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Abstract

We study the variability of predictions made by bagged learners and random forests, and show 

how to estimate standard errors for these methods. Our work builds on variance estimates for 

bagging proposed by Efron (1992, 2013) that are based on the jackknife and the infinitesimal 

jackknife (IJ). In practice, bagged predictors are computed using a finite number B of bootstrap 

replicates, and working with a large B can be computationally expensive. Direct applications of 

jackknife and IJ estimators to bagging require B = Θ(n1.5) bootstrap replicates to converge, where 

n is the size of the training set. We propose improved versions that only require B = Θ(n) 

replicates. Moreover, we show that the IJ estimator requires 1.7 times less bootstrap replicates 

than the jackknife to achieve a given accuracy. Finally, we study the sampling distributions of the 

jackknife and IJ variance estimates themselves. We illustrate our findings with multiple 

experiments and simulation studies.
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1. Introduction

Bagging (Breiman, 1996) is a popular technique for stabilizing statistical learners. Bagging 

is often conceptualized as a variance reduction technique, and so it is important to 

understand how the sampling variance of a bagged learner compares to the variance of the 

original learner. In this paper, we develop and study methods for estimating the variance of 

bagged predictors and random forests (Breiman, 2001), a popular extension of bagged trees. 

These variance estimates only require the bootstrap replicates that were used to form the 

bagged prediction itself, and so can be obtained with moderate computational overhead. The 

results presented here build on the jackknife-after-bootstrap methodology introduced by 

Efron (1992) and on the infinitesimal jackknife for bagging (IJ) (Efron, 2013).

Figure 1 shows the results from applying our method to a random forest trained on the 

“Auto MPG” data set, a regression task where we aim to predict the miles-per-gallon (MPG) 
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gas consumption of an automobile based on 7 features including weight and horsepower. 

The error bars shown in Figure 1 give an estimate of the sampling variance of the random 

forest; in other words, they tell us how much the random forest’s predictions might change if 

we trained it on a new training set. The fact that the error bars do not in general cross the 

prediction-equals-observation diagonal suggests that there is some residual noise in the 

MPG of a car that cannot be explained by a random forest model based on the available 

predictor variables.1

Figure 1 tells us that the random forest was more confident about some predictions than 

others. Rather reassuringly, we observe that the random forest was in general less confident 

about the predictions for which the reported MPG and predicted MPG were very different. 

There is not a perfect correlation, however, between the error level and the size of the error 

bars. One of the points, circled in red near (32, 32), appears particularly surprising: the 

random forest got the prediction almost exactly right, but gave the prediction large error bars 

of ±2. This curious datapoint corresponds to the 1982 Dodge Rampage, a two-door Coupe 

Utility that is a mix between a passenger car and a truck with a cargo tray. Perhaps our 

random forest had a hard time confidently estimating the mileage of the Rampage because it 

could not quite decide whether to cluster it with cars or with trucks. We present experiments 

on larger data sets in Section 3.

Estimating the variance of bagged learners based on the preexisting bootstrap replicates can 

be challenging, as there are two distinct sources of noise. In addition to the sampling noise 

(i.e., the noise arising from randomness during data collection), we also need to control the 

Monte Carlo noise arising from the use of a finite number of bootstrap replicates. We study 

the effects of both sampling noise and Monte Carlo noise.

In our experience, the errors of the jackknife and IJ estimates of variance are often 

dominated by Monte Carlo effects. Monte Carlo bias can be particularly troublesome: if we 

are not careful, the jackknife and IJ estimators can conflate Monte Carlo noise with the 

underlying sampling noise and badly overestimate the sampling variance. We show how to 

estimate the magnitude of this Monte Carlo bias and develop bias-corrected versions of the 

jackknife and IJ estimators that outperform the original ones. We also show that the IJ 

estimate of variance is able to use the preexisting bootstrap replicates more efficiently than 

the jackknife estimator by having a lower Monte Carlo variance, and needs 1.7 times less 

bootstrap replicates than the jackknife to achieve a given accuracy.

If we take the number of bootstrap replicates to infinity, Monte Carlo effects disappear and 

only sampling errors remain. We compare the sampling biases of both the jackknife and IJ 

rules and present some evidence that, while the jackknife rule has an upward sampling bias 

and the IJ estimator can have a downward bias, the arithmetic mean of the two variance 

estimates can be close to unbiased. We also propose a simple method for estimating the 

sampling variance of the IJ estimator itself.

1Our method produces standard error estimates  for random forest predictions. We then represent these standard error estimates as 

Gaussian confidence intervals , where zα is a quantile of the normal distribution.
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Our paper is structured as follows. We first present an overview of our main results in 

Section 2, and apply them to random forest examples in Section 3. We then take a closer 

look at Monte Carlo effects in Section 4 and analyze the sampling distribution of the 

limiting IJ and jackknife rules with B → ∞ in Section 5. We spread simulation experiments 

throughout Sections 4 and 5 to validate our theoretical analysis.

1.1 Related Work

In this paper, we focus on methods based on the jackknife and the infinitesimal jackknife for 

bagging (Efron, 1992, 2013) that let us estimate standard errors based on the pre-existing 

bootstrap replicates. Other approaches that rely on forming second-order bootstrap replicates 

have been studied by Duan (2011) and Sexton and Laake (2009). Directly bootstrapping a 

random forest is usually not a good idea, as it requires forming a large number of base 

learners. Sexton and Laake (2009), however, propose a clever work-around to this problem. 

Their approach, which could have been called a bootstrap of little bags, involves 

bootstrapping small random forests with around B = 10 trees and then applying a bias 

correction to remove the extra Monte Carlo noise.

There has been considerable interest in studying classes of models for which bagging can 

achieve meaningful variance reduction, and also in outlining situations where bagging can 

fail completely (e.g., Skurichina and Duin, 1998; Bühlmann and Yu, 2002; Chen and Hall, 

2003; Buja and Stuetzle, 2006; Friedman and Hall, 2007). The problem of producing 

practical estimates of the sampling variance of bagged predictors, however, appears to have 

received somewhat less attention in the literature so far.

2. Estimating the Variance of Bagged Predictors

This section presents our main result: estimates of variance for bagged predictors that can be 

computed from the same bootstrap replicates that give the predictors. Section 3 then applies 

the result to random forests, which can be analyzed as a special class of bagged predictors.

Suppose that we have training examples Z1 = (x1, y1), …, Zn = (xn, yn), an input x to a 

prediction problem, and a base learner . To make things concrete, the 

Zi could be a list of e-mails xi paired with labels yi that catalog the e-mails as either spam or 

non-spam, t(x; Zi) could be a decision tree trained on these labeled e-mails, and x could be a 

new e-mail that we seek to classify. The quantity  would then be the output of the tree 

predictor on input x.

With bagging, we aim to stabilize the base learner t by resampling the training data. In our 

case, the bagged version of  is defined as

(1)

where the  are drawn independently with replacement from the original data (i.e., they 

form a bootstrap sample). The expectation  is taken with respect to the bootstrap measure.
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The expectation in (1) cannot in general be evaluated exactly, and so we form the bagged 

estimator by Monte Carlo

(2)

and the  are elements in the bth bootstrap sample. As B → ∞, we recover the perfectly 

bagged estimator .

2.1 Basic Variance Estimates

The goal of our paper is to study the sampling variance of bagged learners

In other words, we ask how much variance  would have once we make B large enough to 

eliminate the bootstrap effects. We consider two basic estimates of V: The Infinitesimal 

Jackknife estimate (Efron, 2013), which results in the simple expression

(3)

where  is the covariance between t*(x) and the number of times  the ith 

training example appears in a bootstrap sample; and the Jackknife-after-Bootstrap estimate 

(Efron, 1992)

(4)

where  is the average of t*(x) over all the bootstrap samples not containing the ith 

example and  is the mean of all the t*(x).

The jackknife-after-bootstrap estimate  arises directly by applying the jackknife to the 

bootstrap distribution. The infinitesimal jackknife (Jaeckel, 1972), also called the non-

parametric delta method, is an alternative to the jackknife where, instead of studying the 

behavior of a statistic when we remove one observation at a time, we look at what happens 

to the statistic when we individually down-weight each observation by an infinitesimal 

amount. When the infinitesimal jackknife is available, it sometimes gives more stable 

predictions than the regular jackknife. Efron (2013) shows how an application of the 

infinitesimal jackknife principle to the bootstrap distribution leads to the simple estimate 

.
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2.2 Finite-B Bias

In practice, we can only ever work with a finite number B of bootstrap replicates. The 

natural Monte Carlo approximations to the estimators introduced above are

(5)

and

(6)

Here,  indicates the number of times the ith observation appears in the bootstrap sample 

b.

In our experience, these finite-B estimates of variance are often badly biased upwards if the 

number of bootstrap samples B is too small. Fortunately, bias-corrected versions are 

available:

(7)

(8)

These bias corrections are derived in Section 4. In many applications, the simple estimators 

(5) and (6) require B = Θ(n1.5) bootstrap replicates to reduce Monte Carlo noise down to the 

level of the inherent sampling noise, whereas our bias-corrected versions only require B = 

Θ(n) replicates. The bias-corrected jackknife (8) was also discussed by Sexton and Laake 

(2009).

In Figure 2, we show how  can be used to accurately estimate the variance of a bagged 

tree. We compare the true sampling variance of a bagged regression tree with our variance 

estimate. The underlying signal is a step function with four jumps that are reflected as spikes 

in the variance of the bagged tree. On average, our variance estimator accurately identifies 

the location and magnitude of these spikes.

Figure 3 compares the performance of the four considered variance estimates on a bagged 

adaptive polynomial regression example described in detail in Section 4.4. We see that the 

uncorrected estimators  and  are badly biased: the lower whiskers of their boxplots do 

not even touch the limiting estimate with B → ∞. We also see that that  has about half 
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the variance of . This example highlights the importance of using estimators that use 

available bootstrap replicates efficiently: with B = 500 bootstrap replicates,  can give 

us a reasonable estimate of V, whereas  is quite unstable and biased upwards by a factor 

2.

The figure also suggests that the Monte Carlo noise of  decays faster (as a function of B) 

than that of . This is no accident: as we show in Section 4.2, the infinitesimal jackknife 

requires 1.7 times less bootstrap replicates than the jackknife to achieve a given level of 

level of Monte Carlo error.

2.3 Limiting Sampling Distributions

The performance of  and  depends on both sampling noise and Monte Carlo noise. In 

order for  (and analogously ) to be accurate, we need both the sampling error of , 

namely , and the Monte Carlo error  to be small.

It is well known that jackknife estimates of variance are in general biased upwards (Efron 

and Stein, 1981). This phenomenon also holds for bagging:  is somewhat biased upwards 

for V. We present some evidence suggesting that  is biased downwards by a similar 

amount, and that the arithmetic mean of  and  is closer to being unbiased for V than 

either of the two estimators alone.

We also develop a simple estimator for the variance of  itself:

where  and  is the mean of the .

3. Random Forest Experiments

Random forests (Breiman, 2001) are a widely used extension of bagged trees. Suppose that 

we have a tree-structured predictor t and training data Z1, …, Zn. Using notation from (2), 

the bagged version of this tree predictor is

Random forests extend bagged trees by allowing the individual trees  to depend on an 

auxiliary noise source ξb. The main idea is that the auxiliary noise ξb encourages more 

diversity among the individual trees, and allows for more variance reduction than bagging. 
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Several variants of random forests have been analyzed theoretically by, e.g., Biau et al. 

(2008), Biau (2012), Lin and Jeon (2006), and Meinshausen (2006).

Standard implementations of random forests use the auxiliary noise ξb to randomly restrict 

the number of variables on which the bootstrapped trees can split at any given training step. 

At each step, m features are randomly selected from the pool of all p possible features and 

the tree predictor must then split on one of these m features. If m = p the tree can always 

split on any feature and the random forest becomes a bagged tree; if m = 1, then the tree has 

no freedom in choosing which feature to split on.

Following Breiman (2001), random forests are usually defined more abstractly for 

theoretical analysis: any predictor of the form

(9)

is called a random forest. Various choices of noise distribution Ξ lead to different random 

forest predictors. In particular, trivial noise sources are allowed and so the class of random 

forests includes bagged trees as a special case. In this paper, we only consider random 

forests of type (9) where individual trees are all trained on bootstrap samples of the training 

data. We note, however, that that variants of random forests that do not use bootstrap noise 

have also been found to work well (e.g., Dietterich, 2000; Geurts et al., 2006).

All our results about bagged predictors apply directly to random forests. The reason for this 

is that random forests can also be defined as bagged predictors with different base learners. 

Suppose that, on each bootstrap replicate, we drew K times from the auxiliary noise 

distribution Ξ instead of just once. This would give us a predictor of the form

Adding the extra draws from Ξ to the random forest does not change the B → ∞ limit of the 

random forest. If we take K → ∞, we effectively marginalize over the noise from Ξ, and get 

a predictor

In other words, the random forest  as defined in (9) is just a noisy estimate of a bagged 

predictor with base learner .

It is straight-forward to check that our results about  and  also hold for bagged 

predictors with randomized base learners. The extra noise from using t(·; ξ) instead of 

does not affect the limiting correlations in (3) and (4); meanwhile, the bias corrections from 
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(7) and (8) do not depend on how we produced the t* and remain valid with random forests. 

Thus, we can estimate confidence intervals for random forests from N* and t* using exactly 

the same formulas as for bagging.

In the rest of this section, we show how the variance estimates studied in this paper can be 

used to gain valuable insights in applications of random forests. We use the  variance 

estimate (7) to minimize the required computational resources. We implemented the IJ-U 

estimator for random forests on top of the R package randomForest (Liaw and Wiener, 

2002).

3.1 E-mail Spam Example

The e-mail spam data set (spambase) is part of a standard classification task, the goal of 

which is to distinguish spam e-mail (1) from non-spam (0) using p = 57 features. Here, we 

investigate the performance of random forests on this data set.

We fit the spam data using random forests with m = 5, 19 and 57 splitting variables. With m 

= 5, the trees were highly constrained in their choice of splitting variables, while m = 57 is 

just a bagged tree. The three random forests obtained test-set accuracies of 95.1%, 95.2% 

and 94.7% respectively, and it appears that the m = 5 or 19 forests are best. We can use the 

IJ-U variance formula to gain deeper insight into these numbers, and get a better 

understanding about what is constraining the accuracy of each predictor.

In Figure 4, we plot test-set predictions against IJ-U estimates of standard error for all three 

random forests. The m = 57 random forest appears to be quite unstable, in that the estimated 

errors are high. Because many of its predictions have large standard errors, it is plausible 

that the predictions made by the random forest could change drastically if we got more 

training data. Thus, the m = 57 forest appears to suffer from overfitting, and the quality of its 

predictions could improve substantially with more data.

Conversely, predictions made by the m = 5 random forest appear to be remarkably stable, 

and almost all predictions have standard errors that lie below 0.1. This suggests that the m = 

5 forest may be mostly constrained by bias: if the predictor reports that a certain e-mail is 

spam with probability 0.5 ± 0.1, then the predictor has effectively abandoned any hope of 

unambiguously classifying the e-mail. Even if we managed to acquire much more training 

data, the class prediction for that e-mail would probably not converge to a strong vote for 

spam or non-spam.

The m = 19 forest appears to have balanced the bias-variance trade-off well. We can further 

corroborate our intuition about the bias problem faced by the m = 5 forest by comparing its 

predictions with those of the m = 19 forest. As shown in Figure 5, whenever the m = 5 forest 

made a cautious prediction that an e-mail might be spam (e.g., a prediction of around 0.8), 

the m = 19 forest made the same classification decision but with more confidence (i.e., with 

a more extreme class probability estimate ). Similarly, the m = 19 forest tended to lower 

cautious non-spam predictions made by the m = 5 forest. In other words, the m = 5 forest 

appears to have often made lukewarm predictions with mid-range values of  on e-mails for 

which there was sufficient information in the data to make confident predictions. This 
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analysis again suggests that the m = 5 forest was constrained by bias and was not able to 

efficiently use all the information present in the data set.

3.2 California Housing Example

In the previous example, we saw that the varying accuracy of random forests with different 

numbers m of splitting variables primarily reflected a bias-variance trade-off. Random 

forests with small m had high bias, while those with large m had high variance. This bias-

variance trade-off does not, however, underlie all random forests. The California housing 

data set—a regression task with n = 20, 460 and p = 8—provides a contrasting example.

In Figure 6a, we plot the random forest out-of-bag MSE and IJ-U estimate of average 

sampling variance across all training examples, with m between 1 and 8. We immediately 

notice that the sampling variance is not monotone increasing in m. Rather, the sampling 

variance is high if m is too big or too small, and attains a minimum at m = 4. Meanwhile, in 

terms of MSE, the optimal choice is m = 5. Thus, there is no bias-variance trade-off here: 

picking a value of m around 4 or 5 is optimal both from the MSE minimization and the 

variance minimization points of view.

We can gain more insight into this phenomenon using ideas going back to Breiman (2001), 

who showed that the sampling variance of a random forest is governed by two factors: the 

variance v of the individual bootstrapped trees and their correlation ρ. The variance of the 

ensemble is then ρv. In Figure 6b, we show how both v and ρ react when we vary m. Trees 

with large m are fairly correlated, and so the random forest does not get as substantial a 

variance reduction over the base learner as with a smaller m. With a very small m, however, 

the variance v of the individual trees shoots up, and so the decrease in ρ is no longer 

sufficient to bring down the variance of the whole forest. The increasing ρ-curve and the 

decreasing v-curve thus jointly produce a U-shaped relationship between m and the variance 

of the random forest. The m = 4 forest achieves a low variance by matching fairly stable 

base learners with a small correlation ρ.

4. Controlling Monte Carlo Error

In this section, we analyze the behavior of both the IJ and jackknife estimators under Monte 

Carlo noise. We begin by discussing the Monte Carlo distribution of the infinitesimal 

jackknife estimate of variance with a finite B; the case of the jackknife-after-bootstrap 

estimate of variance is similar but more technical and is presented in Appendix A. We show 

that the jackknife estimator needs 1.7 times more bootstrap replicates than the IJ estimator to 

control Monte Carlo noise at a given level. We also highlight a bias problem for both 

estimators, and recommend a bias correction. When there is no risk of ambiguity, we use the 

short-hand t* for t*(x).

4.1 Monte Carlo Error for the IJ Estimator

We first consider the Monte Carlo bias of the infinitesimal jackknife for bagging. Let
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(10)

be the perfect IJ estimator with B = ∞ (Efron, 2013). Then, the Monte Carlo bias of  is

is the Monte Carlo estimate of the bootstrap covariance. Since  depends on all n 

observations,  and  can in practice be treated as independent for computing Var*[Ci], 

especially when n is large (see remark below). Thus, as , we see that

(11)

Notice that  is the standard bootstrap estimate for the variance of the base learner . 

Thus, the bias of  grows linearly in the variance of the original estimator that is being 

bagged.

Meanwhile, by the central limit theorem, Ci converges to a Gaussian random variable as B 

gets large. Thus, the Monte Carlo asymptotic variance of  is approximately 

. The Ci can be treated as roughly independent, and so the 

limiting distribution of the IJ estimate of variance has approximate moments

(12)

Interestingly, the Monte Carlo mean squared error (MSE) of  mostly depends on the 

problem through , where  is the bootstrap estimate of the variance of the base learner. In 

other words, the computational difficulty of obtaining confidence intervals for bagged 

learners depends on the variance of the base learner.

4.1.1 Remark: The IJ Estimator for Sub-bagging—We have focused on the case 

where each bootstrap replicate contains exactly n samples. However, in some applications, 

bagging with subsamples of size m ≠ n has been found to work well (e.g., Bühlmann and 

Yu, 2002; Buja and Stuetzle, 2006; Friedman, 2002; Strobl et al., 2007). Our results directly 

extend to the case where m ≠ n samples are drawn with replacement from the original 

sample. We can check that (10) still holds, but now . Carrying out the same 

analysis as above, we can establish an analogue to (12):
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(13)

For simplicity of exposition, we will restrict our analysis to the case m = n for the rest of this 

paper.

4.1.2 Remark: Approximate Independence—In the above derivation, we used the 

approximation

We can evaluate the accuracy of this approximation using the formula

In the case of the sample mean  paired with the Poisson bootstrap, 

this term reduces to

and the correction to (11) would be .

4.2 Comparison of Monte Carlo Errors

As shown in Appendix A, the Monte Carlo error for the jackknife-after-bootstrap estimate of 

variance has approximate moments

(14)

where  is the jackknife estimate computed with B = ∞ bootstrap replicates. The Monte 

Carlo stability of  again primarily depends on .

By comparing (12) with (14), we notice that the IJ estimator makes better use of a finite 

number B of bootstrap replicates than the jackknife estimator. For a fixed value of B, the 

Monte Carlo bias of  is about e − 1 or 1.7 times as large as that of ; the ratio of Monte 

Carlo variance starts off at 3 for small values of B and decays down to 1.7 as B gets much 

larger than n. Alternatively, we see that the IJ estimate with B bootstrap replicates has errors 

on the same scale as the jackknife estimate with 1.7 · B replicates.
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This suggests that if computational considerations matter and there is a desire to perform as 

few bootstrap replicates B as possible while controlling Monte Carlo error, the infinitesimal 

jackknife method may be preferable to the jackknife-after-bootstrap.

4.3 Correcting for Monte Carlo Bias

The Monte Carlo MSEs of  and  are in practice dominated by bias, especially for large 

n. Typically, we would like to pick B large enough to keep the Monte Carlo MSE on the 

order of 1/n. For both (12) and (14), we see that performing B = Θ(n) bootstrap iterations is 

enough to control the variance. To reduce the bias to the desired level, namely , we 

would need to take B = Θ(n1.5) bootstrap samples.

Although the Monte Carlo bias for both  and  is large, this bias only depends on  and 

so is highly predictable. This suggests a bias-corrected modification of the IJ and jackknife 

estimators respectively:

(15)

(16)

Here  and  are as defined in (5), and  is the bootstrap estimate of variance from (11). 

The letter U stands for unbiased. This transformation effectively removes the Monte Carlo 

bias in our experiments without noticeably increasing variance. The bias corrected estimates 

only need B = Θ(n) bootstrap replicates to control Monte Carlo MSE at level 1/n.

4.4 A Numerical Example

To validate the observations made in this section, we re-visit the cholesterol data set used by 

Efron (2013) as a central example in developing the IJ estimate of variance. The data set 

(introduced by Efron and Feldman, 1991) contains records for n = 164 participants in a 

clinical study, all of whom received a proposed cholesterol-lowering drug. The data contains 

a measure d of the cholesterol level decrease observed for each subject, as well as a measure 

c of compliance (i.e. how faithful the subject was in taking the medication). Efron and 

Feldman originally fit d as a polynomial function of c; the degree of the polynomial was 

adaptively selected by minimizing Mallows’ Cp criterion (1973).

We here follow Efron (2013) and study the bagged adaptive polynomial fit of d against c for 

predicting the cholesterol decrease of a new subject with a specific compliance level. The 

degree of the polynomial is selected among integers between 1 and 6 by Cp minimization. 

Efron (2013) gives a more detailed description of the experiment. We restrict our attention 

to predicting the cholesterol decrease of a new patient with compliance level c = −2.25; this 

corresponds to the patient with the lowest observed compliance level.
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In Figure 3, we compare the performance of the variance estimates for bagged predictors 

studied in this paper. The boxplots depict repeated realizations of the variance estimates 

with a finite B. We can immediately verify the qualitative insights presented in this section. 

Both the jackknife and IJ rules are badly biased for small B, and this bias goes away more 

slowly than the Monte Carlo variance. Moreover, at any given B, the jackknife estimator is 

noticeably less stable than the IJ estimator.

The J-U and IJ-U estimators appear to fix the bias problem without introducing instability. 

The J-U estimator has a slightly higher mean than the IJ-U one. As discussed in Section 5.2, 

this is not surprising, as the limiting (B → ∞) jackknife estimator has an upward sampling 

bias while the limiting IJ estimator can have a downward sampling bias. The fact that the J-

U and IJ-U estimators are so close suggests that both methods work well for this problem.

The insights developed here also appear to hold quantitatively. In Figure 7, we compare the 

ratios of Monte Carlo bias and variance for the jackknife and IJ estimators with theoretical 

approximations implied by (12) and (14). The theoretical formulas appear to present a 

credible picture of the relative merits of the jackknife and IJ rules.

5. Sampling Distribution of Variance Estimates

In practice, the  and  estimates are computed with a finite number B of bootstrap 

replicates. In this section, however, we let B go to infinity, and study the sampling properties 

of the IJ and jackknife variance estimates in the absence of Monte Carlo errors. In other 

words, we study the impact of noise in the data itself. Recall that we write  and  for 

the limiting estimators with B = ∞ bootstrap replicates.

We begin by developing a simple formula for the sampling variance of  itself. In the 

process of developing this variance formula, we obtain an ANOVA expansion of  that 

we then use in Section 5.2 to compare the sampling biases of the jackknife and infinitesimal 

jackknife estimators.

5.1 Sampling Variance of the IJ Estimate of Variance

If the data Zi are independently drawn from a distribution F, then the variance of the IJ 

estimator is very nearly given by

(17)

(18)

This expression suggests a natural plug-in estimator

(19)
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where  is a bootstrap estimate for hF(Zi) and  is the mean of the . 

The rest of the notation is as in Section 2.

The relation (17) arises from a general connection between the infinitesimal jackknife and 

the theory of Hájek projections. The Hájek projection of an estimator is the best 

approximation to that estimator that only considers first-order effects. In our case, the Hájek 

projection of  is

(20)

where hF(Zi) is as in (18). The variance of the Hájek projection is 

.

The key insight behind (17) is that the IJ estimator is effectively trying to estimate the 

variance of the Hájek projection of , and that

(21)

The approximation (17) then follows immediately, as the right-hand side of the above 

expression is a sum of independent random variables. Note that we cannot apply this right-

hand side expression directly, as h depends on the unknown underlying distribution F.

The connections between Hájek projections and the infinitesimal jackknife have been 

understood for a long time. Jaeckel (1972) originally introduced the infinitesimal jackknife 

as a practical approximation to the first-order variance of an estimator (in our case, the right-

hand side of (21)). More recently, Efron (2013) showed that  is equal to the variance of a 

“bootstrap Hájek projection.” In Appendix B, we build on these ideas and show that, in 

cases where a plug-in approximation is valid, (21) holds very nearly for bagged estimators.

We apply our variance formula to the cholesterol data set of Efron (2013), following the 

methodology described in Section 4.4. In Figure 8, we use the formula (19) to study the 

sampling variance of  as a function of the compliance level c. The main message here is 

rather reassuring: as seen in Figure 8b, the coefficient of variation of  appears to be fairly 

low, suggesting that the IJ variance estimates can be trusted in this example. Note that, the 

formula from (19) can require many bootstrap replicates to stabilize and suffers from an 

upward Monte Carlo bias just like . We used B = 100,000 bootstrap replicates to generate 

Figure 8.

5.2 Sampling Bias of the Jackknife and IJ Estimators

We can understand the sampling biases of both the jackknife and IJ estimators in the context 

of the ANOVA decomposition of Efron and Stein (1981). Suppose that we have data Z1, …, 
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Zn drawn independently from a distribution F, and compute our estimate  based on this 

data. Then, we can decompose its variance as

(22)

where

is the variance due to first-order effects, V2 is the variance due to second-order effects of the 

form

and so on. Note that all the terms Vk are non-negative.

Efron and Stein (1981) showed that, under general conditions, the jackknife estimate of 

variance is biased upwards. In our case, their result implies that the jackknife estimator 

computed on n + 1 data points has variance

(23)

Meanwhile, (21) suggests that

(24)

In other words, on average, both the jackknife and IJ estimators get the first-order variance 

term right. The jackknife estimator then proceeds to double the second-order term, triple the 

third-order term etc, while the IJ estimator just drops the higher order terms.

By comparing (23) and (24), we see that the upward bias of  and the downward bias of 

 partially cancel out. In fact,

(25)

and so the arithmetic mean of  and  has an upward bias that depends only on third-

and higher-order effects. Thus, we might expect that in small-sample situations where 

and  exhibit some bias, the mean of the two estimates may work better than either of 

them taken individually.

To test this idea, we used both the jackknife and IJ methods to estimate the variance of a 

bagged tree trained on a sample of size n = 25. (See Appendix C for details.) Since the 
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sample size is so small, both the jackknife and IJ estimators exhibit some bias as seen in 

Figure 9a. However, the mean of the two estimators is nearly unbiased for the true variance 

of the bagged tree. (It appears that this mean has a very slight upward bias, just as we would 

expect from (25).)

This issue can arise in real data sets too. When training bagged forward stepwise regression 

on a prostate cancer data set discussed by Hastie et al. (2009), the jackknife and IJ methods 

give fairly different estimates of variance: the jackknife estimator converged to 0.093, while 

the IJ estimator stabilized at 0.067 (Figure 9b). Based on the discussion in this section, it 

appears that (0.093 + 0.067)/2 = 0.08 should be considered a more unbiased estimate of 

variance than either of the two numbers on their own.

In the more extensive simulations presented in Table 1, averaging  and  is in 

general less biased than either of the original estimators (although the “AND” experiment 

seems to provide an exception to this rule, suggesting that most of the bias of  for this 

function is due to higher-order interactions). However,  has systematically lower 

variance, which allows it to win in terms of overall mean squared error. Thus, if 

unbiasedness is important, averaging  and  seems like a promising idea, but 

 appears to be the better rule in terms of raw MSE minimization.

Finally, we emphasize that this relative bias result relies on the heuristic relationship (24). 

While this approximation does not seem problematic for the first-order analysis presented in 

Section 5.1, we may be concerned that the plug-in argument from Appendix B used to 

justify it may not give us correct second- and higher-order terms. Thus, although our 

simulation results seem promising, developing a formal and general understanding of the 

relative biases of  and  remains an open topic for follow-up research.

6. Conclusion

In this paper, we studied the jackknife-after-bootstrap and infinitesimal jackknife (IJ) 

methods (Efron, 1992, 2013) for estimating the variance of bagged predictors. We 

demonstrated that both estimators suffer from considerable Monte Carlo bias, and we 

proposed bias-corrected versions of the methods that appear to work well in practice. We 

also provided a simple formula for the sampling variance of the IJ estimator, and showed 

that from a sampling bias point of view the arithmetic mean of the jackknife and IJ 

estimators is often preferable to either of the original methods. Finally, we applied these 

methods in numerous experiments, including some random forest examples, and showed 

how they can be used to gain valuable insights in realistic problems.
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Appendix A. The Effect of Monte Carlo Noise on the Jackknife Estimator

In this section, we derive expressions for the finite-B Monte Carlo bias and variance of the 

jackknife-after-bootstrap estimate of variance. Recall from (6) that

and  indicates the number of times the ith observation appears in the bootstrap sample b. 

If  is not defined because  for either all or none of the b = 1, …, B, then just set 

.

Now  is the sum of squares of noisy quantities, and so  will be biased upwards. 

Specifically,

where  is the jackknife estimate computed with B = ∞ bootstrap replicates. For 

convenience, let

and recall that

For all Bi ≠ 0 or B, the conditional expectation is

 in the degenerate cases with Bi ∈ {0, B}. Thus,

and so
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Meanwhile, for Bi ∉ {0, B},

where

Thus,

where 1i = 1({Bi ∉ {0, B}}).

As n and B get large, Bi converges in law to a Gaussian random variable

and the above expressions are uniformly integrable. We can verify that

and

Finally, this lets us conclude that

where the error term depends on , , and .

We now address Monte Carlo variance. By the central limit theorem,  converges to a 

Gaussian random variable as B gets large. Thus, the asymptotic Monte Carlo variance of 

is approximately , and so
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In practice, the terms  and  can be well approximated by , namely the 

bootstrap estimate of variance for the base learner. (Note that , , and  can always be 

inspected on a random forest, so this assumption can be checked in applications.) This lets 

us considerably simplify our expressions for Monte Carlo bias and variance:

Appendix B. The IJ estimator and Hájek projections

Up to (27), the derivation below is an alternate presentation of the argument made by Efron 

(2013) in the proof of his Theorem 1. To establish a connection between the IJ estimate of 

variance for bagged estimators and the theory of Hájek projections, it is useful to consider 

 as a functional over distributions. Let G be a probability distribution, and let T be a 

functional over distributions with the following property:

(26)

where the Y1, …, Yn are drawn independently from G. We call functionals T satisfying (26) 

averaging. Clearly,  can be expressed as an averaging functional applied to the empirical 

distribution  defined by the observations Z1, …, Zn.

Suppose that we have an averaging functional T, a sample Z1, …, Zn forming an empirical 

distribution , and want to study the variance of . The infinitesimal jackknife estimate 

for the variance of  is given by

where  is the discrete distribution that places weight 1/n + (n − 1)/n · ε at Zi and weight 

1/n − ε/n at all the other Zj.

We can transform samples from  into samples from  by the following method. Let 

 be a sample from . Go through the whole sample and, independently for each j, 

take  and with probability ε replace it with Zi. The sample can now be considered a 

sample from .
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When ε → 0, the probability of replacing two of the  with this procedure becomes 

negligible, and we can equivalently transform our sample into a sample from  by 

transforming a single random element from  into Zi with probability n ε. Without loss 

of generality this element is the first one, and so we conclude that

where τ defines T through (26). Thus,

and so

(27)

(28)

where on the last line we only replaced the empirical approximation  with its true value F. 

In the case of bagging, this last expression is equivalent to (21).

A crucial step in the above argument is the plug-in approximation (28). If T is just a sum, 

then the error of (28) is within ; presumably, similar statements hold whenever T is 

sufficiently well-behaved. That being said, it is possible to construct counter-examples 

where (28) fails; a simple such example is when T counts the number of times  is matched 

in the rest of the training data. Establishing general conditions under which (28) holds is an 

interesting topic for further research.

Appendix C. Description of Experiments

This section provides a more detailed description of the experiments reported in this paper.

C.1 Auto MPG Example (Figure 1)

The Auto MPG data set, available from the UCI Machine Learning Repository (Bache and 

Lichman, 2013), is a regression task with 7 features. After discarding examples with missing 

entries, the data set had 392 rows, which we divided into a test set of size 78 and a train set 

of size 314. We estimated the variance of the random forest predictions using the 

 estimator advocated in Section 5.2, with B = 10,000 bootstrap replicates.
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C.2 Bagged Tree Simulation (Figure 2)

The data for this simulation was drawn from a model yi = f(xi) + εi, where xi ~ U([0, 1]), 

, and f(x) is the step function shown in Figure 10. We modeled the data using 

5-leaf regression trees generated using the R package tree (Venables and Ripley, 2002); for 

bagging, we used B = 10,000 bootstrap replicates. The reported data is compiled over 1,000 

simulation runs with n = 500 data points each.

C.3 Cholesterol Example (Figures 3, 7, and 8)

For the cholesterol data set (Efron and Feldman, 1991), we closely follow the methodology 

of Efron (2013); see his paper for details. The data set has n = 164 subjects and only one 

predictor.

C.4 E-mail Spam Example (Figures 4 and 5)

The e-mail spam data set (spambase, Bache and Lichman, 2013) is a classification problem 

with n = 4,601 e-mails and p = 57 features; the goal is to discern spam from non-spam. We 

divided the data into train and test sets of size 3,065 and 1,536 respectively. Each of the 

random forests described in Section 3.1 was fit on the train set using the R package 

randomForest (Liaw and Wiener, 2002) with B = 40,000 bootstrap replicates.

C.5 California Housing Example (Figure 6)

The California housing data set (described in Hastie et al., 2009, and available from StatLib) 

contains aggregated data from n = 20,460 neighborhoods. There are p = 8 features; the 

response is the median house value. We fit random forests on this data using the R package 

randomForest (Liaw and Wiener, 2002) with B = 1,000 bootstrap replicates.

C.6 Bagged Tree Simulation #2 (Figure 9a)

We drew n = 25 points from a model where the xi are uniformly distributed over a square, 

i.e., xi ~ U([−1, 1]2); the yi are deterministically given by yi = 1({‖xi‖2 ≥ 1}). We fit this data 

using the R package tree (Venables and Ripley, 2002). The bagged predictors were 

generated using B = 1,000 bootstrap replicates. The reported results are based on 2,000 

simulation runs.

C.7 Prostate Cancer Example (Figure 9b)

The prostate cancer data (published by Stamey et al., 1989) is described in Section 1 of 

Hastie et al. (2009). We used forward stepwise regression as implemented by the R function 

step as our base learner. This data set has n = 97 subjects and 8 available predictor 

variables. In figure 9b, we display standard errors for the predicted response of a patient 

whose features match those of patient #41 in the data set.
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C.8 Simulations for Table 1

The data generation functions used in Table 1 are defined as follows. The Xi for i = 1, …, p 

are all generated as independent U([0, 1[) random variables, and .

• Cosine: Y = 3 · cos (π · (X1 + X2)), with p = 2.

• XOR: Treating XOR as a function with a 0/1 return-value,

and p = 50.

• AND: With analogous notation,

and p = 500.

• Auto: This example is based on a parametric bootstrap built on the same data set as 

used in Figure 1. We first fit a random forest to the training set, and evaluated the 

MSE  on the test set. We then generated new training sets by replacing the labels 

Yi from the original training set with , where  is the original random forest 

prediction at the ith training example and ε is fresh residual noise.

During the simulation, we first generated a random test set of size 50 (except for the auto 

example, where we just used the original test set of size 78). Then, while keeping the test set 

fixed, we generated 100 training sets and produced variance estimates  at each test point. 

Table 1 reports average performance over the test set.
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Figure 1. 
Random forest predictions on the “Auto MPG” data set. The random forest was trained 

using 314 examples; the graph shows results on a test set of size 78. The error bars are 1 

standard error in each direction. Because this is a fairly small data set, we estimated standard 

errors for the random forest using the averaged estimator from Section 5.2. A more detailed 

description of the experiment is provided in Appendix C.
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Figure 2. 
Testing the performance of the bias-corrected infinitesimal jackknife estimate of variance 

for bagged predictors, as defined in (15), on a bagged regression tree. We compare the true 

sampling error with the average standard error estimate produced by our method across 

multiple runs; the dotted lines indicate one-standard-error-wide confidence bands for our 

standard error estimate.
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Figure 3. 
Performance, as a function of B, of the jackknife and IJ estimators and their bias-corrected 

modifications on the cholesterol data set of Efron and Feldman (1991). The boxplots depict 

bootstrap realizations of each estimator. The dotted line indicates the mean of all the 

realizations of the IJ-U and J-U estimators (weighted by B).
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Figure 4. 
Standard errors of random forest predictions on the e-mail spam data. The random forests 

with m = 5, 19, and 57 splitting variables were all trained on a train set of size n = 3,065; the 

panels above show class predictions and IJ-U estimates for standard errors on a test set of 

size 1,536. The solid curves are smoothing splines (df = 4) fit through the data (including 

both correct and incorrect predictions).
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Figure 5. 
Comparison of the predictions made by the m = 5 and m = 19 random forests. The stars 

indicate pairs of test set predictions; the solid line is a smoothing spline (df = 6) fit through 

the data.
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Figure 6. 
Performance of random forests on the California housing data. The left panel plots MSE and 

mean sampling variance as a function of the number m of splitting variables. The MSE 

estimate is the out-of bag error, while the mean sampling variance is the average estimate of 

variance  computed over all training examples. The right panel displays the drivers of 

sampling variance, namely the variance of the individual bootstrapped trees (bootstrap 

variance v) and their correlation (tree correlation ρ).
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Figure 7. 

Predicted and actual performance ratios for the uncorrected  and  estimators in the 

cholesterol compliance example. The plot shows both  and 

. The observations are derived from the data presented in Figure 3; the 

error bars are one standard deviation in each direction. The solid lines are theoretical 

predictions obtained from (12) and (14).

Wager et al. Page 30

J Mach Learn Res. Author manuscript; available in PMC 2015 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8. 
Stability of the IJ estimate of variance on the cholesterol data. The left panel shows the 

bagged fit to the data, along with error bars generated by the IJ method; the stars denote the 

data (some data points have x-values that exceed the range of the plot). In the right panel, we 

use (19) to estimate error bars for the error bars in the first panel. All error bars are one 

standard deviation in each direction.
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Figure 9. 
Sampling bias of the jackknife and IJ rules. In the left panel, we compare the expected 

values of the jackknife and IJ estimators as well as their mean with the true variance of a 

bagged tree. In this example, the features take values in (x1, x2) ∈ [−1, 1]2; we depict 

variance estimates along the diagonal x1 = x2. The prostate cancer plot can be interpreted in 

the same way as Figure 3, except that the we now indicate the weighted means of the J-U 

and IJ-U estimators separately.
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Figure 10. 
Underlying model for the bagged tree example from Figure 2.
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