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Abstract

Statistical regularities in our environment enhance perception and modulate the allocation of 

spatial attention. Surprisingly little is known about how learning-induced changes in spatial 

attention transfer across tasks. In this study, we investigated whether a spatial attentional bias 

learned in one task transfers to another. Most of the experiments began with a training phase in 

which a search target was more likely to be located in one quadrant of the screen than in the other 

quadrants. An attentional bias toward the high-probability quadrant developed during training 

(probability cuing). In a subsequent, testing phase, the target's location distribution became 

random. In addition, the training and testing phases were based on different tasks. Probability 

cuing did not transfer between visual search and a foraging-like task. However, it did transfer 

between various types of visual search tasks that differed in stimuli and difficulty. These data 

suggest that different visual search tasks share a common and transferrable learned attentional 

bias. However, this bias is not shared by high-level, decision-making tasks such as foraging.
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Humans possess powerful mechanisms for statistical learning, allowing us to extract visual 

or auditory regularities from the environment (Orbán, Fiser, Aslin, & Lengyel, 2008; Reber, 
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1993; Saffran, Aslin, & Newport, 1996). Even subtle statistical regularities, such as the 

transitional probability between sounds or novel shapes, are easily extracted, often after just 

minutes of exposure (Fiser & Aslin, 2001, 2005; Hay, Pelucchi, Graf Estes, & Saffran, 

2011; Olson & Chun, 2001; Saffran et al., 1996; Swallow & Zacks, 2008; Turk-Browne, 

2012). Statistical learning not only allows us to perceptually distinguish learned from 

unlearned information, but also changes how we act in the world. An important mechanism 

by which statistical learning changes behavior is attention (Brady & Chun, 2007; Chun & 

Jiang, 1998; Zhao, Al-Aidroos, & Turk-Browne, 2013). For example, past learning of 

important locations changes how we attend to the visual environment in the future. 

However, surprisingly little is known about whether these changes in spatial attention 

generalize across different visual tasks.

In the present study, we examined whether visual statistical regularities extracted in the 

context of one task produce a general spatial bias that is observable in other tasks, or 

whether the learned spatial bias is task-specific. Addressing this question has practical 

implications for understanding the generalizability of attention training from one task to 

another. In addition, it helps elucidate the nature of statistical learning and its impact on 

spatial attention. Previous research has not yielded definitive answers to this question. On 

the one hand, an active task is often unnecessary to produce visual statistical learning, which 

can take place after passive exposure to objects or sounds (Folstein, Gauthier, & Palmeri, 

2010; Reber, 1993; Saffran et al., 1996). Learning occurs in an unsupervised fashion (Fiser 

& Aslin, 2001), and its outcome is detectable in a variety of testing tasks (Turk-Browne, 

Jungé, & Scholl, 2005). These findings may suggest that learning is task-independent. On 

the other hand, studies have shown that the training task sometimes modulates what is 

learned. For example, when performing a task that extracts the “summary statistics” of an 

array of lines (e.g., the average orientation), participants fail to learn the co-occurrence of 

lines on that array (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). In addition, spatial 

context learning of a visual display shows limited or no transfer between visual search and 

change detection tasks (Jiang & Song, 2005). These findings raise the possibility that the 

effects of statistical learning on spatial attention could be task-specific.

We examined the task specificity of attention training via location probability learning. In 

this paradigm, participants search for a target among distractors. Across multiple trials, the 

target is more often found in some locations than in others. Although participants usually 

cannot identify the high-probability locations, they nevertheless find the target more quickly 

and with greater efficiency when it appears in those locations (Jiang, Swallow, & 

Rosenbaum, 2013). Because the probability that a target will appear in a particular location 

cues spatial attention, enhanced search at high-probability locations is known as probability 

cuing (Druker & Anderson, 2010; Geng & Behrmann, 2002, 2005; Jiang, Swallow, 

Rosenbaum, & Herzig, 2013; Miller, 1988).

Like explicitly cued attention, probability cuing reflects a spatial bias toward certain 

locations. However, unlike explicit cuing, probability cuing relies on incidental, long-term 

statistical learning of the target's likely locations (Geng & Behrmann, 2005; Jiang, Swallow, 

Rosenbaum, & Herzig, 2013). Once acquired, probability cuing exhibits striking long-term 

persistence. The spatial bias toward the previously trained high-probability locations is 
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robust one week after training, and over several hundred trials of extinction retraining 

(Jiang, Swallow, Rosenbaum, & Herzig, 2013). It persists even after participants are told 

that the target's location will be random (Jiang, Swallow, & Sun, 2014). In addition, this bias 

is predominantly egocentric. The learned spatial bias persists in the same visual field 

locations following changes in the observer's viewpoint (Jiang & Swallow, 2013a, 2013b).

The persistence of probability cuing over time raises questions about whether it generalizes 

across tasks, or whether it is specific to the training task. Previous research has not 

systematically addressed this question. Most models of spatial attention depict it as a priority 

map that weighs some locations more heavily than others (Bisley & Goldberg, 2010; 

Fecteau & Munoz, 2006; Itti & Koch, 2001). The priority weights are determined by top-

down factors, such as the observer's explicit goal, and bottom-up factors, such as perceptual 

saliency (Desimone & Duncan, 1995; Egeth & Yantis, 1997; Wolfe, 2007). In addition, 

one's past experience often guides spatial attention (Awh, Belopolsky, & Theeuwes, 2012; 

Chun, 2000; Hutchinson & Turk-Browne, 2012; Jiang, Swallow, Rosenbaum, & Herzig, 

2013; Jiang, Won, & Swallow, 2014). Yet, unlike an explicit goal or perceptual saliency, 

previous experience includes a possibly infinite amount of information. It is unclear whether 

momentary attentional allocation draws upon all prior experience or only relies on 

experience from the same task.

Evidence for a generic spatial attention map has come from neurophysiological studies that 

link the posterior parietal cortex to the attentional priority map (for a review, see Bisley & 

Goldberg, 2010). Because the posterior parietal cortex is broadly involved in a variety of 

visual attention tasks (Duncan, 2010; Jiang & Kanwisher, 2003; Wojciulik & Kanwisher, 

1999), it is possible that training in any task will result in a generic and persistent change in 

how visual space is priori-tized. This view predicts that the attentional bias acquired from 

one task (such as visual search) should persist when people perform a different task (such as 

foraging).

However, task specificity in probability cuing could occur if learning influences 

mechanisms that are used in one task but not in another. For example, the feature integration 

theory distinguishes feature search from conjunction search. Simple feature search (such as 

finding a red object among green ones) reflects simultaneous, parallel distribution of 

attention across all locations, whereas conjunction search (such as finding a red vertical 

among green verticals and red horizontals) relies on the serial allocation of attention from 

one location to another (Treisman, 1988). Unlike the feature integration theory, the guided 

search model treats feature search and conjunction search as different ends of a continuum 

(Wolfe, 2007): Some search tasks are highly efficient, whereas others require serial scrutiny 

of the search items (Wolfe, 1998). If different search tasks rely on different mechanisms, 

then probability cuing might not transfer across them.

The following experiments present our systematic attempt at characterizing the task 

specificity of probability cuing. These empirical data are the basis for placing changes in 

spatial attention on a continuum ranging from not at all specific to highly task-specific. In 

turn, they help us understand how the visual system uses previous experience to prioritize 

spatial attention.
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Experiment 1

We started out by testing the most generic view: When performing a task, the visual system 

favors locations that were prioritized in previous tasks. A straightforward way to implement 

a task-general attentional bias is by modulating the weights on a generic attentional priority 

map. Locations that were important in the training task receive higher weights on the 

priority map. The same map may then be used when performing additional tasks. If this 

occurs, then an attentional bias developed in one task (such as visual search) should persist 

when the task changes (e.g., to foraging).

We used two tasks in Experiment 1: a standard visual search task, in which participants 

searched for a T target among L distractors, and a foraging-like task, in which participants 

guessed the location of hidden treasure under one of several items (Fig. 1). Both tasks 

involved finding a “target” among several nontargets. However, the search task was visually 

guided and required matching the search items to a target template (the “T”). It involves 

frequent stop-and-go until the target was found. In contrast, the treasure hunt task was 

primarily a high-level decision-making task. Participants had no way of knowing which item 

contained treasure; they only found out after they had selected an item and received 

feedback. The treasure hunt task was modeled after foraging-like tasks, in which human 

behaviors follow the “matching law” (Herrnstein, 1974). Specifically, the probability that 

people will choose a given location is correlated with the probability that the target is in that 

location (Baum, 1974; Pierce & Epling, 1983). Thus, both visual search and treasure hunt 

are likely to produce an attentional bias toward the high-probability locations. But does this 

bias transfer between tasks?

The participants in Experiment 1 were tested in two consecutive phases. In the training 

phase, they performed either the visual search task or the treasure hunt task. The target 

appeared in a selected “rich” visual quadrant on 50% of the trials, and in any one of the 

other three “sparse” quadrants on 16.7% of the trials. In the testing phase, they performed 

the other task. Because we were interested in the persistence of the trained attentional bias, 

we did not introduce a new attention bias in the testing phase. Instead, the target was equally 

likely to appear in any of the four quadrants (25%) during testing. If all tasks share a 

common and transferrable attentional priority map, then probability cuing acquired in one 

task should transfer to the other task.

Two versions of Experiment 1 were administered to different participants. In Experiment 1A 

(Fig. 1a), the search and treasure hunt tasks differed in their set sizes (12 items in the visual 

search task and eight items in the treasure hunt task) and stimuli (T/Ls vs. treasure chests). 

In Experiment 1B (Fig. 1b), the two tasks used similar displays (eight items in both tasks, 

and the treasure chests were represented by Ls). Testing both versions informed us about the 

specificity of probability cuing to tasks and display properties.

Method

Participants—A group of 48 students (18–35 years old) from the University of Minnesota 

completed Experiment 1 in exchange for extra course credit and a small prize. They were 
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naive to the purpose of the study and had normal or corrected-to-normal visual acuity. Half 

of the participants completed Experiment 1A, and the other half, Experiment 1B.

Equipment—Participants were tested individually in a room with normal interior lighting. 

They sat in front of a 19-in. CRT monitor. The viewing distance was approximately 57 cm 

but was unconstrained. The experiment was programmed with Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997) implemented in MATLAB (www.mathworks.com).

Visual search—To initiate each trial, participants clicked on a small square (0.34° × 

0.34°) with a mouse. The square was presented at a random location within the central 2° × 

2° region of the monitor. The mouse click required eye–hand coordination and enforced 

fixation prior to the next trial. After the click and a 200-ms blank period, the search display 

was presented. Participants were asked to find the T and to report whether it was rotated to 

the left or the right. Both accuracy and speed were emphasized. The display was presented 

until a response was made. Three rising tones lasting a total of 300 ms followed a correct 

response. A buzz (200 ms) and a blank interval (2 s) followed an incorrect response.

The search display contained one Tand several Ls (11 Ls in Exp. 1A, and 7 Ls in Exp. 1B). 

Each search item subtended 1.37° × 1.37°. The T was tilted 90° randomly to the left or to the 

right. The orientation of each L was randomly chosen from four possible orientations (0°, 

90°, 180°, or 270°). The two segments of the L had a small offset (0.17°).

The search items were black presented against a gray background. The items were presented 

at randomly selected locations within an invisible 10 × 10 matrix (22.2° × 22.2°), with the 

constraint that an equal number of items appeared in each quadrant.

Treasure hunt—As in the visual search task, participants clicked on a small square to 

initiate each trial of the treasure hunt task. After a 200-ms blank period, they were shown 

eight identical treasure chests (1.37° × 1.37°, Exp. 1A) or eight randomly oriented Ls (Exp. 

1B). Two items were in each quadrant, placed at random locations on the display (as in the 

visual search). Participants were told that one of the eight items contained gold coins, 

whereas the others contained old boots. They were given one chance to guess where the gold 

coins were by clicking on one of the items. The display was erased with the mouse click, 

revealing at the chosen location either gold coins (along with a high tone) or old boots 

(along with a low tone) for 300 ms. This was followed by a feedback display that lasted 1 s. 

The feedback display was similar to the treasure hunt display, except that the contents of all 

of the treasure chests or Ls were revealed (i.e., one of them had gold coins, the rest of them 

had old boots). Participants received 1 point for each trial on which gold coins were found. 

They accumulated points and traded them for pieces of candy or a cash prize of similar 

value (1 cent per point).

Design—The experiment was divided into two consecutive phases that differed in the task 

and the target's location probability. There were 384 trials in each phase, binned into 32 

blocks of 12 trials each. We chose 12 trials as the size of an experimental block because this 

was the smallest number of trials necessary to produce a balanced experimental design 

across conditions. Half of the participants in each experiment performed visual search in the 
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training phase and treasure hunt in the testing phase, whereas the other half had the reverse 

order.

During the training phase, the target's location probabilities were unequal across the four 

quadrants. The target appeared in a “rich” quadrant on 50% of the trials, and in any one of 

the three “sparse” quadrants on 16.7% of the trials. The specific quadrant that was “rich” 

was counterbalanced across participants, but it remained the same during training for a given 

participant. Participants were not informed of this manipulation. In the testing phase, the 

target appeared with equal probabilities in each visual quadrant (25%).

Participants completed ten practice trials in each task at the beginning of the experiment. 

Upon completion of the experiment, they were asked to identify the rich quadrant with a 

mouse click.

Results

In this experiment and subsequent ones, the overall accuracy in visual search was higher 

than 96%. Analyses of variance (ANOVAs) on accuracy revealed no speed–accuracy trade-

off in any of the experiments. The mean RT for correct trials was calculated for each 

participant after outliers had been removed (RTs longer than 10 s were outliers—typically 

less than 0.3% of trials).

In the treasure hunt task, we measured the percentage of trials on which participants chose a 

location in the rich (or previously rich) quadrant, as opposed to the sparse quadrants.

Experiment 1A—We first examined the data from participants who were trained in visual 

search and tested in treasure hunt (Fig. 2).

Training (visual search): RTs were significantly faster when the target fell in the rich 

quadrant rather than the sparse quadrants, F(1, 11) = 44.56, p < .001, ηp
2 = .80. RTs also 

improved as the experiment progressed, F(31, 341) = 3.51, p < .001, ηp
2 = .24. The two 

factors showed a marginal interaction, F(31, 341) = 1.41, p < .08, ηp
2 = .11. Probability 

cuing was absent in Block 1 (p > .13) but developed after several dozen trials.

Testing (treasure hunt): If probability cuing resulted in a general spatial bias toward the 

rich quadrant, then the proportion of trials on which people chose the rich quadrant in the 

treasure hunt task should exceed chance (.25). But on the contrary, participants were no 

more likely to select a location in the (visual search) rich quadrant than in the sparse 

quadrants, F < 1.

Next we examined the data from participants trained in treasure hunt and tested in visual 

search (Fig. 3).

Training (treasure hunt): Participants were more likely to choose a box in the rich 

quadrant than in any of the sparse quadrants in the training phase, F(1, 11) = 5.85, p < .034, 

ηp
2 = .35. This bias developed over time, resulting in a significant Quadrant × Block 
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interaction, F(31, 341) = 1.52, p < .041, ηp
2 = .12. Thus, the treasure hunt task yielded a bias 

toward the rich quadrant.

Testing (visual search): We found no evidence of transfer between tasks. Visual search 

RTs improved as testing progressed, F(31, 341) = 2.53, p < .001, ηp
2 = .19. However, they 

were unaffected by the quadrant condition, F(1, 11) = 1.81, p > .20, and no interaction 

emerged between quadrant and block, F < 1. The bias to choose a box in the rich quadrant 

during training did not transfer to a task that required participants to search through and 

identify items in the display.

Experiment 1B—Could the lack of transfer in Experiment 1A be attributed to a change in 

display characteristics between the two tasks? After all, the two tasks differed in their 

numbers of items and in the appearances of the items. To address this possibility, we 

examined the data from Experiment 1B, which equated the numbers of stimuli and their 

appearances across the two tasks.

Training (visual search): As is shown in Fig. 4, people who conducted visual search in the 

training phase were significantly faster when the target was in the rich quadrant rather than 

the sparse quadrants, F(1, 11) = 51.78, p < .001, ηp
2 = .83. This effect did not interact with 

block, F < 1. The difference between the rich and sparse conditions in Block 1 could be 

attributed to noise, since each block contained only six trials per condition. Alternatively, it 

could reflect short-term trial sequence effects. Specifically, because the target was more 

likely to appear in the rich quadrant, immediate repetition of the target's quadrant happened 

more often in the rich than in the sparse condition (Walthew & Gilchrist, 2006). To ensure 

that participants had acquired long-term learning of the target's location probability, we 

examined data from the second half of training (Blocks 17–32) and separated trials with or 

without an immediate repetition of the target's quadrant. The RT advantage in the rich 

condition was substantial (440 ms, p < .001), even on trials without an immediate repetition 

of the target's quadrant. Thus, participants showed a spatial bias toward the rich quadrant in 

the visual search task.

Testing (treasure hunt): The attentional bias did not persist in the treasure hunt task (Fig. 

4b). Participants were no more likely to choose an item in the rich quadrant than in the 

sparse quadrants in the treasure hunt task, F < 1.

Training (treasure hunt): As is shown in Fig. 5, participants trained in the treasure hunt 

task of Experiment 1B developed a preference for the rich quadrant. They were more likely 

to click on an item in the rich quadrant than in any of the sparse quadrants, F(1, 11) = 3.62, 

p = .084, ηp
2 = .25, and this preference increased as training progressed: F(31, 341) = 1.76, 

p < .009, ηp
2 = .14, for the interaction between condition and block.

Testing (visual search): The preference for the rich quadrant, however, did not transfer to 

visual search. Search RTs were not faster when the target was in the rich quadrant rather 

than the sparse quadrants, nor did target quadrant interact with block, Fs < 1.
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A further analysis that combined the data from Experiments 1A and 1B yielded the same 

pattern of statistical results as those reported for each individual experiment: Probability 

cuing was highly significant in the training task but did not persist in the testing task.

At the end of the experiment, participants were asked to identify the rich quadrant. Thirteen 

(five trained in treasure hunt and eight trained in visual search) of the 48 participants 

correctly identified the rich quadrant. This number did not differ from chance, p > .50. None 

of the effects reported in this experiment differed between participants who correctly 

identified the rich quadrant and the other participants, all ps > .10 for the interaction between 

participants (“aware” or “unaware”) and the other experimental factors. This was also the 

case in subsequent experiments. As in other studies (Geng & Behrmann, 2002; Jiang, 

Swallow, & Rosenbaum, 2013), probability cuing was incidental. Because explicit 

recognition contributed little to performance, and because the issue of explicit awareness has 

been addressed more fully elsewhere (e.g., Geng & Behrmann, 2002; Jiang, Swallow, 

Rosenbaum, & Herzig, 2013; Jiang, Swallow, & Sun, 2014), we will not discuss the 

recognition data further.

Discussion

Experiment 1 provided evidence against the idea that the attentional bias acquired from one 

task reflects a generic and transferrable change in spatial attention. On the contrary, 

probability cuing developed in a visual search task did not persist when participants 

performed treasure hunt, or vice versa. The lack of transfer was found even when the visual 

displays were similar between the two tasks (Exp. 1B). Thus, the data from Experiment 1 

suggest that changes in the attentional priority map are task-specific.

When trained in treasure hunt, participants developed a preference for the rich quadrant. It 

may seem surprising that the preference for the rich quadrant (28% in Exp. 1A and 36% in 

Exp. 1B) was less than the probability that the gold coins would appear in the rich quadrant 

(50%). However, 50% was not the asymptote level of performance. In reinforcement 

learning, the asymptote level is jointly determined by the environmental statistics and 

reinforcement history. The probability that a specific choice will be made follows the 

Softmax function (Sutton & Barto, 1998), which in our study may be simplified to

Plugging in the probabilities for the rich quadrant (.5) and the sparse quadrants (.167) yields 

an asymptote level of 31.7% for the rich quadrant.1 The observed data in the treasure hunt 

task therefore match what is expected. Nonetheless, learning from the treasure-hunt task 

failed to influence attentional allocation in the subsequent visual search task, and vice versa.

1We thank Roger Remington for this reference.
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Experiment 2

We next set out to test the opposite view about the task specificity of probability cuing: 

When prioritizing attention, the visual system only considers prior experience from the same 

task. Consequently, the priority weights for locations are reset in a new task to reflect only 

the current task's goals and perceptual saliency, but not previous experience. This view 

predicts a high degree of task specificity. Because potentially an infinite number of tasks 

exist, to keep the research tractable, we restricted our investigation to visually guided search 

tasks. The first study—Experiment 2—involved two visual search tasks of different targets 

and distractors, but with similar levels of search efficiency (slopes). In one task, participants 

searched for a T target among L distractors and reported the T's color. In the other task, they 

searched for a rotated 2 among rotated 5s and reported the 2's color (Fig. 6). Pilot data from 

nine participants showed equivalent search slopes on target-present trials: 98 ms/item in the 

T/L task and 97 ms/item in the 2/5 task. Despite this similarity, the T/L and 2/5 tasks 

constituted a noticeable change in task. As will be shown later, search RTs in one task 

improved with training, but suddenly slowed down when the other task began. If changes in 

spatial attention are task-specific, then probability cuing should not persist across the T/L 

and 2/5 tasks.

Method

Participants—A group of 16 new participants from the University of Minnesota 

completed Experiment 2 for extra course credit or $10/h. Their characteristics were similar 

to those from Experiment 1.

Task—Participants conducted visual search throughout the experiment, but the search items 

were either a Tand several Ls or a rotated 2 and several rotated 5s. There were 12 items in 

each display, and the color of each item was randomly determined to be either black or 

white. Participants were asked to find the target (T in the T/L task and 2 in the 2/5 task) and 

to press a button to report its color.

Design—Half of the participants performed the T/L task during training and the 2/5 task 

during testing; the other half had the reverse order. For all participants, the target was more 

often found in a rich quadrant (50%) during training, but its location probability was random 

during testing (25% in each quadrant). As in Experiment 1, 384 trials were presented in each 

phase.

All other aspects of the experiment were the same as those of Experiment 1.

Results

As is shown in Fig. 7, probability cuing emerged in the training phase and persisted in the 

testing phase.

Training—In the training phase, participants were significantly faster when the target fell 

in the rich quadrant rather than in the sparse quadrants, F(1, 15) = 9.98, p < .006, ηp
2 = .40, 

demonstrating probability cuing. RTs were also faster as the experiment progressed, F(31, 

465) = 7.88, p < .001, ηp
2 = .34, but the two factors did not interact significantly, F(31, 465) 
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= 1.04, p > .35. RTs did not differ between the rich and sparse conditions in the first block 

(p > .50), but were significantly faster in the rich than in the sparse condition by the end of 

training (Block 32, p < .02). The magnitude of probability cuing was smaller in this 

experiment than in Experiment 1. This reduction may be attributed to a strategy of searching 

only through one set of colored items and reporting whether the target was present in that set 

(e.g., the white items). Because probability cuing scales with set size (Geng & Behrmann, 

2005; Jiang, Swallow, & Rosenbaum, 2013), a reduction in the effective set size would 

reduce its magnitude.

Testing—Although the search task changed, the learned attentional bias persisted. In the 

testing phase, we observed a significant main effect of target quadrant, F(1, 15) = 7.66, p < .

014, ηp
2 = .34, with faster RTs when the target lay in the previously rich quadrant. RTs were 

unaffected by block, F(31, 465) = 1.46, p > .15, or a Block × Quadrant interaction, F(31, 

465) = 1.06, p > .35. Probability cuing persisted even though the change in task yielded a 

substantial increase in search RTs: The RT in the first block of the testing phase (Block 33) 

was 660 ms slower than the RT in the last block of the training phase (Block 32), F(1, 15) = 

19.25, p < .001, ηp
2 = .56.

Discussion

Experiment 2 showed that the attentional bias that was acquired during the T/L search task 

persisted when participants performed the 2/5 task, and vice versa. Although changes in item 

identity resulted in a substantial rise in search RTs, they did not reset the learned attentional 

bias. These data provide strong evidence for the presence of a common and transferrable 

spatial attentional bias for the T/L and 2/5 tasks. In contrast, Experiment 1 showed that this 

commonality did not extend to the treasure-hunt task. Together, the first two experiments 

rule out the two extreme views. Statistical learning of the target's location probability 

produces an attentional bias that is neither fully transferrable across tasks nor hyperspecific 

to the training task.

Experiment 3

The contrast between Experiments 1 and 2 raises questions about what other tasks might 

share a transferrable learned attentional bias. To address this question, in Experiments 3– 5 

we tested some of the most commonly used visual search tasks in the laboratory. The feature 

integration theory divides visual search into feature search and conjunction search 

(Treisman, 1988), whereas the Guided Search model considers all tasks as falling on a 

continuum ranging from highly efficient to highly inefficient search (Wolfe, 2007). These 

models do not explicitly address whether training effects are transferrable across different 

search tasks. If an attentional bias developed in one task persisted when people perform 

another task, this finding would provide some of the strongest evidence for the use of a 

common and transferrable spatial attention map for these tasks.

Experiment 3 tested the hypothesis that tasks similar in search efficiency share a common 

attentional priority map, but tasks dissimilar in search efficiency rely on different spatial 

attention maps (the search efficiency hypothesis). This hypothesis was motivated by the 

larger literature on implicit learning. Limited transfer across tasks is a hallmark of implicit 
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learning (Dienes & Berry, 1997). For example, artificial grammar learning and sequence 

learning are specific to the surface features of the tasks. Transfer is limited when the 

underlying statistical structure remains the same but the surface features change (e.g., from 

one set of letters to another, or from the visual to the auditory modality; Berry, Banbury, & 

Henry, 1997; Dienes & Berry, 1997). Similarly, motor skill learning is specific to the 

difficulty of the training task. In a rotary pursuit task, transfer of skills was reduced if people 

were trained on an easy task (e.g., with a slow speed) and tested on a difficult task (e.g., fast 

speed), or vice versa (Namikas & Archer, 1960). As a form of implicit learning, probability 

cuing may be similarly constrained.

To test the search efficiency hypothesis, we employed two T-among-L search tasks. The 

target T and distractor Ls were either highly similar (difficult search) or dissimilar (easy 

search), producing different search slopes. We examined whether probability cuing persisted 

across changes in search efficiency.

Method

Participants—A group of 64 participants completed Experiment 3.

Stimuli—Participants searched for a T target among a varying number of L distractors and 

reported the orientation of the T. The offset between the two segments of the Ls was 0° in 

the easy task and 0.27° in the difficult task (see Fig. 8).

Design—Participants completed two consecutive phases. The target's location probability 

was biased toward a rich quadrant (50% of the trials) in the training phase, but was unbiased 

(25% in each quadrant) in the testing phase. In addition, to verify that the difficulty 

manipulation was effective, we manipulated the number of items in the display (8, 12, or 

16). The trial number changed slightly from those in previous experiments to accommodate 

the set size manipulation: 360 trials were presented in a randomly intermixed order in each 

phase.

Participants were divided into four groups based on the tasks they performed in the two 

experimental phases. There were 16 participants in each group. Throughout the experiment, 

the both-easy group performed only the easy task, whereas the both-difficult group 

performed only the difficult task. The easy–difficult group performed the easy task during 

training but the difficult task during testing, and the difficult– easy group had the reverse 

order.

Results

This experiment produced a large amount of data, owing to the presence of four participant 

groups and the addition of a set size manipulation. For readability, we have simplified the 

data report by averaging across different blocks. Figure 8 shows data from the training phase 

separately for the four groups of participants.

Training phase—Because the training task was the same for the participants in the both-

easy and easy–difficult groups and for those in the both-difficult and difficult–easy groups, 

our ANOVA included Training Task Difficulty (easy or difficult) as a between-groups 
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factor, and Probability Cue Condition (sparse or rich) and Set Size (8, 12, or 16) as within-

groups factors. All main effects were significant: RTs were faster in the rich than in the 

sparse condition, F(1, 62) = 72.15, p < .001, ηp
2 = .54; faster in the easy than in the difficult 

task, F(1, 62) = 554.71, p < .001, ηp
2 = .90; and faster when fewer items were on the 

display, F(2, 124) = 566.85, p < .001, ηp
2 = .90. Our manipulation of task difficulty was 

effective, as we verified with a significant interaction between difficulty and set size, F(2, 

124) = 321.71, p < .001, ηp
2 = .84, in which search slopes differed substantially: 33 ms/item 

in the easy task and 232 ms/item in the difficult task. In addition, a significant interaction 

was observed between quadrant condition and set size, F(1, 62) = 16.01, p < .001, ηp
2 = .21: 

Search slopes were shallower in the rich than in the sparse condition. Finally, a significant 

three-way interaction showed that the effects of probability cuing on search slope were 

greater in the more difficult search task, F(2, 124) = 5.59, p = .005, ηp
2 = .083.

Testing phase—Having observed a significant probability-cuing effect in the training 

phase, we now turned to the question of whether the persistence of cuing depended on the 

match of search efficiency between the training and testing tasks. Figure 9 plots data from 

the four groups of participants during testing.

In the testing phase, the four groups differed not only in the difficulty of visual search but 

also in whether the testing task matched the training task. We therefore conducted an 

ANOVA using Task Difficulty (easy or difficult) and Task Status (match or mismatch) as 

between-groups factors, and Quadrant Condition (sparse or rich) and Set Size as within-

groups factors. This analysis produced a significant main effect of quadrant condition, F(1, 

60) = 20.16, p < .001, ηp
2 = .25, suggesting that probability cuing persisted in the testing 

phase. In addition, RTs were faster when fewer items were on the display, F(2, 120) = 

407.48, p < .001, ηp
2 = .87. RTs were slower and search slopes were steeper in the more 

difficult task, F(1, 60) = 596.71, p < .001, ηp
2 = .91, and F(2, 120) = 221.65, p < .001, ηp

2 

= .79, respectively. Importantly, whether task difficulty matched between training and 

testing did not influence search RTs, F(1, 60) = 1.58, p > .20, nor did this factor interact 

with condition (rich or sparse), F < 1. None of the higher-order interactions involving task 

status (match or mismatch) and condition was significant, all Fs < 1. All other interaction 

effects did not reach significance, smallest p = .08. Thus, a tenfold change in search slope 

did not affect how probability cuing persisted in the testing phase.

Discussion

Experiment 3 showed that probability cuing persisted following a change in search 

difficulty. These data suggest that changes in search efficiency do not necessarily change 

how previous experience influences visual search. This finding is surprising, considering 

that probability cuing results from implicit learning, which previously has been shown to 

produce limited transfer (Dienes & Berry, 1997). One way to account for this discrepancy 

may be to consider the processes involved in serial search, which relies on the movement of 

spatial attention from one location to the next as well as on object recognition (Wolfe, 

2007). Although recognition and categorization may take longer in the more difficult than in 

the easy task, the roles of attentional shifts across tasks may be similar, and this similarity 

may account for the transfer of cuing between the two tasks. This possibility is consistent 
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with an earlier proposal that probability cuing reflects the reinforcement of attentional shifts 

that land on targets (Jiang, Swallow, & Capistrano, 2013).

Experiment 4

According to the Guided Search model (Wolfe, 2007), feature and conjunction search differ 

chiefly in how efficiently perceptual features and explicit goals guide attention. When a 

single feature distinguishes the target from distractors (e.g., red vs. green color), the featural 

difference can effectively guide attention to the target, producing shallow search slopes. 

However, much like conjunction search, feature search tasks differ widely in efficiency. 

Some feature search tasks, such as finding a vertical line (0°) among 20°-tilted lines, yield 

steep search slopes (Wolfe, Friedman-Hill, Stewart, & O'Connell, 1992). Importantly, 

differences between feature and conjunction search tasks could reflect recognition processes 

rather than qualitative differences in how spatial attention moves from one location to 

another. In Experiment 4, we tested whether probability cuing persisted when one of the two 

tasks was a feature search task, whereas the other was a conjunction search task.2

Method

Participants—A group of 32 new participants completed Experiment 4: 16 in each of 

Experiments 4A and 4B.

Design—The two tasks used in Experiment 4 were a T/L spatial configuration search task 

and a line orientation feature search task. On each trial, participants saw an array of items (T 

and Ls, or lines). In the T/L task, the target was a T and the distractors were Ls. In the line 

orientation task, the target was a vertical line (1.37° in length) and the distractors were 

slanted lines (also 1.37° in length) tilted ±20° away from the vertical (approximately half of 

the distractors tilted clockwise and the other half tilted counterclockwise). In both tasks, half 

of the items were black and the other half were white. Participants were asked to find the 

target and to report whether it was black or white. The number of items on the display could 

be 8, 12, or 16.

The participants in Experiment 4A performed the orientation search task in the training 

phase and the T/L task in the testing phase. Those in Experiment 4B had the reverse order. 

As in the previous experiments, the target was more often found in a rich quadrant in the 

training phase, but its location was random in the testing phase. There were 360 trials in 

each phase. Because the smallest number of trials to produce a balanced design was 36, the 

data were divided into ten blocks in each phase. Other aspects of the experiment were the 

same as in Experiment 3.

Results

Experiment 4A

Training (difficult feature search): As is shown in Fig. 10a, in the training phase, 

participants acquired probability cuing in the feature search task. An ANOVA on probability 

2The T/L search task is most accurately described as a spatial configuration search task, a form of extremely inefficient search task 
(Wolfe, 1998). For simplicity of description, we use the term “conjunction search.”
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cue condition and block showed that RTs were significantly faster in the rich than in the 

sparse condition, F(1, 15) = 56.72, p < .002, ηp
2 = .79, and also improved as the experiment 

progressed, F(9, 135) = 7.30, p < .001, ηp
2 = .32. These two factors did not interact 

significantly, F(9, 135) = 1.80, p = .074.

Testing (T/L search): When the task changed to the T/L search task, overall RTs increased 

substantially (p < .001). However, probability cuing persisted: RTs were significantly faster 

in the rich than in the sparse condition, F(1, 15) = 17.70, p < .001, ηp
2 = .54. This effect did 

not interact with block, F < 1. As is shown in Fig. 10b, the search slope was shallower in the 

rich condition than in the sparse condition, producing a significant interaction between cue 

condition and set size: F(2, 30) = 4.01, p < .05, ηp
2 = .21, in the training phase; F(2, 30) = 

3.34, p < .05, ηp
2 = .18, in the testing phase. Thus, training in a difficult feature search task 

produced an attentional bias that transferred to a spatial configuration search task.

Experiment 4B

Training (T/L search): In the training phase (Fig. 11a), the T/L search task produced a 

significant probability-cuing effect, F(1, 15) = 27.76, p < .001, ηp
2 = .65. This effect 

increased with training, yielding a significant interaction between cue condition and block, 

F(9, 135) = 4.36, p < .001, ηp
2 = .23.

Testing (difficult feature search): Probability cuing persisted in the difficult feature search 

task. The main effect of cue condition was marginally significant when the data were 

separated into ten blocks of trials (Fig. 11a), F(1, 15) = 4.45, p < .052, ηp
2 = .23, but reached 

significance when the data were averaged across blocks (Fig. 11b), F(1, 15) = 4.60, p < .05, 

ηp
2 = .24. Probability cue condition did not interact with set size in either the training phase, 

F < 1, or the testing phase, F(2, 30) = 1.25, p > .30.

Discussion

The data from Experiment 4 were consistent with the idea that location probability learning 

resulted in a transferrable attentional bias between a difficult feature search task and a 

conjunction search task (the T/L spatial configuration search task). In Experiment 4A, 

participants performed the T/L task in the testing phase, and their performance was clearly 

influenced by prior training in a difficult feature search task. The participants in Experiment 

4B also demonstrated transfer of location probability learning: After acquiring probability 

cuing in the T/L search task, they continued to favor the previously rich quadrant in a 

difficult feature search task. Thus, probability cuing transferred from a difficult feature 

search task to a conjunction search task, and vice versa.

Although transfer was evident in both experiments, the magnitude of the probability-cuing 

effect decreased in the testing phase (from 394 to 249 ms in Exp. 4A and from 465 to 147 

ms in Exp. 4B). Some of this decrease could reflect a change in statistics, since the degree of 

reduction was no greater in Experiment 4A than in Experiment 3. However, because the 

reduction was immediately observed in Experiment 4B when the task changed, it could also 

reflect the change in task. In Experiment 5, we further examined the transfer between 

conjunction and feature search tasks.
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Experiment 5

Under which conditions would the visual system draw upon previous experience in 

prioritizing spatial attention? So far, our investigation has focused on one factor: consistency 

between the previous tasks and the current one. However, when the task changes, other 

attentional cues may change the utility of the probability cue. If the new task contains strong 

top-down goals or salient perceptual features, these cues may overshadow the use of the 

learned probability cue. In fact, several recent studies have shown that explicit cues interfere 

with implicitly guided attention (Jiang, Swallow, & Rosenbaum, 2013; Rosenbaum & Jiang, 

2013). In addition, implicit attentional cuing is weakened when participants search for a 

simple feature target (Druker & Anderson, 2010; Geyer, Zehetleitner, & Müller, 2010; 

Kunar, Flusberg, Horowitz, & Wolfe, 2007). Thus, when examining the task specificity of 

probability cuing, it is important to consider the utility of previous experience relative to 

other attention cues.

Simple feature search tasks, such as finding a white letter among black letters, involve 

efficient guidance of spatial attention. Because perceptual saliency is a potent cue for spatial 

attention, probability cuing should have a limited impact on simple feature search. 

Consequently, after training in a conjunction search task, the resulting probability cue 

should have limited to no impact on a subsequent feature search task. The reduction in 

probability cuing in Experiment 4B was consistent with this idea. The more efficient the 

feature search task is, the less likely probability cuing would transfer from conjunction 

search to feature search. This prediction would be tested in Experiment 5A.

The reverse scenario—transfer from simple feature to conjunction search—is more difficult 

to predict. As had been shown in a previous study, probability cuing could be observed even 

when the display contained just a single item (Druker & Anderson, 2010). This raises the 

possibility that locations that frequently contain a target are prioritized, even when no search 

is necessary. When subsequently probed with a conjunction search task, probability cuing 

may exert a strong influence on spatial attention, paradoxically increasing the size of cuing 

from training to testing. Alternatively, it is possible that training in a simple feature search 

task might induce only a weak attentional bias, and the salient perceptual cue might 

overshadow the learning of the probability cue. Probability cuing would therefore not be 

revealed, even when probed with a conjunction search task. These contrasting predictions 

would be tested in Experiment 5B.

Method

Participants—A group of 24 participants completed this experiment, 12 in Experiment 5A 

and 12 in Experiment 5B.

Design and procedure—In these experiments, participants searched for a T target 

among L distractors and reported the direction of the T (left or right). In the training phase, 

the location of the T was biased toward a rich quadrant (50% of trials). In the testing phase, 

the T's location was random, appearing in each quadrant 25% of the time. There were 384 

trials in each phase.
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In the training phase of Experiment 5A, the target and distractors had the same color, 

necessitating the several shifts of attention that are characteristic of conjunction search. In 

the testing phase, the target was in one color (e.g., white), but the distractors were in another 

color (e.g., black). Thus, the task involved simple feature search. Although the detection of a 

color singleton may not demand spatial attention (Treisman, 1988), to identify the target's 

orientation participants would need to shift attention to the target's location. The feature task 

therefore likely involved one attentional shift from the default location (i.e., the fixation 

point) to the target's location.

Experiment 5B was similar, except for the order of tasks: Participants were trained in the 

simple feature search task and tested in the conjunction search task. We examined whether 

the spatial bias developed from simple feature search would persist in the conjunction search 

task.

Although we did not measure search slopes directly, on the basis of similar visual search 

experiments we estimated the search slope to be 0 ms/item in the feature search task and 

about 100 ms/item in the conjunction search task.

Results

Figures 12 and 13 show the results from Experiments 5A and 5B, respectively.

Experiment 5A: conjunction to feature search

Training (conjunction search): In the conjunction search task, RTs were significantly 

faster when the target appeared in the rich quadrant rather than the sparse quadrants, F(1, 

11) = 70.26, p < .001, ηp
2 = .87, and RTs also improved as the experiment progressed, F(31, 

341) = 2.33, p < .001, ηp
2 = .18. The two factors did not interact, F(31, 341) = 1.15, p > .25; 

learning emerged early and was maintained for most of the training phase. The size of the 

effect was large: By the end of training, the RT in the rich condition was 25% faster (about 

800 ms) than that in the sparse condition.

Testing (feature search): RTs improved, primarily from the first to the second testing 

blocks, F(31, 341) = 3.62, p < .001, ηp
2 = .25. However, they were unaffected by quadrant 

condition, F(1, 11) = 3.22, p > .10. The two factors did not interact, F < 1. Even the first 

block after transfer showed no effect of target quadrant, p > .50.

Experiment 5B: feature to conjunction search

Training (feature search): RTs were significantly faster when the target lay in the rich 

quadrant rather than the sparse quadrants, F(1, 11) = 14.66, p < .003, ηp
2 = .57, and RTs also 

improved as the experiment progressed, F(31, 341) = 5.13, p < .001, ηp
2 = .32. We found no 

interaction between target quadrant and block, F < 1. A significant probability-cuing effect 

emerged in the training phase, although the magnitude of the effect was small.

Testing (conjunction search): Probability cuing failed to transfer from feature to 

conjunction search. RTs improved as testing progressed, F(31, 341) = 2.52, p < .001, ηp
2 = .

19, but they were unaffected by target quadrant, F(1, 11) = 1.05, p > .30, or a Quadrant × 
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Block interaction, F < 1. Even the first testing block showed no advantage for the previously 

rich quadrant, p > .50. No evidence emerged that the simple feature search task had 

produced a robust and transferrable change of attention.

Discussion

Probability cuing did not transfer from conjunction search to feature search (Exp. 5A). Even 

though a strong attentional bias had developed in the training phase, it did not influence 

performance in the simple feature search task. These data are compatible with the idea that 

probability cuing is only one of several sources of spatial attention. Its utility in guiding 

attention is substantially reduced in the presence of other strong top-down or bottom-up 

cues.

Conversely, probability cuing also failed to transfer from feature search to conjunction 

search (Exp. 5B). Although the target was frequently located in a rich quadrant in the 

training phase, and an attentional shift was necessary to identify the target, this did not result 

in a strong and transferrable attentional bias to the subsequent conjunction search task. 

These data differed from those of Experiment 4A, in which a strong and transferrable 

probability-cuing effect was observed when participants were trained in a difficult feature 

search task. The highly salient perceptual cue used in Experiment 5B likely overshadowed 

location probability learning. Thus, frequently placing a target in one visual quadrant was 

insufficient to produce a strong attentional preference for those locations.

General discussion

Recently, several researchers have proposed that one's previous experience influences visual 

attention (Awh et al., 2012; Chun, Golomb, & Turk-Browne, 2011; Hutchinson & Turk-

Browne, 2012; Jiang, Swallow, & Rosenbaum, 2013). However, unlike explicit behavioral 

goals and perceptual saliency, previous experience contains a vast amount of information. 

When performing a task, how does the visual system determine which, if any, of one's 

previous experience is relevant? The larger implicit-learning literature predicts limited 

transfer of implicitly acquired knowledge across tasks and context (Berry et al., 1997; 

Dienes & Berry, 1997), a prediction that fits the instance theory of attention and 

automaticity (Logan, 2002). But what constitutes a meaningful change in task and context? 

How does learning interact with other cues of attention? Several answers have emerged from 

the present study.

First, the visual system is more likely to rely on previous experience if no other strong cues 

already exist to guide attention. When a salient visual feature already guides attention, 

probability cuing from a previous task does not affect performance in the current task (Exp. 

5A). In the absence of other cues, however, location probability learning has a substantial 

influence on behavior. This influence persists over several hundred trials and across many, 

though not all, types of task changes.

Second, among visually guided search tasks, location probability learning produces a highly 

transferrable change in attentional bias. Probability cuing transferred between the T/ L and 

2/5 tasks, between easy and difficult conjunction search tasks, and between difficult feature 
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search and conjunction search tasks. Conjunction and simple feature search tasks appear to 

present an exception (Exp. 5), though this lack of transfer is likely attributable to the 

presence of a perceptually salient cue.

Third, the effects of probability cuing appear to be confined to visually guided search tasks. 

Experiment 1 showed no transfer between visual search and a foraging-like treasure hunt 

task. When performing a treasure hunt task in which the treasure was more often located in 

one visual quadrant, participants showed an increasing tendency to choose an item in that 

quadrant. These highly rewarded locations, however, were not prioritized in the subsequent 

visual search task. Conversely, after developing a strong preference for the rich quadrant in 

the visual search task, participants were no more likely to select an item in that quadrant in 

the subsequent treasure hunt task. Probability cuing is therefore unlikely to be due to a 

generic change in spatial attention.

These findings suggest that the effects of learning statistical regularities on attention may be 

limited to the specific mechanisms used in the training and transfer tasks. Probability cuing 

transferred between tasks only when both involved serial shifts of attention from one item to 

the next and when no other salient cues were available. What is the mechanism that allows 

for this transfer? One possibility is that transfer reflects relatively stable changes to the 

attentional priority map (Bisley & Goldberg, 2010; Fecteau & Munoz, 2006; Itti & Koch, 

2001; Wolfe, 2007). Most theories of spatial attention suggest that the attentional priority 

map combines perceptual input with goals and other cues to guide attention to behaviorally 

relevant spatial locations (Bisley & Goldberg, 2010; Wolfe, 2007). However, these 

discussions of the attentional priority map have been largely agnostic as to whether the same 

map is used in different search tasks. The high degree of transfer across search tasks in this 

study suggests that this is likely to be the case.

A second, though not exclusive, possibility is that probability cuing produces stable and 

transferrable changes in what we have called “procedural attention” (Jiang, Swallow, & 

Capistrano, 2013). Probability cuing in visual search tasks is coded in a head-centered 

reference frame, does not update with movements through space, and increases the number 

of first saccades to the rich region (Jiang & Swallow, 2013b; Jiang, Won, & Swallow, 

2014). In addition, it appears to operate in a manner that is qualitatively different from goal-

driven or explicit attentional biases (Jiang, Swallow, & Rosenbaum, 2013; Jiang, Swallow, 

& Sun, 2014; Jiang, Won, & Swallow, 2014). We have taken these findings to suggest that 

probability cuing influences how attention moves through space, by increasing the 

likelihood that it moves in a certain direction. This view could help account for the lack of 

transfer between visual search and a treasure hunt. Visual search involves a series of 

attentional shifts, each of which is made by jointly considering the current visual input, the 

current trial's search history, and previous history in similar tasks. In contrast, no visual cues 

aid performance in the treasure hunt task—all of the items are visually identical. The task 

also does not involve search. Rather, it relies on a high-level decision that is based entirely 

on the reinforcement history of previous choices. Thus, the need to move attention through 

space (rather than shared visual space) may be a critical factor in determining whether 

probability cuing transfers between tasks.
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A consideration of how attention moves through space raises the possibility that not all 

visually guided search tasks would show transferrable attentional biases. Tasks that rely 

primarily on eye movements (such as the ones used here) may differ qualitatively from tasks 

that rely on body and head movements (such as real-world search tasks). In addition, tasks 

that are “data limited,” such as by visual crowding, may differ qualitatively from tasks that 

are “resource limited,” such as simple visual search (Norman & Bobrow, 1975). These 

predictions should be tested in future research.

Although we have emphasized the procedural component of attention training, we also 

recognize the contribution of other sources of attention, such as explicit goals. The 

mechanisms that govern task specificity likely differ between implicitly learned attention 

and explicit, goal-driven attention. Whereas implicitly learned attention shows transfer 

across tasks that involve similar shifts of attention, the task instructions may change the 

pattern of cross-task transfer. For example, if participants know that the treasure box is often 

located where the visual search target is, they may explicitly look for target-rich regions in 

the search task and prioritize these regions when performing the treasure hunt. Therefore, 

when predicting whether attentional training transfers across tasks, important factors to 

consider are whether training affects the procedural or explicit component of attention and 

what the participants’ explicit goals are.

Our study can be related to the broader literature on attention training. The rapid acquisition 

of probability cuing indicates a high degree of plasticity in spatial attention. This finding is 

consistent with other observations of attention training. For example, professional sports, 

action videogame playing, and laboratory training enhance performance on multiple-object 

tracking and other attention tasks (Anguera et al., 2013; Faubert, 2013; Green & Bavelier, 

2003; Makovski, Vázquez, & Jiang, 2008; Thompson et al., 2013). In addition, training in an 

n-back task can substantially improve performance in that task (Jaeggi, Buschkuehl, Jonides, 

& Perrig, 2008; Jaeggi, Buschkuehl, Jonides, & Shah, 2011). However, several studies have 

shown that attention training shows limited transfer to other tasks, such as in tests of fluid 

intelligence (Jaeggi et al., 2011; Owen et al., 2010; Redick et al., 2013; Thompson et al., 

2013). To the degree that broad transfer is observed (e.g., from action videogame playing), 

the findings may be attributed to a common component across many tasks (e.g., probabilistic 

inference; Green, Pouget, & Bavelier, 2010). We believe that the key to resolving the 

controversy regarding whether attention training generalizes will be to perform a detailed 

analysis of the processes and components involved in the training and testing tasks. Transfer 

is more likely to occur if the training and testing tasks share critical components. The 

present study relied on such an analysis in revealing the moderate task specificity of 

probability cuing. This approach may be useful in other studies of attention training.

Our study raises questions about the real-world implications of location probability learning. 

Does a 1-h training session in the lab produce a durable, transferrable change in participants’ 

spatial attention subsequently? Although such a change is possible, we believe that its 

impact on daily activities would likely be limited. First, although probability cuing shows 

long-term persistence, its persistence is adaptable to new visual statistics. The spatial bias is 

weakened over extinction retraining (e.g., probability cuing was weaker in the testing phase 

than the training phase of Exps. 3 and 4). In addition, a new spatial bias emerges if the rich 
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quadrant changes to a new region (Jiang, Swallow, Rosenbaum, & Herzig, 2013). Second, 

serial shifts of attention are relatively uncommon in real-world tasks. For instance, real-

world search tasks often rely on salient features and explicit goals. These cues may reduce 

the utility of probability cuing (Jiang, Swallow, Rosenbaum, & Herzig, 2013; Rosenbaum & 

Jiang, 2013). Nonetheless, to the degree that a real-world task matched the laboratory 

training task (e.g., serial scanning, without other attention-guiding cues), some transfer 

would be expected. With these constraints in mind, probability cuing may be exploited to 

facilitate performance in the real world.
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Fig. 1. 
A schematic illustration of the tasks and stimuli used in Experiment 1. a In Experiment 1A, 

the visual search and treasure hunt tasks differed in set sizes and display appearances. b In 

Experiment 1B, the two tasks had similar set sizes and display appearances. Items are not 

drawn to scale, and the quadrant borders were not actually shown in the experiment
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Fig. 2. 
Experiment 1A's results, from participants trained in visual search and tested in a treasure 

hunt. a Visual search RTs during training. b Proportions of trials on which a treasure chest 

was chosen in the trained rich quadrant, as opposed to in one of the sparse quadrants. 

Chance was .25. Error bars in this and all subsequent figures show ±1 SE of the mean 

between participants
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Fig. 3. 
Experiment 1A results, from participants trained in a treasure hunt and tested in visual 

search. a Proportions of trials on which people chose a treasure chest in the rich quadrant as 

opposed to any of the sparse quadrants. b Visual search RTs as a function of whether the 

quadrant that the target appeared in had been rich or sparse during training. Error bars show 

±1 SE of the mean
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Fig. 4. 
Experiment 1B's results, from participants trained in visual search and tested in a treasure 

hunt. a Visual search RTs during training. b Proportions of trials on which an item was 

chosen in the trained rich quadrant as opposed to the sparse quadrants. Chance was .25. 

Error bars show ±1 SE of the mean
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Fig. 5. 
Experiment 1B's results, from participants trained in treasure hunt and tested in visual 

search. a Proportions of trials on which people chose an item in the rich quadrant rather than 

one in a sparse quadrant. b Visual search RTs as a function of whether the quadrant that the 

target appeared in had been rich or sparse during training. Error bars show ±1 SE of the 

mean
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Fig. 6. 
Schematic illustration of the tasks and design used in Experiment 2. Participants searched 

for a target and reported its color. The items are not drawn to scale, and the quadrant borders 

as well as the targets’ spatial probabilities were not actually shown in the experiment
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Fig. 7. 
Results from Experiment 2. Participants performed a T/L search task in the training phase 

and a 2/5 search task in the testing phase, or vice versa. Error bars show ±1 SE of the mean
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Fig. 8. 
Results from the training phase of Experiment 3. During training, the participants in panels a 
and c performed an easy search task, whereas those in panels b and d performed a difficult 

search task. Note that the y- axes are optimized for each panel and differ for the easy and 

difficult tasks. Error bars show ±1 SE of the mean. Panels e and f show sample displays in 

the easy and difficult tasks, respectively
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Fig. 9. 
Results from the testing phase of Experiment 3. During testing, the participants in panels a 
and d performed an easy search task, whereas those in panels b and c performed a difficult 

search task. Note that the y-axes are optimized for each panel and differ for the easy and 

difficult tasks. Error bars show ±1 SE of the mean
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Fig. 10. 
Results from Experiment 4A: Participants performed the line orientation feature search task 

in the training phase and the T/L spatial configuration search task in the testing phase. a 
Data across the 20 blocks of trials (each block contained 36 trials). b Data across the entire 

training (left) and testing (right) phases. Error bars show ±1 SE of the mean
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Fig. 11. 
Results from Experiment 4B: Participants performed the T/L search task in the training 

phase and the line orientation feature search task in the testing phase. a Data across the 20 

blocks of trials (each block contained 36 trials). b Data across the entire training (left) and 

testing (right) phases. Error bars show ±1 SE of the mean
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Fig. 12. 
Results from Experiment 5A. a Training phase, involving conjunction search. b Testing 

phase, involving feature search. Error bars show ±1 SE of the mean
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Fig. 13. 
Results from Experiment 5B. a Training phase, involving feature search. b Testing phase, 

involving conjunction search. Error bars show ±1 SE of the mean
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