model used to predict the time-dependent covariate. In the simulation and application 

sections, we modeled each X..k with only fixed and random intercept terms in order to 

present straightforward examples. In practice, however, it is possible that additional fixed or 

random effects may be required to accurately model X..k. In particular, time is commonly 

included as fixed and/or random effect when fitting a mixed-effects model. It is important to 

note that when additional fixed or random effects such as time are included in the model, the 

permutation test is actually assessing the strength of the relationship between Y and X..k after 

adjusting for these other variables. Somewhat more complex is the scenario where clinical 

and/or demographic variables are required to accurately model the time-dependent 

covariates, because it is possible that these variables might also be considered to be 

predictors in the tree model. Further research must be performed in order to investigate the 

robustness of the proposed tree model when 1) the mixed-effects model requires additional 

covariates and/or is misspecified; and 2) assumptions of the mixed-effects model (e.g., 

normally distributed residuals) are not met.

There are a number of additional aspects of the model that need to be evaluated through 

further research. First, the number of strata required for the time-dependent permutation test 

should be investigated. More strata provide greater power to detect non-proportional 

hazards. However, if too many strata are used, there may not be enough unique observations 

in each strata at nodes further down the tree. Second, based on the low AUC observed in the 

COBY illustration, an important step will be to asses the proposed model with multiple 

time-dependent covariates and longer follow-up times. Third, the model should be assessed 

in the presence of informative censoring, which may be common in survival analysis. 

Finally, the proposed time-dependent TSSA method is based on permutation testing, which 

has previously been shown by Hothorn et al. [10] to produce unbiased baseline variable 

selection in tree models. Further research and simulation studies should be performed in 

order to prove the proposed permutation test is consistent and to quantify the extent to which 

the proposed time-dependent TSSA method reduces variable selection bias.
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Figure 1. 
Proportion (95% CI) of 200 trees that selected the correct covariate for split 1. This node 

split on a continuous, time-dependent covariate. Solid line: time-dependent tree. Dashed 

line: baseline tree.
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Figure 2. 
Mean bias (95% CI) of the selected cut-point at split 1 among trees with the correct variable 

selected at split 1. Solid line: time-dependent tree. Dashed line: baseline tree.
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Figure 3. 
Proportion (95% CI) of trees that selected the correct variable for split 2, conditional on 

having selected the correct variable for split 1. Solid line: time-dependent tree. Dashed line: 

baseline tree.
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Figure 4. 
Time-dependent discrimination index (AUC) and 95% CI based on an independent sample 

of N = 200. A value of 1 represents perfect discrimination between individuals with different 

survival outcomes; a value of .5 is equivalent to discrimination based only on chance. Note 

that the scale ranges only from .5 to 1. Solid line: time-dependent tree. Dashed line: baseline 

tree.
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Figure 5. 
Time-dependent tree-structured survival analysis model. Each terminal node of the tree 

shows estimated time to 50% events and 25% events, along with 95% confidence intervals. 

For continuous variables, observations ≤ the cut point are sent to the left child node. For the 

categorical variable, observations with no first degree relatives with a mood disorder are 

sent to the left child node. Abbreviations: % MDE = % Weeks in a major depressive 

episode, % MIX = % Weeks with mixed mood symptoms, % SUD = % Weeks with a 

substance use disorder, % PST = % Hours spent in inpatient or outpatient psychosocial 

treatment, FDRs with Mood dx = First degree relatives with a history of mood disorders.
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Table 1

Terminal nodes used in the simulation study.

Terminal Node Cut Points Hazard Rate

1. Xij1≤ 50, Xij2 = 0 λi(tj) = .007

2. Xij1 ≤ 50, Xij2 = 1 λi(tj) = .07

3. Xij1 > 50 λi(tj) = .5
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Table 2

Results from the Cox proportional hazards model for time to self injury.

Covariate β Exp(β) SE(β) z p-value

First Degree Relative with a Mood Disorder 0.550 1.733 0.251 2.19 .029

% Weeks in Major Depressive Mood State 0.019 1.019 0.003 6.40 < .001

% Weeks in Mixed Mood State −0.001 0.999 0.004 −0.390 .700

% Weeks with Substance Use Disorder 0.006 1.006 0.002 2.22 .026

% Hours in Psychosocial Treatment −0.007 0.993 0.006 −1.23 .220
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