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Abstract

Purpose of review—Myocardial injury and disease often results in heart failure, the leading 

cause of death worldwide. To achieve myocardial regeneration and foster development of efficient 

therapeutics for cardiac injury, it is essential to uncover molecular mechanisms that will promote 

myocardial regeneration. In this review, we examine the latest progress made in elucidation of the 

roles of small non coding RNAs called microRNAs (miRs) in myocardial regeneration.

Recent findings—Promising progress has been made in studying cardiac regeneration. Several 

miRs, which includes miR-590, miR-199a, miR-17-92 cluster, miR-199a-214 cluster, miR-34a, and 

miR-15 family, have been recently shown to play an essential role in myocardial regeneration by 

regulating different processes during cardiac repair, including cell death, proliferation and 

metabolism. For example, miR-590 promotes cardiac regeneration through activating 

cardiomyocytes proliferation, while miR-34a inhibits cardiac repair through inducing apoptosis.

Summary—These recent findings shed new light on our understanding of myocardial 

regeneration and suggest potential novel therapeutic targets to treat cardiac disease.
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1. Introduction

Compromised myocardial function with heart failure is the worldwide leading cause of 

morbidity and mortality [1,2]. Heart transplantation remains the most effective treatment 

strategy for end-stage heart failure but can barely meet the increasing global demand 

because of the scarcity of donor hearts[3]. Unlike amphibians and fish [4-8], mammalian 

cardiomyocytes have limited renewal capacity compromising the ability of mammalian 

hearts to efficiently repair after injury [9-13]. Because of these limitations, researchers are 
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constantly pursuing novel approaches towards therapies that could ameliorate heart failure. 

Currently, there is no available approach to reverse the loss of functional myocardium [14]. 

Efficacious regenerative therapeutics to reverse the progress of heart failure has become an 

urgent and critical goal of modern cardiovascular research.

Considerable effort has been extended to develop therapies based on transplantation of stem 

cells or different types of progenitor cells to help a failing heart repopulate with newly made 

cardiomyocytes [15-24]. An alternative and promising cell-free tactic is to use small 

molecules or paracrine factors to stimulate cardiomyocyte proliferation or differentiation of 

resident cardiac progenitor cells [25-31]. Recent progress made in reprogramming and trans-

differentiation of non-cardiomyocytes also shows great promise to advance cardiac 

regeneration [32-45]. Moreover, additional investigations aim to dissect signaling pathways 

regulating endogenous cardiomyocytes regenerative capacity [46-51].

MicroRNAs (miRs) are small endogenous non-coding single-stranded RNAs that function in 

biologic processes primarily via post-transcriptional gene silencing in diverse organisms 

[52,53]. MiRs generally repress target gene expression by promoting mRNA degradation 

and/or inhibiting translation. Genes targeted by a miR have conserved Watson–Crick base 

pairing to the miR “seed” site, which is centered at the 5′end of the miR[54,55]. The 

essential roles of miRs have been shown in regeneration of different tissues and organs. For 

example, miR-133 promotes appendage regeneration in zebra fish [56], while miR-206 

promotes the regeneration of neuromuscular synapses[57] and skeletal muscle[58] in mice. 

Though the mechanisms remain largely unknown, miRs have been shown to have critical 

functions in cardiac regeneration. For example, previous studies showed a combination of 

miRs (miR-1, miR-133, miR-208 and miR-499) has the capability of reprogramming cardiac 

fibroblasts into cardiomyocytes [40]. Previous reviews have summarized the previous 

progress made in studying reprograming and regenerating cardiac tissue, including critical 

miRs involved in cardiac development and homeostasis [59-69]. Here, we summarize the 

most recent investigations into the function of miRs in myocardial regeneration.

2. miRs play an essential role in myocardial regeneration

has-miR-590 and has-miR-199a

To identify miRs that function in cardiomyocytes proliferation, a recent study cultured 

neonatal rat ventricular cardiomyocytes and transfected them with a library of 875 human 

miR mimics in a high-throughput screening approach [70]. Based on that screening, 204 

miRs significantly increased neonatal rat cardiomyocyte proliferation and 40 miRs from the 

original 204 miRs also increased cytokinesis and karyokinesis in neonatal mouse 

cardiomyocytes[70]. Among the 40 miRs, hsa-miR-590-3p, hsa-miR-199a-3p, hsa-miR-33b 

and hsa-miR-1825 can significantly increase the proliferation of 7-day postnatal 

cardiomyocyte, and even more remarkably, hsa-miR-590-3p and hsa-miR-199a-3p can 

significantly increase 2 month adult cardiomyocyte proliferation [70]. Hsa-miR-33b has 

been previously shown to have a role in regulating cell proliferation and fatty acid 

metabolism [71-73] while hsa-miR-1825 function was previously unclear. This study chose 

to focus on hsa-miR-590-3p and hsa-miR-199a-3p for further miR targets studies, given that 
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these two miRs were the most effective at promoting proliferation in rat and mouse 

cardiomyocytes.

The miR target genes controlling cardiomyocytes proliferation were globally identified 

using a combined RNA deep-sequencing and siRNA screening approach [70]. The authors 

were able to identify three targets, Homer protein homolog 1 (Homer1), Homeodomain-only 

protein x (Hopx) and Chloride intracellular channel protein 5 (Clic5), that are miR 

regulated and also modulate cardiomyocyte cell proliferation. Further luciferase reporter 

assays indicated Homer1 and Hopx are targeted by both hsa-miR-590-3p and hsa-

miR-199a-3p, while Clic5 is only targeted by hsa-miR-590-3p. Homer1 previously has been 

shown to interact with ryanodin receptor (RyR) to control intracellular calcium signaling 

and with PI3 kinase to prevent cell apoptosis [74-77]. Hopx, an atypical homeodomain-

protein, regulates proliferation and differentiation of different cell types, including 

cadiomyocyte proliferation by modulating Gata4 acetylation and SRF-dependent gene 

expression [78-82]. Hopx is expressed in both embryonic and postnatal cardiomyocytes and 

was found to be significantly reduced in both human and mouse hearts with heart failure 

[78,79,83].

Consistent with the in vitro data, in vivo analysis using synthetic miRs indicated that 

overexpression of hsa-miR-590-3p and hsa-miR-199a-3p increased cardiomyocyte 

proliferation in neonatal mice [70]. After myocardial infarction (MI), mouse hearts 

transduced with AAV9-miR-590-3p and AAV9-miR-199a-3p had improved cardiac function 

and reduced fibrotic scar size compared to controls [70]. Together, this study suggested that 

hsa-miR-590-3p and hsa-miR-199a-3p can stimulate cardiac regeneration by promoting 

mature cardiomyocytes to re-enter cell cycle and progress through mitosis [70].

miR-199a-214 cluster

In addition to the work investigating miR-199a discussed above, other studies indicated that 

miR-199a repressed hypoxia-inducible factor-1alpha and Sirtuin 1 [84], as well as, the 

ubiquitin-proteasome system [85] in mouse hearts. Meanwhile, miR-199a was modulated by 

high glucose and hypoxia in heart failure patients [86] and miR-199a-214 cluster was down-

regulated in explanted cardiac tissue from patients with dilated cardiomyopathy [87]. A 

recent study indicated that miR-199a-214 is cluster involved in heart failure by facilitating a 

cardiac metabolic shift from predominantly fatty acid utilization in healthy myocardium 

toward increased glucose metabolism in failing hearts [88]. Using a cardiac disease mouse 

model with transverse aortic constriction (TAC) pressure overload, the authors found that 

mice treated with antagomirs of miR-199a and miR-214 had improved cardiac function as 

well as normal arrangement of cardiomyocytes, significantly reduced cardiac fibrosis and 

hypertrophy, while vehicle-treated control hearts had impaired cardiac function and 

displayed cardiomyocyte disarray, interstitial fibrosis and hypertrophied myofibers [88]. The 

mechanistic studies indicated that both miR-199a and miR-214 directly repressed PPARδ, a 

critical regulator of mitochondrial fatty acid metabolism in heart, but didn't alter expression 

of genes involved in glucose metabolism [88].
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miR-17-92 cluster

The miR-17-92 cluster encodes six polycistronic miRs (miR-17, miR-18a, miR-19a, 

miR-20a, miR-19b, and miR-92a miR-92a), of which some miRs have the same seed site. 

MiR-17-92 germ-line loss-of-function resulted in abnormal myocardial differentiation from 

second heart field cardiac progenitors, by repressing the cardiac progenitor gene Isl1 during 

embryonic cardiac development [89]. MiR-17-92 also represses T-box genes during cardiac 

and craniofacial morphogenesis [89,90]. MiR-92a inhibits endothelial cell migration and 

angiogenesis in adult mice, while inhibition of miR-92a improves heart function and 

angiogenesis after MI or vascular injury [91,92]. A recent study reported that miR-17-92, 

particularly miR-19 as a key component, can induce proliferation of cardiomyocytes and 

help protect the heart from ischemic injury caused by MI [93]. Compared with controls, 

proliferation of cardiomyocytes was decreased in miR-17-92 loss-of-function hearts and 

increased in miR-17-92 gain-of-function hearts. Importantly, after MI, miR-17-92 gain-of-

function hearts had improved cardiac function, reduced scar size and more proliferating 

cardiomyocytes at the border zone when compared with controls, suggesting an essential 

role in cardiac regeneration. In vitro analysis suggests that miR-17-92 induces 

cardiomyocyte proliferation through direct repression of PTEN by miR-19, a tumor 

suppressor previously shown to be a miR-17-92 target in tumorgenesis [94].

miR-34a

Aging is a critical risk factor for heart diseases and old patients with cardiac injury usually 

have worse outcome than young patients [95]. Compared to young mice, the aged mouse 

heart has increased cardiomyocyte apoptosis, fibrosis and hypertrophy, with decreased 

telomere length [96]. The expression levels of miR-34a, which previously had been shown 

as a regulator in apoptosis and senescence [97-101], were higher in older human and mouse 

hearts compared to young hearts [96]. In vitro data indicated this age induced miR promoted 

H2O2-induced apoptosis in rat neonatal cardiomyocytes [96]. In vivo assays using miR-34a 

antagomir treatment further indicated miR-34a induced cell death [96]. Moreover, miR-34a 

knock-out mice had less cell death and hypertrophy, as well as better cardiac contractile 

function compared to wild-type mice [96]. Notably, after acute MI, miR-34a expression was 

significantly increased at the border zone and treatment with miR-34a antagomirs or locked 

nucleic acid (LNA) based anti-miRs significantly improved cardiac function [96]. A key 

target of miR-34a identified in this study is Pnuts (also known as Ppp1r10), which is a gene 

previously reported in modulating apoptosis, telomere shortening and DNA repair [102].

miR-15 family

Mouse neonatal hearts can regenerate after injury, but this ability is gradually lost by 

postnatal day (P) 7 [49]. The expression levels of miR-15, miR-30 and let-7 families were 

increased in P10 compared to P1 mouse heart, suggesting a functional role in the transition 

to non-regenerative myocardium [103]. Transfection data in rat cardiomyocytes indicated 

that miR-518 and miR-302 family promoted cardiomyocyte proliferation while Let-7 and 

miR-15 family inhibited proliferation [70].

The miR-15 family, consisting of 6 closely related miRs (miR-15a, miR-15b, miR-16-1, 

miR-16-2, miR-195, and miR-497), was up-regulated in different heart diseases [104]. 
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Cardiac-specific overexpression of miR-195 (MYH7-miR-195 TG) resulted in premature cell 

cycle arrest at G2 phase leading to reduced heart size and congenital heart abnormalities 

such as ventricular hypoplasia and ventricular septal defects [103]. Mouse hearts treated 

with LNA anti-miR15 to inhibit miR-15 had reduced infarct size and enhanced cardiac 

function after ischemia reperfusion surgery [105]. Wild type (WT) P1 mouse hearts 

regenerate after MI and the newly formed cardiomyocytes are derived mainly from pre-

existing cardiomyocytes [106]. However, after MI, MYH7-miR-195 TG hearts fail to 

regenerate and had significantly impaired cardiac function compared to WT hearts, perhaps 

due to induction of inflammatory genes and repression of mitochondrial and cell cycle genes 

[106]. Conversely, LNA anti-miR15 treatment increased proliferation of cardiomyocytes and 

improved left ventricular systolic function after adult MI [106].

It has been reported that miR-195 contributed to the repression of a number of cell cycle 

genes including checkpoint kinase 1 (Chek1), cyclin-dependent kinase 1 (Cdk1), baculoviral 

IAP repeat-containing 5 (Birc5), nucleolar and spindle associated protein 1 (Nusap1), and 

sperm associated antigen 5 (Spag5) [103]. Among these cell cycle genes, Chek1 has the 

miR-195 seed site conserved between mice and humans and was directly targeted by 

miR-195 based on the luciferase reporter analysis [103]. Chek1 is a cell cycle gene that 

coordinates mitotic progression with spindle checkpoints [103]. Recently a hepatocellular 

carcinoma study found miR-195 suppressed cancer cell proliferation and led to reduced 

tumor size through directly targeting NF-κB signaling related genes IKKα and TAB3 

[107-109].

3. Conclusions and Perspectives

Important recent progress has been made in the field of cardiac regeneration research. The 

success of cell-based therapies for heart repair, although measurable, has been modest to 

date likely because the infused cells fail to efficiently integrate into the heart. Moreover, 

reprogramming and trans-differentiation of non-cardiomyocytes are limited by poor 

efficiency and other technical challenges [15-20,32-40,64]. Thus, new innovative strategies 

are needed to enhance cardiac regeneration and one of the alternative compelling strategies 

is to trigger the endogenous cardiomyocyte regenerative capacity. Exciting new findings, 

revealed in the last few years, indicate that resident cardiomyocytes can be induced to 

reenter the cell cycle and undergo cytokinesis. More work is needed to investigate the 

underlying molecular mechanisms for induced cardiomyocyte cell cycle reentry. The studies 

summarized in this review indicate that miR-based therapeutics, using miR antagonists or 

mimics, has strong potential to be used to promote cardiomyocyte cell cycle re-entry and 

improve cardiac function after cardiac injury.

A majority of myocardial regeneration related miRs, or regenerative miRs, play essential 

roles in cell proliferation (Figure 1), not only in cardiomyocyte but also many other cell 

types. Moreover, their functions in proliferation are conserved between species from mouse 

to human. For examples, miR-17-92 cluster was the first described oncogenic miR 

[110,111], while miR-15a and miR-16 are the first identified tumor suppressor miRs [112]. 

Notably, regenerative miRs could share the same target genes during myocardial 

regeneration as they do in other contexts. For example, individual miR-15 family members, 
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that have the same seed site, have characterized targets in contexts other than heart 

regeneration [107-109]. These characteristics would enable cardiac researchers to 

investigate candidate target genes for the miR-15 family in the context of cardiac 

regeneration.

Other regenerative miRs have different mechanisms of modulating cardiac function after 

injury (Figure 1). As an example, miR-34a mainly regulated apoptosis and senescence 

during cardiac repair [96]. Notably, within the same cluster, miRs may modulate cardiac 

function via independent mechanisms, like miR-19 induced cardiomyocytes proliferation 

while miR-92a inhibited angiogenesis [91,92]. Moreover, the same miR could play different 

roles after different types of cardiac injury. Take miR-199a as an example, in mice with 

transvers aortic constriction (TAC) pressure overload, miR-199a inhibition with 

antagomir-199a improved cardiac contractility [88]. In contrast, overexpression of miR-199a 

using AAV9-199a induced cardiac regeneration in mice after MI [70]. A potential 

explanation, worthy of further investigation, for those observations is that miRs have 

multiple targets and repress different targets in the context of different injury types.

Although progress is promising, current miR studies in myocardial regeneration are limited 

to some extent due to the lack of cardiomyocyte specificity of in vivo anti-miR 

administration protocols, therefore new technologies or further studies are still needed to 

address these limitations. For example, LNA anti-miR15 treatment increased 

cardiomyocytes proliferation after MI, but also robustly induced proliferation of the non-

cardiomyocytes compartment [106]. It is unknown if this non-cardiomyocyte effect is 

necessary for cardiac repair and so has therapeutic relevance. Moreover, treatment using 

anti-miR chemistries could efficiently improve cardiac function in mouse and some cases 

even pig, but whether these approaches could sufficiently repair injured human hearts 

remains to be demonstrated. Studies in non-human primates and eventually human patients 

are needed.
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Key Points

# MiRs have the capabilities to regulate cardiac reprogramming and 

regeneration

# MiRs function in cardiac repair by regulating proliferation, apoptosis, 

metabolism, angiogenesis and senescence.

# MiRs have multiple targets, making the molecular mechanisms more 

complicated such that the same miR may function differently after different 

types of cardiac injuries.

# Manipulation of miR levels can be achieved by antagomirs/LNA anti-miR 

and miR mimics/AAV9-miR, making miR-based therapeutics feasible.
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Figure 1. 
Summary of recently reported miRs that play essential roles in myocardial regeneration. 

MiRs could promote (in red) or inhibit (in yellow) myocardial regeneration, or play a dual-

role (in green) in myocardial regeneration.
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Table 1

Recently published reports of miRs that function in cardiomyocyte regeneration

Ref miR Function in cardiomyocyte (CM) regeneration Target genes in heart

34 miR-590 promote 7-day and 2 month postnatal CMs to re-enter cell cycle and progress 
through mitosis

Homer1,Hopx and Clic5

34 miR-1825 increase the proliferation of 7-day postnatal CMs unclear

34 miR-33b increase the proliferation of 7-day postnatal CMs unclear

34, 52 miR-199a promote 7-day and 2 month CMs to re-enter cell cycle and progress through 
mitosis; facilitate a cardiac metabolic shift from fatty acid toward glucose 
metabolism

Homer1, Hopx and PPARδ

52 miR-214 facilitate a cardiac metabolic shift from fatty acid toward glucose metabolism PPARδ

53, 57 miR-17-92 induce proliferation of CMs PTEN, Isl1 and Tbx1

60 miR-34a induce cell death and hypertrophy of CMs Pnuts

67, 69, 70, miR-15 family repress proliferation of CMs Chek1
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