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ABSTRACT The data from genome-wide association studies (GWAS) in humans are still predominantly analyzed using single-marker
association methods. As an alternative to single-marker analysis (SMA), all or subsets of markers can be tested simultaneously. This
approach requires a form of penalized regression (PR) as the number of SNPs is much larger than the sample size. Here we review PR
methods in the context of GWAS, extend them to perform penalty parameter and SNP selection by false discovery rate (FDR) control,
and assess their performance in comparison with SMA. PR methods were compared with SMA, using realistically simulated GWAS data
with a continuous phenotype and real data. Based on these comparisons our analytic FDR criterion may currently be the best approach
to SNP selection using PR for GWAS. We found that PR with FDR control provides substantially more power than SMA with genome-
wide type-I error control but somewhat less power than SMA with Benjamini–Hochberg FDR control (SMA-BH). PR with FDR-based
penalty parameter selection controlled the FDR somewhat conservatively while SMA-BH may not achieve FDR control in all situations.
Differences among PR methods seem quite small when the focus is on SNP selection with FDR control. Incorporating linkage
disequilibrium into the penalization by adapting penalties developed for covariates measured on graphs can improve power but also
generate more false positives or wider regions for follow-up. We recommend the elastic net with a mixing weight for the Lasso penalty
near 0.5 as the best method.

THE goal of genome-wide association studies (GWAS) in
humans and model organisms is to select a small subset

of DNA markers, typically single-nucleotide polymorphisms
(SNPs), which are in strong linkage disequilibrium (LD) with
functional polymorphisms affecting a biomedical/clinical trait
of interest. The selected markers are then replicated in other
GWAS, fine-mapped, and further validated. GWAS may be
viewed as a large-scale variable selection problem, with sev-
eral millions of common SNPs, measured directly or imputed,
available in current studies in humans.

GWAS practitioners still strongly rely on single-marker
analysis (SMA), including linear regression for continuous

phenotypes, with control of the genome-wise error rate
(GWER) [a special case of the family-wise error rate (FWER)],
which accounts for the multiplicity of the entire genome.
Assuming that a biomedical trait of interest is affected by
multiple polymorphisms with “detectable” effects, SMA fits an
incorrect model, and it is sensible to consider alternative meth-
ods that test all or subsets of markers simultaneously. This
approach requires a form of penalized regression (PR) as the
number of SNPs is much larger than the sample size.

A major practical issue with the use of penalized regression
is the determination of “optimal” values for the tuning param-
eter(s) and the lack of an error rate associated with the se-
lection of SNPs. Common approaches for tuning parameter
value determination include cross-validation (CV) (e.g.,
Kohavi 1995) and the use of a model selection criterion such
as Akaike’s information criterion (AIC) (Akaike 1974, 1977),
the Bayesian information criterion (BIC) (Schwarz 1978), or
the extended Bayesian information criterion (EBIC) (Chen
and Chen 2008). These approaches work well for prediction
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but not for the goal of variable selection as most of these
criteria lead to an unacceptable number of false positives
and do not provide a measure of error associated with the
selected SNPs. This distinction is important as the best pre-
dictive models may contain covariates that are not important,
while the model with all important covariates may not be the
best predictive model.

The absence in PR of the control of an appropriate error
rate such as the FWER or the false discovery rate (FDR)
(Benjamini and Hochberg 1995; Sabatti and Freimer 2003)
has been recognized by several authors who have employed
different strategies, including data permutation (Ayers and
Cordell 2010), stability selection (Meinshausen and Bühlmann
2010) with FDR control (Ahmed et al. 2011), and multistage
(data splitting) approaches (Meinshausen et al. 2009;
Wasserman and Roeder 2009) to control FWER or FDR.
However, these approaches require much more computation
and may not be feasible on a genome-wide scale, and/or the
provision of an error rate estimate comes at the expense of
reduced power.

A second practical issue is that a number of PR methods
differing in the penalty function have been proposed, and
hence it is unclear whether any and which of these methods
should be preferred in the context of variable selection in
GWAS. Moreover, some authors (Kim and Xing 2009; Liu
et al. 2011) have suggested that penalties should incorpo-
rate LD, but it is unclear whether such penalties produce any
gain in power and/or a reduction in the false positive
findings.

The purpose of this contribution is to review penalized
regression methods in the context of GWAS, to extend
selected PR methods by incorporating FDR control and to
assess their performance in comparison with single-marker
(SNP) analysis, and to provide recommendations on the use
of these methods in GWAS practice. PR methods are com-
pared with SMA on realistically simulated GWAS, consisting
of genotype data on single and multiple chromosomes and
a continuous phenotype, and on real data.

Materials and Methods

Data simulation

To simulate GWAS data with realistic patterns of LD, we used
the software HAPGEN2 (Su et al. 2011), which produces
genotyped individuals by resampling from a set of reference
haplotypes. We used the haplotypes of the 60 Caucasians of
European origin (CEU) in HapMap2 (International HapMap
Consortium 2007). For most simulation scenarios, SNP gen-
otypes were simulated for a single chromosome (chro-
mosome 21). For an additional simulation scenario, SNP
genotypes were simulated for three chromosomes (19, 21,
and 22). The number of SNPs genotyped across all 22 auto-
somes in the HapMap2 population is 3,849,034, and the
numbers of SNPs on chromosomes 19, 21, and 22 are
56,607, 50,165, and 54,786, respectively. Following the

simulation of each SNP data set, SNPs were removed if they
had a minor allele frequency (MAF),0.01 or if their absolute
correlation with another SNP exceeded 0.999, reducing the
number of SNPs on average to 25,033, 21,519, and 22,199
for chromosomes 19, 21, and 22, respectively.

To determine suitable sample sizes for the data simula-
tion, we performed power calculations, using QUANTO
(Gauderman and Morrison 2001). A functional or causal
SNP affecting the phenotype is referred to as a quantitative
trait locus (QTL). The sample sizes were determined as
those needed to detect an isolated QTL by SMA, with a her-
itability (variance explained by the QTL over total variance)
of 0.10, with a power of 50%, and with a P-value-based
significance threshold of (5.5 3 1028 3 3,849,034/50,165)
for chromosome 21 and (5.53 1028 3 3,849,034/(56,607 +
50,165 + 54,786)) for the three-chromosome simulation,
using the GWER P-value threshold of 5.53 1028 (see below).
The required sample sizes were N = 201 and N = 222,
respectively.

For the chromosome 21 simulations, two scenarios were
considered: (1) two isolated QTL with heritability of 0.10 each
and hence a total heritability of 0.20 and (2) eight QTL
comprising a group of four QTL with weak pairwise LD (0.01
# r2 # 0.1) and two groups of two QTL each with within-
group LD of r2 � 0.5. All QTL had MAF. 0.05. For scenario 2,
the four QTL in one group had a heritability of 0.05, and the
remaining four QTL had a heritability of 0.04. Taking into
account LD among the eight QTL in scenario 2, the total her-

itability was 0.48 [computed as h2 ¼ Var
�P8

k¼1Xkbk

�.
�
Var
�P8

k¼1Xkbk

�
þ s2

e

�
; where Xk is the allelic dose of SNP

k in individual i, bk is the regression coefficient for SNP k, and
s2
e is the residual variance]. Moreover, for scenario 2 the “ef-

fective” heritability of each individual QTL in the context of the
single-marker model was� 0.10 due to LD among QTL. Hence,
SMA had the same expected power for QTL detection under
both scenarios. A total of 200 replicate simulations were per-
formed, in which the QTL positions and effects were kept
constant. The phenotype was simulated based on an additive
model with Q QTL, Y ¼PQ

j¼1Xjbj þ e; where Y denotes the
phenotype. Heritability of a single QTL j was computed as
h2j ¼ b2

j varðXjÞ=varðYÞ: Effective heritability (increased due
to LD with other QTL) was computed as above but by replacing
bj with

~bj ¼
cov
�
Y; Xj

�
var
�
Xj
�

¼ bjvar
�
Xj
�þPQ

j9 ¼ 1

j9 6¼ j

bj9cov
�
Xj; Xj9

�
var
�
Xj
� :

For the multichromosome simulation, chromosome 19
did not harbor any QTL, chromosome 21 harbored the eight
QTL of scenario 2, and chromosome 22 harbored two
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isolated QTL with heritability of 0.10 and MAF . 0.05 as in
scenario 1. The total heritability was 0.68.

Single-marker regression

For single-marker regression, variable selection is performed
by choosing a cutoff value for the P-values, determined by
some method of multiple-testing control, most commonly
the GWER (or FWER), which accounts for the multiplicity
of the entire genome. The GWER-based P-value threshold is
obtained by estimating an “effective number of independent
tests” (e.g., International HapMap 2005; Dudbridge and
Gusnanto 2008) by permutation or analytic approximation.
The International HapMap Consortium permutation-based
estimated significance threshold is 5.5 3 1028 for two-sided
tests of SNPs, which we used here. As an alternative to the
stringent GWER threshold, we investigate the FDR (Benjamini
and Hochberg 1995). For FDR control, we use the Benjamini–
Hochberg (BH) procedure (Benjamini and Hochberg 1995)
shown to control the FDR under positive-regression depen-
dence (Benjamini and Yekutieli 2001), and this condition is
believed to hold for GWAS (Sabatti and Freimer 2003). We
also use Benjamini and Yekutieli’s (2001) BY approach, which
ensures FDR control under any form of dependence but can
be very conservative. Additionally, we consider the local FDR
(Efron and Tibshirani 2002; Efron 2003), where the P-values,
assumed to represent a mixture of null and alternative hy-
potheses, are transformed to z-scores that are modeled by
a mixture distribution, or

f ðzÞ ¼ p0 f0ðzÞ þ ð12p0Þf1ðzÞ; (1)

where f0(z) is the density of z under the null hypothesis,
f1(z) is the density under the alternative hypothesis, f(z) is
the (overall) mixture density of z, and p0 is the proportion
of true null hypotheses. Based on (1), the local FDR is

locFDRðzÞ ¼ p0 f0ðzÞ
f ðzÞ ; (2)

which is also a posterior probability that the null hypothesis
is true given z. The FDR is a lower bound on locFDR because
it is the expectation of locFDR within a tail area (Efron
2003). Sun and Cai (2007) developed an oracle testing pro-
cedure that minimizes the false negative rate (the expected
proportion of false negatives among all nonrejections) sub-
ject to a constraint on the FDR. This procedure is a thresh-
olding rule based on the locFDR and is implemented with an
adaptive procedure that is asymptotically valid and optimal
if the estimates of p0, f0, and f in (2) are consistent. We
estimated f(z) and p0, using the simple nonparametric ap-
proach described in Storey et al. (2005). Despite the corre-
lation structure of the z-values, f0 was fitted well by the
N(0, 1) null distribution (see Supporting Information, Figure
S1 as a typical representative of the data simulation repli-
cates). We also used the consistent estimators of p0, f0, and
f in equation 2 of Jin and Cai (2007). We refer to this pro-
cedure with the two sets of estimators for p0, f0, and f as

LFDR1 and LFDR2. The proportion of true nulls p0 is expected
to be # 1.0 in the context of GWAS.

Penalized regression methods

All penalized regression methods for the multiple-regression
model yi ¼

Pp
k¼1xikbk þ   ei (assuming a centered response

variable y and standardized SNP covariates x) can be repre-
sented by the estimator

b
b
!¼ arg min

b
⇀

8<: 1
2N

XN
i¼1

 
yi2

Xp
k¼1

xikbk

!2

þ P
�
l
!
; b
!�9=;;

(3)

where b
!

is a vector of p regression coefficients, yi is the
continuous trait measurement on individual i, xik is allelic
dose of SNP k in individual i, ei is a residual, N is sample size,
P(.) is a penalty function, and l

!
is a vector of tuning or

penalty parameters with typically one or two components.
PR methods differ in the specification of P(.). Variable se-
lection, by setting unimportant coefficients to zero, occurs if
the penalty has a singularity at zero. Below we consider only
such penalties. Given the extensive literature, we do not
review these methods in detail but rather present their pen-
alty functions and discuss some properties relevant to their
application to GWAS.

Desirable properties for penalized regression methods
have been established by several authors and include sparsity
(variable selection is enabled by automatically setting small
coefficients to zero), continuity (an estimator that is contin-
uous in data avoids instability in model prediction), asymp-
totic unbiasedness (bias should be low, in particular for large
true coefficients), and the (strong) oracle property (Fan and
Li 2001; Fan and Peng 2004; Kim et al. 2008; Zhang 2010).
The Lasso (Tibshirani 1996) performs poorly with regard to
the unbiasedness property, prompting the development of
other penalties to overcome this problem. The adaptive Lasso
(Zou 2006), the smoothly clipped absolute deviation (SCAD)
(Fan and Li 2001), and the minimax concave penalty (MCP)
(Zhang 2010) possess the (strong) oracle property.

Lasso, elastic net, and adaptive lasso: The Lasso (Tibshirani
1996) employs the L1 penalty, or

PLasso
�
l
!
; b
!� ¼ l

Xp
k¼1

jbkj; l$ 0: (4)

If there are groups of variables with strong pairwise
correlations, it has been empirically observed that the Lasso
tends to select only one variable from each group. This
behavior is in contrast with single-marker regression, which
selects all markers in sufficiently strong LD with a QTL.

The elastic net (EN) (Zou and Hastie 2005) combines the
Lasso (L1) penalty, enabling it to perform variable selection,
with the ridge (L2) penalty, enabling it to deal with multi-
collinearity, or
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PEN
�
l
!
; b
!� ¼ l1l2

Pp
k¼1

jbkj þ l1ð12 l2Þ
Pp
k¼1

b2
k;

l1 $ 0; 0# l2 #1:
(5)

In contrast with the Lasso, the EN may be expected to
coselect SNPs in strong LD. Here, EN analysis was performed
with three different values for l2: 0.9, 0.5, and 0.3. Lasso
and EN are implemented in the R package glmnet (Friedman
et al. 2010).

Zou (2006) proposed the adaptive Lasso to obtain an
oracle procedure, which has the penalty

PAdaLasso
�
l
!
; b
!� ¼ l

Xp
k¼1

wkjbkj; l$ 0; wk ¼
��~bk
��-1;
(6)

where the weights wk are computed from an initial set of
solutions for the coefficients. The adaptive Lasso makes
sense intuitively by placing smaller weights on the important
regressors to reduce the shrinkage applied to their coeffi-
cients. Here we used SMA, Lasso with CV, and ridge regres-
sion with CV as the initial estimators.

MCP and SCAD: The MCP and SCAD penalties depend on
two tuning parameters; both begin with the same penaliza-
tion as the Lasso but increasingly reduce the penalization
farther away from zero (e.g., Breheny and Huang 2011).
Because in preliminary studies we found little difference
between the MCP and SCAD results and SCAD is expected
to perform somewhere between MCP and Lasso (Breheny
and Huang 2011), here we consider only the MCP with
penalty function

PMCPð l!;bkÞ ¼ l1
R jbkj
0

	
12 x

l1l2



þ
dx

¼ l1

8>>>>><>>>>>:

 
jbkj2

b2
k

2l1l2

!
if jbkj# l1l2

l1l2
2

if jbkj. l1l2;

l1 $ 0; l2 . 1:

(7)

For the second tuning parameter in MCP (l2), four values
were evaluated (3, 10, 30, and 100), with the largest value
approaching the Lasso. MCP is implemented in the R pack-
age ncvreg (Breheny and Huang 2011).

Selection of tuning parameter values: Current state: A
major practical issue with the use of penalized regression for
GWAS is the need to determine optimal values for the
tuning parameter(s). The “usual” approaches include CV
and the use of model selection criteria such as AIC, BIC,
and EBIC. While CV and AIC are generally useful for pre-
diction rather than model/variable selection, BIC tends to
select a true sparse model but does not achieve sufficient

sparsity in high-dimensional very sparse settings such as
linkage (QTL) mapping and GWAS for which modified BIC
criteria have been proposed (e.g., Bogdan et al. 2004). More-
over, the BIC criterion is a function of the degrees of freedom
(d.f.) of a model, and the d.f. are not straightforward to
obtain in PR (e.g., Ye 1998; Zou et al. 2007; Zhang 2010).

Given the shortcomings of model selection criteria,
a superior approach should be obtained by combining PR
with the control of an error rate such as FWER or FDR. Ayers
and Cordell (2010) used data permutation to determine the
value of the tuning parameter. Multistage strategies have
also been suggested as an approach to performing error
control with PR (Meinshausen et al. 2009; Wasserman and
Roeder 2009). Meinshausen et al. randomly split the data in
half multiple (B) times. Each time the first half was used for
variable screening using Lasso with CV and related methods,
and the second half was used to compute adjusted P-values,
based on which the FWER and the FDR can be controlled
asymptotically. We used Lasso with CV for tuning parameter
value selection in the screening step. We expected this
method to have reduced power relative to our single-step
FDR-controlling methods (see below) due to the data split-
ting and the use of multiple regression, which reduces the
significance of two (highly) correlated variables represent-
ing alternative hypotheses. Performing the two steps of screen-
ing and variable selection both on the entire data set as in Sun
et al. (2010) should improve power; these authors used their
Iterative Adaptive Lasso in the screening step and backward
selection instead of multiple regression in the second (clean-
ing) step. However, there is no analytical proof of (asymp-
totic) FDR (or FWER) control, and we have therefore not
further considered a two-step approach performed on the
entire data set.

Most recently, Sampson et al. (2013) have proposed a lo-
cal FDR-based method for selecting the value of the tuning
parameter specifically for the adaptive Lasso. The advantage
of this approach is that it uses the local FDR based on which
optimal oracle procedures were developed for SMA (Sun
and Cai 2007; Cai and Sun 2009).

The penalized unified multiple-locus association
(PUMA) method (and software) implements some penal-
ized regression methods for GWAS with an efficient
algorithm for generalized linear models and with pre-
selection of SNPs based on SMA (Hoffman et al. 2013) to
make these methods applicable to large GWAS data sets.
It performs heuristic model and SNP selection. PUMA
implements MCP with a two-dimensional model search
across its two tuning parameters (2D-MCP), and we
chose this method here.

A different type of multivariate method for SNP selection
in GWAS was proposed by Zuber et al. (2012). For a contin-
uous phenotype, this method computes correlation-adjusted
marginal correlations (CAR scores) as PadjXY ¼ P21=2

XX PXY ;
where PXY is a vector of marginal correlations between each
SNP dose (X) and the phenotype (Y), and PXX is the corre-
lation matrix among the SNPs, which is estimated by
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a computationally efficient shrinkage method. Note that if
there are non-SNP study covariates, the phenotype (Y) must
be replaced with the residuals from a linear model contain-
ing these covariates. For SNP selection, CAR scores are pro-
vided as input to the fdrtools R package that computes
P-values, FDR, and local FDR values based on its empirical
null modeling (Strimmer 2008). We refer to this method as
CAR.

Selection of tuning parameter values: Control of the
false discovery rate

Here we propose two approaches for combining penalized
regression with FDR control, which can be applied to all
penalized regression methods considered here and do not
require data splitting or subsampling. The first approach is
based on data permutation and the second on an analytic
approximation.

FDR control using data permutation: Let l denote the
single (Lasso) or the first (MCP, EN) tuning parameter. Pe-
nalized regression [with coordinate descent algorithms
(Friedman et al. 2007)] is efficiently performed by computing
the coefficient solutions on a grid of (say, 1000) l-values,
starting from a maximum value lmax at which all solutions
are zero and ending at a minimum value lmin that is zero or
produces an excessively large model, with the solutions from
any previous l-value serving as a warm start for the next l.
Therefore, the original data set is analyzed on this grid of
l-values, and the number of nonzero coefficients is deter-
mined at each l, denoted by R(l). Then B permuted data
sets (with random reorderings of the continuous vector of
phenotypes) are analyzed on the same grid of l-values, and
the number of nonzero coefficients is again determined for
each permuted data set b (b= 1, . . . , B) and l-value, denoted
by F(b, l). Then for each l-value, we compute the permuta-
tion FDR as the average number of nonzero solutions in the
permuted data over the number of nonzero solutions in the
original data, FDRðlÞ ¼ ð1=BÞPB

b¼1Fðb; lÞ=RðlÞ: We note
that here we define the FDR as E(F)/R, where F denotes
the number of false positives and R the number of rejections
(recall that in PR a null hypothesis is rejected if the corre-
sponding coefficient solution is nonzero). This definition is
different from the original definition E(F/R) and thus does
not take into account the dependency between F and R, but is
easier to work with.

Analytic FDR control: We now present an approximate,
analytic FDR method that was originally proposed in Breheny
(2009). This approach can be applied to all penalized regres-
sion methods considered here, but we illustrate it for the
Lasso and the MCP. We assume that the predictors have been
standardized such that

PN
i¼1xik ¼ 0 and

PN
i¼1x

2
ik ¼ N: We

write the objective function in terms of a single predictor
(k), as in Friedman et al. (2007) for the Lasso and in Breheny
and Huang (2011) for the MCP [setting l = l1 and g = l2
in (7)],

fLassoðbkÞ ¼
1
2

�
bk2bOLS

k
�2 þ ljbkj;

fMCPðbkÞ ¼
1
2

�
bk2bOLS

k
�2 þ ljbkj2

1
2g

b2
k ;

(8)

where bOLS
k ¼ ð1=NÞPN

i¼1xikri2k and ri2k ¼ yi 2
Pp

j¼1;j6¼kxijbj:

Differentiating (8) with respect to bk yields the solutions

bLasso
k ¼

8<:
bOLS
k 2 l if bOLS

k . 0 and 
��bOLS

k

��. l

bOLS
k þ l if bOLS

k , 0 and 
��bOLS

k

��. l

0 if 
��bOLS

k

��# l

bMCP
k ¼

8>>>>>>>>>><>>>>>>>>>>:

bOLS
k 2 l

12 1=g
if bOLS

k . 0 and 
��bOLS

k

��. l

bOLS
k þ l

12 1=g
if bOLS

k , 0 and 
��bOLS

k

��. l

0 if
��bOLS

k

��# l

bOLS
k if

��bOLS
k

��. gl:

(9)

Based on (9), we consider the probability of a false positive,
or Prð��bOLS

k

��. l
��bk ¼ 0Þ:We again define the FDR as E(F)/R

and approximate the numerator with

dEðFÞ ¼Xp
k¼1

Pr
���bOLS

k

��. l
��bk ¼ 0

�
: (10)

In general, FDR control based on (10) is expected to be
conservative, similar to the BH FDR, because in (10) we
sum over all variables rather than the (unknown) true null
variables. However, this should not matter in the context of
GWAS where the proportion of null variables is very close
to 1.

We rewrite the probability of a false positive as

Pr
���bOLS

k

��.l
��bk ¼ 0

�
¼ Pr

�
1
N

��xTk r2k
��. l

����bk ¼ 0
�
:

(11)

The distribution of the estimated residuals (r) is unknown
and complicated but may be approximated by the normal
distribution r2k eNð0;VkÞ or even simpler by r2k eNð0; Is2

kÞ
such that ð1=NÞxTk r2k eNð0;   ð1=NÞs2

kÞ: This is an approxi-
mation for multiple reasons, including the normality as-
sumption, the mean of zero (correct for least squares
where the coefficients are estimated unbiasedly but not for
PR), and the independence or zero covariances. Then

Pr
�
1
N

��xTk r2k
��.l

����bk ¼ 0
�

¼ 12F

� ffiffiffiffi
N

p
l

sk

�
þF

�
2

ffiffiffiffi
N

p
l

sk

�
¼ 2F

�
2

ffiffiffiffi
N

p
l

sk

�
:

(12)

Using the “natural” estimator ŝ2
k ¼ ð1=NÞrTr; (12) becomes

constant for all k and
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dFDR ¼
2pF

�
2
�
lN
. ffiffiffiffiffiffiffi

rTr
p ��

R
: (13)

The FDR estimation (13) is noisy when the model becomes
saturated; this is not a problem in practice when FDR
evaluation starts from a model with all coefficients set to
zero (lmax) and terminates once the desired level of the
FDR has been stably exceeded.

When applying the FDR estimation described for the
Lasso and the MCP to the EN, Equation 13 needs to be
modified to

dFDR ¼
2pF

�
2
�
l1l2N

. ffiffiffiffiffiffiffi
rTr

p ��
R

: (14)

Penalized regression with fusion-type penalties

It is well known that the Lasso tends to select a single
predictor from a group of predictors that have strong pairwise
correlations (in the extreme the Lasso does not have a unique
solution when two variables are perfectly collinear). For this
reason, we prefer the EN (see below), but some authors (Kim
and Xing 2009; Liu et al. 2011) have suggested that fused
Lasso-type penalties developed for covariates measured on
graphs would be more appropriate than the Lasso in such
situations. An expectation was that such penalties may in-
crease power and decrease the false positive rate. Fusion-type
penalties impose pairwise similarity on the coefficient solu-
tions of highly correlated predictors or encourage sparsity in
the differences among the values of the regression coeffi-
cients. Pairwise similarity can be imposed on the effects of
correlated (SNP) regressors by adding an extra penalty to the
existing penalty term, depending on the type of PR method
used (here the Lasso). We first consider an added penalty of
the form (referred to as LD2lasso)

f

2

Xp
k¼1

X
m2Sk

hðrkmÞ �
�
jbkj2jbmj

�2
; f$ 0; (15)

where Sk is a set of SNPs that are correlated to SNP k, rkm
denotes the (Pearson) correlation coefficient among the al-
lelic doses of SNPs k and m, and h(rkm) is a function of rkm
that we specified as h(rkm) = |rkm| or h(rkm) = (rkm)2. Set Sk
can be limited to adjacent SNPs (Liu et al. 2011) or contain
all SNPs whose absolute correlation with SNP k exceeds
a certain threshold (here). Taking absolute values of the
coefficients accounts for the fact that two correlated SNPs
can have similar effect sizes but opposite signs due to the
arbitrary coding of the SNP alleles. We note that Li and Li
(2008, 2010) used a similar penalty for the general case of
(genomics) variables whose dependency structure can be
represented as a graph. Their penalty is induced by the La-
place matrix of the graph and differs from (15) by dividing
the regression coefficients by the square root of the degree
of the corresponding variables, which is justified by the

argument that variables with more connections should be
allowed to have larger coefficients. This argument does not
apply in the GWAS context, and we therefore use (15). Using
(3) with the Lasso penalty and the added penalty in (15), the
LD2lasso objective function for a single coefficient k can be
written as

fLD2lassoðbkÞ ¼
1
2

�
bk2bOLS

k
�2 þ lujbkj þ lð12uÞ

3
1
2

X
m2Sk

hðrkmÞ
�
jbkj2jbmj

�2
; l$ 0; 0#u# 1;

(16)

where

bOLS
k ¼ 1

N
xTk

0@yi 2
Xp

j¼1;j 6¼k

xijbLD2lassso
j

1A:

Then one can show that the LD2lasso solution satisfies

bLD2lassso
k

¼ sign
�
bOLS
k

�
3

���bOLS
k

��2l
�
u2ð12uÞPm2SkhðrkmÞ �

��bLD2lasso
m

����
þ

1þ lð12uÞPm2SkhðrkmÞ
:

(17)

For LD2lasso with analytic FDR control, the probability of
a false positive analogous to (12) is

Pr

 
1
N

��xTk r2k
��.l

 
u2 ð12uÞ

X
m2Sk

hðrkmÞ �
���bLD2lasso

m

���!�����bk ¼ 0

!

¼ 2F
�
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ffiffiffiffi
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p
k

sk

�
; k ¼ l

 
u2 lð12uÞ

X
m2Sk

hðrkmÞ �
���bLD2lasso

m

���!;
(18)

where in contrast with (12) the threshold (k) applied to
bOLS
k is now a function of the LD2lasso solutions of other

SNPs in strong LD with the current SNP.
An alternative to (15) is a penalty that we refer to as the

LD1lasso penalty and is essentially identical to a penalty
term in the general and graphical fused Lasso (e.g., Kim and
Xing 2009):

f
Xp
k¼1

X
m2Sk

hðrkmÞ � jjbkj2 jbmjj; f$ 0: (19)

Computation of the LD2lasso solution (17) was imple-
mented with a straightforward pathwise coordinate descent
algorithm, because its objective function consists of a convex,
a continuously differentiable, and a separable term (of convex
functions) (Tseng 1988, 2001; Friedman et al. 2007; Chen
et al. 2010). This does not apply to the LD1lasso, and hence
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we focused on the LD2lasso, which seemed to perform better
(results not shown).

Consider a group of SNPs in strong LD and containing
a single SNP that is causal for the phenotype. In this situation,
the Lasso (and other penalties not including fusion-type pen-
alties) will tend to select a single or few SNPs, while LD2lasso/
LD1lasso would have nonzero solutions for several or all
SNPs in this group. Hence for PR without fusion-type pen-
alties, a QTL region for subsequent fine-mapping may be
identified as the SNP(s) with nonzero solution plus other
SNPs in LD with these SNP(s) above some threshold (e.g.,
|r| . 0.5). For LD2lasso/LD1lasso, a QTL region may be
identified as including all (contiguous) SNPs with nonzero
coefficients.

Analyses of multiple chromosomes

The analysis of multiple chromosomes may be regarded as
a multigroup analysis, which we first discuss in the context
of SMA. For a given biomedical trait of interest, many
chromosomes may show no signal, while other chromo-
somes may show sparse signals or even extended stronger
signals. To control the GWER such a grouping structure is
irrelevant. However, for FDR control there is no unique way
to proceed in the presence of a group structure. As argued by
Efron (2008), the usual pooled FDR analysis, where the
group structure is simply ignored, can be overly conservative
or overly liberal for any particular group. Efron also estab-
lished that a separate analysis, where FDR control (at the
same level) is performed separately for each group and sub-
sequently the results are simply combined, is valid in terms
of achieving overall (i.e., across groups) FDR control (at that

same level). Efron’s concern about joint FDR analysis of all
groups (here chromosomes) within an experiment or study
applies directly to SMA with FDR control in GWAS. While
this also applies to PR with FDR control, here a separate
analysis of each chromosome implies that QTL on other
chromosomes are not included in the PR multimarker
model, potentially lowering detection power and diminish-
ing the postulated advantage of an all-markers over single-
marker analysis. Finally, for most GWAS, one expects that
the proportions of true null hypotheses are close to 1 and
very similar across groups (chromosomes), so there may be
little difference between joint and separate analyses and
group-based analyses described below.

SMA: Besides these two basic strategies of pooled and
separate analyses, some specialized methods that take the
group structure into account have recently been proposed in
the context of univariate analysis (SMA) (Cai and Sun 2009;
Hu et al. 2010). Cai and Sun estimated the local FDR within
each group and then applied the (approximate oracle) thresh-
olding procedure to the combined set of local FDR values. For
SMA of multiple chromosomes, we compared (i) pooled anal-
ysis based on the BH method or the local FDR thresholding
procedure, (ii) separate analysis based on BH or the local FDR
procedure, and (iii) the local FDR-based grouping procedure
of Cai and Sun (2009).

Sun and Cai (2009) extended their earlier method to
dependent test statistics, using a hidden Markov model
(HMM). Wei et al. (2009) combined this method with the
group-based method of Cai and Sun (2009) in the context of
GWAS and implemented it in the R package PLIS. We tested

Figure 1 Single-marker analysis (SMA)
of chromosome 21 data with two iso-
lated QTL, 200 replicates, and sample
size N = 201. Empirical power is shown
[defined as true positive rate (TPR)] on
the left: Dark blue represents TPR1 as
defined in the main text (TPR including
only the significant QTL), and light blue
represents TPR2 (TPR also including sig-
nificant SNPs linked to QTL at absolute
correlation threshold 0.5, 0.7, or 0.9).
Empirical thresholded false discovery
rate (tFDR) with absolute correlation
thresholds 0.25, 0.3, 0.5, 0.7, and 0.9
is shown on the right: Red horizontal
line represents the tFDR value of 0.05.
GWT, genome-wide threshold that rep-
resents the P-value threshold 5.5 3
1028; BH, Benjamini–Hochberg; BY,
Benjamini–Yekutieli; LFDR1 and LFDR2,
local FDR-based thresholding using dif-
ferent estimators of the proportion of
true null hypotheses (see main text for
details).
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this method on the single chromosome 21 simulation with
eight true QTL, where it produced a very high number of
false positives (irrespective of whether the alternative com-
ponent was fitted with a mixture or a single normal distri-
bution), and hence we did not further pursue the PLIS
method.

Penalized regression: For PR with FDR control, we also
compared separate and pooled analyses. For the pooled
analysis, the SNPs from all three chromosomes were fitted
jointly with the Lasso penalty, and the penalty parameter
value was chosen based on controlling the FDR at level 0.05.
For the separate analysis, the Lasso analysis was performed
separately for each chromosome by omitting the SNPs on
the other chromosomes and choosing a separate penalty
parameter value to control the FDR at level 0.05 for each
chromosome.

Comparison among methods

We define a causal true positive (CTP) as a QTL (defined
earlier as a functional or causal SNP affecting the pheno-
type) that is significant (significant means identified by any
of the methods considered). We define a linked true positive
(LTP) as a SNP that is significant and has an absolute
correlation with a QTL above a certain threshold (T) (note
that T is a threshold on the absolute correlation coefficient,
not the squared coefficient). We define a CLTP as being
either a CTP or an LTP. Methods are compared, across the re-
plicate simulations, based on (1) true positive rate (TPR)
1 = number of CTPs/number of QTL, (2) TPR2 = number
of QTL detected by at least one CLTP (CTP or LTP)/number

of QTL, and (3) threshold-specific empirical tFDR = number
of significant SNPs that are not a CLTP at a given T/number of
significant SNPs. For criterion 2, we used T = 0.9, 0.7, and
0.5 for an increasingly relaxed definition of TP. For criterion
3, we used T = 0.5, 0.3, and 0.25. The first value (T = 0.5)
was chosen because our simulation was designed such that
a QTL had a power of 0.5 to be detected and computed
using Quanto for a given heritability, sample size, and chro-
mosome-wide P-value threshold, and this power decreased
to , 0.01 for a SNP correlated with the QTL at 0.5 (assum-
ing that SNP and QTL have the same allele frequency). The
second value (T = 0.3) is just below the threshold of “useful
LD” (r = 0.316 or r2 = 0.1) as defined by Kruglyak (1999)
and Pritchard and Przeworski (2001) as the value at which
the sample size is increased at most 10-fold. The last value
(T = 0.25) is close to the threshold used in a previous com-
parison study (Ayers and Cordell 2010). For completeness,
we also provide tFDR values at the remaining thresholds
used for TPR2 (0.9, 0.7).

It is not straightforward to evaluate the empirical FDR
in GWAS simulations due to LD. We experimented with
alternative ways of defining the tFDR, such as partitioning
a chromosome into 100-kb windows and computing tFDR
(for a given T) as the number of windows in which the
significant SNPs are all false positives divided by the number
of windows that contain at least one significant SNP. Such
an alternative approach did not change any results signifi-
cantly, so we report tFDR for the first definition.

The results are presented in figures while more detailed
results in the form of tables are available in File S1; the
tables include standard errors for all average (across

Figure 2 Single-marker analysis (SMA)
of chromosome 21 data with eight
QTL, 200 replicates, and sample size
N = 201. Empirical power [defined as true
positive rate (TPR)] is on the left: Dark
blue represents TPR1 as defined in the
main text (TPR including only the signif-
icant QTL), and light blue represents
TPR2 (TPR also including significant SNPs
linked to QTL at absolute correlation
threshold 0.5, 0.7, or 0.9). Empirical
thresholded false discovery rate (tFDR)
with absolute correlation thresholds
0.25, 0.3, 0.5, 0.7, and 0.9 is shown
on the right: Red horizontal line repre-
sents the tFDR value of 0.05. GWT, ge-
nome-wide threshold that represents
the P-value threshold 5.5 3 1028; BH,
Benjamini–Hochberg; BY, Benjamini–
Yekutieli; LFDR1 and LFDR2, local
FDR-based thresholding using different
estimators of the proportion of true null
hypotheses (see main text for details).
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replicates) tFDR, TPR1, and TPR2 values that were used for
computing P-values for differences in these values between
methods or for a one-sided test of average tFDR to exceed
level 0.05.

Results and Discussion

Single-chromosome simulation with two or eight QTL:
Single-marker analysis

For two isolated QTL, SMA results are summarized in Figure
1 (and Table S1 in File S1). For SMA with GWER control
[referred to as genome-wide threshold (GWT) in Figure 1]
that controlled the FWER conservatively, the TPR was low
(0.2) as expected. For SMA with FDR control, BH and BY
controlled the FDR at level 0.05 based on two (three) of the
three empirical threshold-specific FDRs (tFDRs), while the
local FDR-based approximate oracle procedures LFDR1 and
LFDR2 had tFDR values all. 0.05 although not significantly

(at nominal P-value of 0.05). The TPR was somewhat higher
(0.31) for BY compared with the GWT, while it was sub-
stantially higher for BH, LFDR1, and LFDR2 (. 0.5).

For the eight-QTL scenario (Figure 2 and Table S2 in File
S1), TPR was increased for the FDR-based SMA methods
relative to the two-QTL case ($ 0.7 for BH, LFDR1, and
LFDR2; �0.6 for BY compared with # 0.4 for GWT). All
FDR methods controlled the FDR in the sense of producing
at least one tFDR value that was not significantly . 0.05
(nominal P-value). The smallest P-value for exceeding level
0.05 by a tFDR value at T = 0.3 was P = 0.034 for SMA-BH.

Single-chromosome simulation with two isolated QTL:
PR with FDR control

We verified the expectation that Lasso with standard tuning
parameter value selection based on CV produces an un-
acceptably high empirical FDR (. 0.5; results not shown).
The results for PR with FDR control for this scenario are
presented in Figure 3 and Table S3 and Table S4 in File S1.

Figure 3 Penalized regression (PR) anal-
yses of chromosome 21 data with two
isolated QTL, 200 replicates, and sample
size N = 201. Empirical power [defined
as true positive rate (TPR)] is shown on
the top: Dark blue represents TPR1 as
defined in the main text (TPR including
only the significant QTL), and light blue
represents TPR2 (TPR also including sig-
nificant SNPs linked to QTL at absolute
correlation threshold 0.5, 0.7, or 0.9).
Empirical thresholded false discovery
rate (tFDR) with absolute correlation
thresholds 0.25, 0.3, 0.5, 0.7, and 0.9
is shown on the bottom: Red horizontal
line represents the tFDR value of 0.05.
The following penalized regression
methods (in the order shown) are rep-
resented: AdaLasso, adaptive Lasso
where all three initial estimators (SMA,
Lasso with CV, and ridge regression
with CV) produced the same result;
EN_Lambda2 = x, elastic net with Lasso
portion of l2 = x (x = 0.3, 0.5, 0.9);
Lasso_anly, Lasso with analytical FDR
control; Lasso_perm, Lasso with per-
mutation FDR control; MCP_lambda2 =
x, minimax concave penalty with l2 = x
(x = 3, 10, 30, 100).
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Differences in empirical tFDR and TPR among all PR
methods with analytic FDR control were small; there was
a very slight advantage for the elastic net with the mixing
parameter set to 0.5 (EN50); Lasso and MCP with different
values for the second tuning parameter (from l2 = 3 to
l2 = 100) produced almost identical results. All PR methods
were able to control the FDR by producing tFDR values
, 0.05 for all T # 0.5. In terms of power and using the
EN50 to represent PR, in comparison with SMA-BH, the
average TPR1 and TPR2 values of EN50 were lower with
P-values for the differences ranging from 0.004 to 0.013.
Comparing the EN50 with SMA-BY, the average TPR1and
TPR2 values of EN50 were higher with all P-values �0.002.
The Lasso with permutation FDR control had slightly higher
tFDR values compared with the Lasso with analytic FDR
control; TPR1 and TPR2 of the permutation Lasso were sim-
ilar to those of SMA-BH and higher than those of the Lasso
with analytic FDR control (smallest P-value for the differ-
ence = 0.01). The results for Lasso with permutation FDR

were stable across different sets of permutations (100–400
permutations).

Single-chromosome simulation with eight QTL: PR with
FDR control

The results for this scenario are presented in Figure 4 and
Table S5 and Table S6 in File S1. All PR methods were able
to control the FDR by producing tFDR values below (or not
significantly above) 0.05 for all T # 0.5. Most of the differ-
ences in empirical tFDR and TPR among different PR meth-
ods with analytic FDR control remained small but some
were more pronounced for the eight-QTL data relative to
the two-QTL data: EN50 had a higher TRP1 and TRP2 than
the Lasso, with a P-value of 2 3 1025 for the difference in
TPR1 and P = 0.001 for TPR2 at T = 0.9; MCP with low
values for the second tuning parameter (l2 = 3, 10) had
lower TPR1 (P-values 1.3 3 10214 and 0.003, respectively)
and TPR2 (P-values from 2 3 10215 to 0.03 and from 0.003
to 0.33, respectively, with the upper end of each range

Figure 4 Penalized regression (PR) anal-
yses of chromosome 21 data with eight
QTL, 200 replicates, and sample size
N = 201. Empirical power [defined as
true positive rate (TPR)] is shown on the
top: Dark blue represents TPR1 as de-
fined in the main text (TPR including
only the significant QTL), and light blue
represents TPR2 (TPR also including sig-
nificant SNPs linked to QTL at absolute
correlation threshold 0.5, 0.7, or 0.9).
Empirical thresholded false discovery
rate (tFDR) with absolute correlation
thresholds 0.25, 0.3, 0.5, 0.7, and 0.9
is shown on the bottom: Red horizontal
line represents the tFDR value of 0.05.
The following penalized regression meth-
ods (in the order shown) are represented:
AdaLasso, adaptive Lasso where all three
initial estimators (SMA, Lasso with CV,
and ridge regression with CV) produced
the same result; EN_Lambda2 = x, elastic
net with Lasso portion of l2 = x (x = 0.3,
0.5, 0.9); Lasso_anly, Lasso with analytical
FDR control; Lasso_perm, Lasso with per-
mutation FDR control; MCP_lambda2 = x,
minimax concave penalty with l2 = x
(x = 3, 10, 30, 100).
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representing TPR2 at T = 0.5) than the Lasso. Power was
expectedly higher relative to the two-QTL scenario (for
EN50, TPR2 at T = 0.5 increased from 0.43 to 0.73). Com-
paring the EN50 with SMA-BH, the average TPR1 and
TPR2 values of EN50 were lower with P-values for the
differences ranging from 5 3 10222 to 0.001. Comparing
the EN50 with SMA-BY, EN50 had a significantly higher
value for TPR2 at T = 0.5 (P-value 0.0005) while EN50 had
a lower value for TPR1 (P-value 0.005). In general, differ-
ences among PR methods were largest for TPR1 and TPR2
at T = 0.9 and were diminished for TPR2 with T = 0.5.
Comparing Lasso with permutation vs. analytic FDR esti-
mation, the permutation Lasso had lower TPR1 and TPR2
with P-values for the differences # 0.0006. It is surprising
that the permutation method, which was the most power-
ful approach in the two-QTL scenario, is so conservative in
the eight-QTL scenario. This appears to be due to the fact
that permuting the phenotypes, while justified under the
global null hypothesis of no association between any SNPs
and the phenotypes, is conservative when evaluating the
significance of a QTL in the presence of substantial signal
from other QTL. By permuting the phenotype, which con-
sists of both fixed signal and random error, the contribu-
tion of the random errors is overestimated. This does not
affect the validity of the permutation approach in terms of
properly controlling the FDR but does diminish power in
cases like the eight-QTL scenario.

The eight-QTL simulation included two groups of two QTL
each with within-group r2 � 0.5 (absolute correlation among
SNP doses of 0.71). Because of the Lasso’s tendency to select
only a single SNP per group and the EN’s ability to deal with
colinearity and potential coselection of correlated SNPs (SNPs
in LD), we took a closer look at the behavior of Lasso and EN
in this situation. Averaged over both groups and the 200
replicate simulations and including LTPs (T = 0.5), the Lasso

selected zero SNPs in 22%, one SNP in 43%, two SNPs in
26%, and more than two SNPs in 9% of cases. By comparison,
the EN selected zero SNPs in 19%, one SNP in 37%, two SNPs
in 31%, and more than two SNPs in 13% of cases. Expectedly
the EN selected two and more than two SNPs more frequently
but the difference was not substantial.

Single-chromosome simulation with two/eight QTL:
Fusion-type penalties

Here we focused on the LD2lasso with f (the relative weight
given to the Lasso penalty) fixed at two different values (0.9,
0.5), with the two LD functions h(r) = |r| and h(r) = r2, and
with h(r) = 0 if |r| , 0.85 [for this threshold, the median
number of SNP “neighbors” was 2 with interquartile range
(IQR) 0–5 and range 0–39] or |r|, 0.50 (median number of
SNP neighbors = 14 with IQR 6–25 and range 0–102). Be-
cause we did not optimize the implementation of the
LD2lasso for computational speed, we compared the LD2lasso
with the Lasso and EN50 based on only 20 data replicates
that were randomly selected from the 200 replicates. For the
chromosome 21 data with two isolated QTL, the LD2lasso
achieved higher power than Lasso and EN50 while maintain-
ing FDR control (Figure 5 and Table S7 in File S1). The
largest difference was the increase in TPR1 from 0.35 for
the Lasso to 0.5 for the best LD2lasso analysis with f = 0.5
and h(r) = r2 (P-value , 0.05), while all other differences in
TPR1 and TPR2 were smaller.

For the chromosome 21 data with eight QTL (Figure 6
and Table S8 in File S1), however, all LD2lasso variants
were unable to control the FDR with average tFDR values
at the lowest threshold of T = 0.25 near 0.2 (P-value for the
differences to FDR level 0.05 , 4 3 1024). We recall that
the eight-QTL data contained a group of four QTL with weak
pairwise LD (0.01 # r2 # 0.1); the high tFDR values (0.2–
0.26) for LD2lasso were mostly due to SNPs in LD with the

Figure 5 Empirical power [true positive
rate (TPR)] and thresholded false discov-
ery rate (tFDR) for LD2lasso vs. Lasso and
elastic net (EN) penalized regression (PR)
analyses of chromosome 21 data with
two isolated QTL, 20 randomly selected
replicates, and sample size N = 201.
Dark blue represents TPR1 as defined
in the main text (TPR including only the
significant QTL), and light blue repre-
sents TPR2 (TPR also including signifi-
cant SNPs linked to QTL at absolute
correlation threshold 0.5, 0.7, or 0.9).
The empirical tFDR was computed at five
absolute correlation thresholds between
causal and linked SNPs (T = 0.25, 0.3,
0.5, 0.7, 0.9). The red horizontal line
represents the tFDR value of 0.05.
EN_Lambda2 = 0.5 denotes the elastic
net with Lasso portion of l2 = 0.5;
LD2lasso_0.9_r2 (LD2lasso_0.9_|r|) rep-

resents the LD2lasso with weight on the Lasso penalty equal to f = 0.9 and LD function h(r) = r2 (h(r) = |r|). The LD function was set to zero when the
absolute correlation between two SNPs was |r| , 0.85.
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group of four causal SNPs at small absolute correlation val-
ues. In terms of TPR, the difference in TPR1 between the
best LD2lasso analysis with f= 0.5, h(r) = r2, and |r|, 0.85
(|r| , 0.50) and the Lasso had a P-value of 5.4 3 1025

(1.7 3 1025), while the difference in TPR1 between the best
LD2lasso and the EN50 had a larger P-value of 0.10 (0.008).
TPR2 values were also higher, but most P-values for the dif-
ferences in TPR2 between the same methods were . 0.05
due to smaller differences (less than half) and the small
number of replicates.

Single-chromosome simulation with eight QTL:
PR vs. SMA and CAR

Because all previous comparisons focused on differences
among methods in empirical TPR and tFDR for a single FDR
cutoff of 0.05, here we present TPR1 vs. tFDR at T = 0.25
and T = 0.50 (Figure 7) and TPR2 (T = 0.50) vs. tFDR at
T= 0.25 and T = 0.50 (Figure 8). Figure 7 and Figure 8 were
generated by varying the P-value cutoff for SMA and CAR
and varying the penalty parameter for PR. In terms of power
to detect causal SNPs (TPR1) and when using the most re-
laxed definition of tFDR (with T = 0.25), SMA dominated all
other methods with CAR being second followed by LD2lassso
and EN50, with Lasso and MCP (l2 = 10) performing worst
(Figure 7). When using a more stringent definition of false
positives with tFDR at T = 0.50, SMA/CAR dominated in
terms of TPR1 only for tFDR values . 0.05.

In terms of power to detect QTL with causal or linked
SNPs (TPR2 at T = 0.5) (Figure 8) and when using the most
relaxed definition of tFDR (with T = 0.25), EN50 and SMA
(the latter for higher tFDR (T = 0.25) values) slightly dom-
inated the other methods, with the LD2lasso now perform-
ing worst for the most relevant range of tFDR (T = 0.25)
from 0.01 to 0.10. When replacing tFDR (T = 0.25) with

tFDR (T = 0.50), EN50 performed best (slightly better than
Lasso and MCP), with SMA, CAR, and LD2lasso now sepa-
rated as the worst performers.

Single-chromosome simulation with two/eight QTL:
Previous approaches

The multisplit analysis of Meinshausen et al. (2009) was
evaluated based on a random subset of 20 replicates of
the chromosome 21 two-QTL data and on another random
subset of 20 replicates of the chromosome 21 eight-QTL
data (Table S9 in File S1). It controlled the FDR quite con-
servatively (all tFDR values equal to zero) and had low
power relative to the single-step PR methods with FDR con-
trol, as expected. Power (TPR) was , 0.18 for the two-QTL
data and , 0.21 for the eight-QTL data. P-values for the
differences in TPR between the multisplit analysis and the
Lasso ranged from 0.01 to 0.04 for the two-QTL data and
from 2.4 3 1027 to 4 3 1024 for the eight-QTL data.

The adaptive Lasso with local FDR control of Sampson
et al. (2013) was evaluated using all 200 replicates of the
chromosome 21 two-QTL and eight-QTL data (Table S10 in
File S1). R code for executing this method was generously
provided to us by the first author (H. Yi). For our data, the
local FDR adaptive Lasso controlled the FDR at the local
FDR threshold of 0.1 (tFDR values , 0.05), but its power
(TPR) was much lower than that of the Lasso for both the
two-QTL and the eight-QTL data (P-values for the differen-
ces in TPR to the Lasso ranged from 1 3 10212 to 2 3 10213

and from 2.4 3 10267 to 2.5 3 10283, respectively). When
raising the local FDR threshold to 0.5, the FDR was not
controlled for the two-QTL data (tFDR values highly signif-
icantly . 0.05) but was controlled for the eight-QTL data
(tFDR values , 0.05) where the TPR values, however,
remained significantly below the values of the Lasso.

Figure 6 Empirical power [true posi-
tive rate (TPR)] and thresholded false
discovery rate (tFDR) for LD2lasso vs.
Lasso and elastic net (EN) penalized
regression (PR) analyses of chromo-
some 21 data with eight QTL, 20 ran-
domly selected replicates, and sample
size N = 201. Dark blue represents
TPR1 as defined in the main text (TPR
including only the significant QTL),
and light blue represents TPR2 (TPR
also including significant SNPs linked
to QTL at absolute correlation thresh-
old 0.5, 0.7, or 0.9). The empirical
tFDR was computed at five absolute
correlation thresholds between causal
and linked SNPs (T = 0.25, 0.3, 0.5,
0.7, 0.9). The red horizontal line rep-
resents the tFDR value of 0.05.
EN_Lambda2 = 0.5 denotes the elas-
tic net with Lasso portion of l2 = 0.5;
LD2lasso_0.9_r2 (LD2lasso_0.9_|r|) rep-

resents the LD2lasso with weight on the Lasso penalty equal to f = 0.9 and LD function h(r) = r2 (h(r) = |r|). The LD function was set to zero when the
absolute correlation between two SNPs was |r| , 0.85.
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PUMA was run on the eight-QTL data with 200 replicates,
choosing the 2D-MCP method, omitting the SNP preselection
step and otherwise using default parameter values. The results
are in Table S11 in File S1 for four different P-value thresholds
for SNP selection ranging from 1 3 1027 to 0.05, and these
results need to be compared with our MCP with analytic FDR
control [and four fixed values of the second tuning parameter
l2 in (9)] in Table S6. The authors (Hoffman et al. 2013)
recommended a P-value threshold of 1 3 1027 for 2D-MCP,
which controlled the FDR in terms of the tFDR values in Table
S11; the next lower threshold of 1 3 1026 had tFDR values
.0.06 whose one-sided test for exceeding level 0.05 had
P-values from 0.055 to 0.11. Overall, TPR1 and TPR2 values
for 2D-MCP were significantly below those for MCP with an-
alytic FDR control (P-values for differences from 9 3 1025 to
8 3 10229 for 2D-MCP SNP selection threshold 1 3 1027 and
from 0.032 to 2 3 10222 for 2D-MCP SNP selection threshold

1 3 1026). To explain these differences, we looked at the
values for l2 for the models chosen in PUMA by AIC over
the 200 data sets, which surprisingly had a median of 3.46,
with almost all values well below 10. For our own MCP anal-
ysis with FDR control we had chosen four values for the sec-
ond tuning parameter (3, 10, 30, and 100), of which the
lowest value performed the worst. We then replaced the heu-
ristic AIC model selection followed by SNP selection of PUMA
with our analytic FDR tuning parameter selection, which sig-
nificantly improved TPR1 and TPR2 (last column of Table
S11). The analytic FDR criterion selected models with larger
values for l2 with a median of 33.6 (as well as larger values
for l1, median 0.166 vs. 0.310) This improvement still under-
performed the results in Table S6 because PUMA uses a (in-
ternally determined) grid of values for l1 and l2 in 2D-MCP,
which was too sparse for optimal performance of the analytic
FDR approach.

Figure 8 Plot of true positive rate TPR2 vs. thresholded false discovery
rate (tFDR): TPR2 (T = 0.50) vs. tFDR (T = 0.25) and TPR2 (T = 0.50) vs.
tFDR (T = 0.50). TPR2 and tFDR are defined in the main text. MCP was run
with l2 = 10. CAR represents correlation-adjusted marginal correlations.

Figure 7 Plot of true positive rate TPR1 vs. thresholded false discovery
rate (tFDR): TPR1 vs. tFDR (T = 0.25) and TPR1 vs. tFDR (T = 0.50). TPR1
and tFDR are defined in the main text. MCP was run with l2 = 10. CAR
represents correlation-adjusted marginal correlations.
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Analyses of multiple chromosomes

Here we analyzed the simulated data including chromo-
somes 19 (no QTL), 21 (eight QTL), and 22 (two QTL) with
200 replicates. For SMA, the average tFDR values for pooled
and separate BH analyses and for the local FDR grouping
procedure were all . 0.05 for T = 0.25 and 0.3 but most
were insignificantly higher (largest P-value of 0.001 for sep-
arate BH). Differences in TPR between SMA-based pooled
and separate analyses and the grouping procedure of Cai
and Sun (2009) were small and insignificant, although there
was a trend for increasing TPR from pooled analysis to sep-
arate analysis to the grouping procedure (see Table S12 in
File S1).

For penalized regression using Lasso PR with analytic
FDR control, pooled and separate analyses controlled the
FDR in terms of their average tFDR values, and differences
in TPR between the pooled and the separate Lasso were
small and insignificant (Table S13 in File S1). We therefore
compared the separate and pooled analyses for individual
chromosomes. From Table S13, we can see that for chromo-
some 21 (with eight QTL), TPR1 and TPR2 decreased some-
what from separate to pooled analysis with P-values for the
differences ranging from 0.02 to 0.05. For chromosome 22
(with only two QTL), in contrast, TPR1 and TPR2 increased
significantly as expected from separate to pooled analysis
with all P-values , 4 3 10210.

Analysis of real data

We applied PR and SMA methods to data from the Health
ABC GWAS of interleukin 6 soluble receptor (IL-6 SR). The
analysis included 786 Health ABC Caucasians who had both
GWAS and serum IL-6 SR measurements (a continuous
phenotype, approximately normally distributed) avail-
able (see File S2 for details). The genotype data included
750,424 SNPs (after standard edits) from chromosomes 1,
3, 4, 6, and 19. Covariates included in the analysis models
were age, gender, site of data collection, and one principal
component score obtained using Eigenstrat. We analyzed

these data by SMA with GWER threshold (SMA-GWT), by
SMA with BH FDR control (SMA-BH), and with the elastic
net with 50% Lasso penalty (EN50) and analytic FDR con-
trol. SMA-GWT is commonly used in practice, and SMA-BH
performed best among all SMA methods with FDR control on
the simulated data. The elastic net was chosen as the single
PR method because it performed best on the simulated data
among all PR methods combined with our novel method for
FDR control and because differences among PR methods were
generally small. For SMA-BH and EN50 (EN50-sep), chromo-
somes were analyzed separately, and for EN50, a joint anal-
ysis of all chromosomes was also performed (EN50-joint).

Chromosome 1 represents a special situation in that it
contains a region with an extremely strong QTL signal. The
very stringent SMA-GWT threshold identified 74 SNPs for this
chromosome, many more than the 15 EN50-sep SNPs (see
Table 1). Of these 74 SNPs, 61 were in LD above the absolute
correlation threshold of 0.25 with EN50-sep SNPs, and the
remaining 13 SNPs had largest absolute correlations with
EN50-sep SNPs between 0.20 and 0.24 and therefore likely
still overlap with EN50-sep SNPs (given the very strong sig-
nal) rather than represent independent signals. The EN50-sep
selected a small subset of the peak area SNPs that had the
smallest SMA P-values (Figure 9). While the SMA-GWT SNPs
were all located in the area of the major peak, several EN50-
sep SNPs were located in regions clearly separated from the
peak, which mostly overlapped with SNPs detected by SMA-
BH except for one EN50-sep SNP (see Figure 9). Expectedly,
SMA-BH identified the largest number of SNPs (161), of
which 101 were in LD above the absolute correlation thresh-
old of 0.25 with EN50-sep SNPs. The remaining 60 SMA-BH
SNPs had largest absolute correlations with EN50-sep SNPs
between 0.07 and 0.24, indicating together with Figure 9 that
SMA-BH selected some SNPs physically well separated from
and likely not in LD with any EN50 SNPs. To check on the
interpretation of the SNP–SNP correlation values, we simulated
independent SNPs for N = 786 representing 11 different MAF
values between 0.01 and 0.5 (assuming Hardy–Weinberg

Table 1 Analysis of the real data with single-marker analysis, using the genome-wide threshold P-value < 5.5 3 10-8 (SMA-GWT) or
Benjamini–Hochberg FDR control (SMA-BH) applied separately to the data on each chromosome and elastic net penalized regression with
analytic FDR control applied separately to each chromosome (EN50s) or jointly across all five chromosomes (EN50j)

Analysis Method Significant SNPs

Chromosome

1 3 4 6 19

SMA-GWT No. sig 74 0 8 0 0
\EN50s 9/17/42/61 0/0/0/0 6/8/8/8 0/0/0/0 0/0/0/0

SMA-BH No. sig 161 30 10 0 3
\EN50s 13/23/49/101 5/30/30/30 6/9/9/9 0/0/0/0 1/1/3/3

EN50j No. sig 14 3 3 0 0
\EN50s 14/14/14/14 2/2/2/2 2/2/2/2 0/0/0/0 0/0/0/0

EN50s No. sig 15 5 8 0 1
\SMA-GWT 9/9/9/9 0/0/0/0 6/6/6/6 0/0/0/0 0/0/0/0
\SMA-BH 13/13/13/14 5/5/5/5 6/6/6/6 0/0/0/0 1/1/1/1

No. sig denotes the number of significant SNPs, and \ denotes overlap with. The four numbers for overlap (e.g., of SMA-GWT with EN50s in row 3) represent the number
of significant SMA-GWT SNPs that are identical to a significant EN50s SNP / correlated $ 0.8 with a significant EN50s SNP / correlated $ 0.5 with a significant EN50s
SNP / correlated $ 0.25 with a significant EN50s SNP.
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equilibrium) and computed all pairwise absolute correlations
over 100,000 replications, yielding 75th, 95th, and 99th per-
centiles just below 0.025, 0.07, and 0.13, respectively, with
a maximum value of 0.31. Based on our simulation studies
(in particular the eight-QTL simulation), SMA-BH may have
higher power than EN50-sep (by �10%) but also may not
completely control the FDR, so the 60 SMA-BH SNPs with very
small correlations to EN50-sep SNPs may represent some ad-
ditional true signals and some false positives. We also reran
EN50-sep on chromosome 1 by excluding all peak area SNPs
but including a single peak area SNP (with the smallest P-
value) in the model without shrinkage, but this analysis did
not identify any additional SNPs (such as any of the 60 SMA-
BH SNPs) compared to the previous EN50-sep analysis.

On chromosome 4, SMA-GWT, SMA-BH, and EN50-sep
identified similar numbers of SNPs, 8 for SMA-GWT (all
correlated with EN50 SNPs), 10 for SMA-BH (all but 1
correlated with EN50 SNPs), and 8 for EN50 (6 of which
were correlated with SMA-GWT or SMA-BH SNPs).

On chromosomes 3 and 19, no QTL were identified with
the stringent SMA-GWT, while SMA-BH and EN50-sep
identified the same QTL (Table 1 and Figure 9). For chromo-
some 3, the 30 SMA-BH SNPs were all in LD (absolute cor-
relation threshold of 0.25) with the 5 EN50-sep SNPs, and for
chromosome 19, the 3 SMA-BH SNPs were all in LD with the
1 EN50-sep SNP. No SNPs were identified by any method on
chromosome 6. Overall, these results show that SMA-BH and
EN50-sep identify very similar candidate regions in a genome
scan; that EN50 (and other PR methods) will select a subset
of SNPs in a cluster of correlated SNPs, here those with the
smallest SMA P-values; and that for follow-up (fine-mapping)
studies, all EN50 (or other PR) identified SNPs plus a set of
SNPs correlated with the identified SNPs (above a certain
threshold) should be considered.

Finally, the joint analysis of all chromosomes by EN50
with FDR control (EN50-joint), compared to the separated
analyses (EN50-sep), identified fewer SNPs (20 SNPs for
EN50-joint compared with 29 SNPs for EN50-sep). EN50-
joint identified one SNP on chromosome 3 and another on
chromosome 4 that were not in LD with EN50-sep SNPs. The

EN50-joint SNP on chromosome 3 is likely a false positive
due to its 2log10(P-value) being much smaller than those of
all other identified (by any method) SNPs (Figure 10). The
EN50-joint SNP on chromosome 4, however, was in LD (ab-
solute correlation . 0.9) with a SMA-BH SNP.

Concluding remarks

The goals of this study were to provide a review and an
independent comparison of penalized regression methods
with single-marker analysis for variable (SNP) selection in
GWAS and to implement and evaluate penalty/tuning param-
eter value selection by FDR control. A recent application of PR
to GWAS (Waldmann et al. 2013, p. 1) arrived at this conclu-
sion: “Hence, we can conclude that it is important to analyze
GWAS data with both the lasso and the elastic net and an
alternative tuning criterion to minimum MSE is needed for vari-
able selection.” Here we provided such an alternative criterion.

We provided both a simple, approximate analytic method
and a permutation-based method for FDR control in PR. The
analytic method performed consistently well although being
somewhat conservative. The permutation method expectedly
had higher power (was less conservative) than the analytic
method in the two-QTL scenario but was more conservative
than the analytic method in the eight-QTL scenario. This
initially unexpected behavior of the permutation method
appears to be due to the fact that permuting the phenotypes
means permuting some signal along with the random error
and thus overestimates the amount of random error in the
data. This causes the permutation method to become in-
creasingly conservative with increasing numbers and effect
sizes of causal SNPs (QTL). Because our simulated data had
small sample sizes (�200) and contained QTL jointly explain-
ing 20 or 48% of the phenotypic variance (for the two- or
eight-QTL data, respectively), this problem of the permuta-
tion method is more pronounced in our simulation than in
real GWAS data characterized by very large sample sizes
(thousands to tens of thousands) and small SNP effects
(explaining # 1% of the overall variation). However, the
problem may manifest itself also in real data, when there
are larger numbers of causal SNPs or causal SNPs with larger

Figure 9 Plot of –log10(P-value) for SNPs on
chromosomes 1 (left), 3, 4, 6, and 19 (right)
for the real data. The purple, black, and red
circles represent significant SNPs selected by
both SMA with BH FDR control (SMA-BH) and
EN50 (elastic net with 50% weight on L1), by
SMA-BH only, and by EN50 only, respec-
tively. EN50-sep denotes EN50 applied to each
chromosome separately. The gray line is the
genome-wide threshold of 5.5 3 1028, above
which SNPs were selected by SMA-GWT. The y-
axis represents raw P-values from SMA.
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effect sizes as in our Health ABC GWAS. This is unfortunate
because the main advantage of multimarker over single-
marker approaches is that they are able to use the signal from
other markers in determining significance. It may be possible
to overcome this limitation by estimating the residuals using
the fitted model and then permuting the residuals instead of
the phenotype; we are currently investigating the perfor-
mance of this approach.

Based on our comparisons with previous strategies for SNP
selection in PR, it appears that our analytic FDR criterion is
currently the best approach to SNP selection when using PR
for GWAS, and this approach should be appealing to practi-
tioners who desire a measure of error, in particular in terms of
FDR, associated with the selected SNPs. Finally we note that
our simple analytic FDR method can also be applied to pe-
nalized logistic regression.

When the focus is on variable selection (here the identification
of a causal SNP by itself or a linked SNP) and not on estimation
or prediction, our results indicate that among all PR methods
investigated here, a version of the elastic net (EN50) performs
better than the other PR methods in most situations, although
differences were often small. Based on our analyses of simulated
and real data, the EN50 should identify QTL regions that are very
similar to those identified by SMA combined with BH FDR
control. In contrast with SMA-BH, EN50 identifies a QTL region
with a single SNP or few SNPs, and hence subsequent fine-
mapping should include the EN50 SNPs plus additional SNPs in
LD with the EN50 SNPs above a certain threshold. Expectedly,
EN50 and SMA-BH have substantially more power than SMA
with the genome-wide type-I error threshold.

Incorporating fusion-type penalties developed for covari-
ates measured on graphs may improve power but can also
generate more false positives or rather wide QTL regions for
follow-up, in situations when there are multiple, moderately
correlated causal SNPs located on the same chromosome and
false positives are defined as any significant SNPs correlated
with a causal SNP below an absolute value of 0.25.

When applying PR to large genome-wide data sets for joint
(pooled) analysis of all chromosomes, prescreening SNPs
based on SMA P-values is still necessary due to the high
memory requirements for holding the entire SNP genotype

matrix in memory (see Hoffman et al. 2013 for more details).
We note that if prescreening is performed, then for tuning
parameter value selection by our analytic FDR method the
number of markers (p) in (13) should be set to the total
number of markers (prior to preselection) to maintain control
of the FDR (which should produce the same result as what
would be obtained without preselection). It would, however,
be prudent to perform PR with FDR control both on the entire
set of SNPs from all chromosomes (pooled analysis) and sep-
arately on each chromosome (separate analysis). Our results
from the simulated and real data representing several chro-
mosomes indicate that the pooled analysis does not necessar-
ily provide better power for all chromosomes.

We note that currently there is substantial interest in
extending GWAS of single phenotypes to high-dimensional
phenotypes (e.g., Marttinen et al. 2012). While high-
dimensional phenotypes allow aspects of modeling that are
not feasible with a single phenotype, the results of the current
study still provide useful information for the design of anal-
ysis methods for GWAS of high-dimensional phenotypes.

Finally, code used for data simulation and code for EN50
analysis with analytic FDR control are provided in File S3.
An example simulated data set with eight QTL on chromo-
some 21 is available at the Dryad Digital Repository (http://
doi.org/10.5061/dryad.hc445).
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Table S1   Single Marker Analysis (SMA) of 200 replicates of chromosome 21 data with two 
isolated QTLs, and with sample size N = 201. GWT, CWT, BH, BY and LFDR are different SNP 
selection criteria for SMA. GWT is Genome-Wide Threshold which represents the p-value threshold 
5.510-8; CWT is Chromosome-Wide Threshold which represents the p-value threshold 5.510-

83849034/50165; BH denotes Benjamini-Hochberg FDR control; BY represents Benjamini-Yekutieli FDR 
control; LFDR1 and LFDR2 represent the approximate oracle procedure of Sun and Cai (2007) based on 
Efron’s Local FDR with two different sets of parameter estimates (see main text). For the FDR methods, a 
cut-off value of 0.05 was used. Comparison criteria are FWER, tFDR, TPR1, and TPR2. FWER is the 
empirical family-wise error rate (proportion of replicates with   1 false positives); tFDR is an empirical 
thresholded false discovery rate mean(nFP/nSig) with nFP (nSig) being the number of false positives 
(significances), where a false positive is a SNP which is not in LD above a threshold T with any QTL 
(causal SNP); TPR1 = nCTP/Q is the first true positive rate with nCTP denoting the number of true QTLs 
identified and Q denoting the number of true QTL (2*200) over all replicates; TPR2 = nCLTP/Q is the 
second true positive rate with nCLTP denoting the number of true QTLs identified with the causal SNP or 
a linked SNP according to threshold T; T is a threshold, on the absolute correlation between the allelic 
doses of the causal and a linked SNP, above which a linked SNP is counted as a true positive. 
 

Criterion T GWT BH BY LFDR1 
LFDR2 

tFWER 0.25 0 n.a. n.a. n.a. 
 0.3 0 n.a. n.a. n.a. 
 0.5 0 n.a. n.a. n.a. 

tFDR 0.25 0 0.036  
0.008 

0 0.054  0.010 
0.059  0.012 

 0.3 0 0.040  
0.009 

0 0.061  0.010 
0.064  0.012 

 0.5 0 0.055  
0.010 

0.004  
0.003 

0.086  0.012 
0.092  0.014 

TPR1  0.192 
 0.020 

0.510  
0.026 

0.312  
0.025 

0.535  0.027 
0.530  0.027 

TPR2 0.5 0.200 
 0.021 

0.520  
0.026 

0.325  
0.025 

0.550  0.026 
0.540  0.027 

 0.7 0.198 
 0.020 

0.512  
0.026 

0.320  
0.025 

0.540  0.027 
0.532  0.027 

 0.9 0.198 
 0.020 

0.510  
0.026 

0.318  
0.025 

0.538  0.027 
0.530  0.027 
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Table S2   SMA of 200 replicates of chromosome 21 data with eight QTLs, and with sample size N 
= 201. See Table S1 for abbreviations and details. 
 
Criterion T GWT BH BY LFDR1  

LFDR2 
tFWER 0.25 0 n.a n.a n.a 

 0.3 0  n.a n.a n.a 
 0.5 0.135 + 

0.024 
n.a n.a n.a 

tFDR 0.25 0 0.054  
0.006 

0.010  
0.005 

0.048  0.006 
0.048  0.006 

 0.3 0 0.061  
0.006 

0.012  
0.005 

0.054  0.006 
0.054  0.006 

 0.5 0.016       
 0.004 

0.157  
0.008 

0.065  
0.008 

0.149  0.008 
0.147  0.009 

TPR1  0.296 
 0.012 

0.696  
0.016 

0.528       
 0.018 

0.689  0.016 
0.678  0.017 

TPR2 0.5 0.408 
 0.015 

0.792  
0.016 

0.628  
0.020 

0.788  0.016 
0.778  0.017 

 0.7 0.358 
 0.015 

0.746  
0.016 

0.584  
0.019 

0.741  0.016 
0.729  0.017 

 0.9 0.306 
 0.013 

0.699  
0.016 

0.537  
0.018 

0.695  0.016 
0.682  0.017 
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Table S3   Penalized regression analysis using Lasso, Adaptive Lasso and Elastic Net, with FDR 
based selection of the penalty parameter values, of 200 replicates of chromosome 21 data with 
two isolated QTLs, and with sample size N = 201. FDR control was at the 0.05 level, and all methods 
used the analytic FDR except Lasso perm which used the permutation FDR. EN represents the Elastic 
Net with lasso weight (2) set to 0.3, 0.5 or 0.9. AdaLasso represents the Adaptive Lasso using weights 
obtained by Lasso with CV (CV), Ridge Regression with CV (RR), and SMA (results for these three 
AdaLasso varieties were identical here). See Table S1 for other definitions. 
 
Criterion T Lasso 

perm 
Lasso AdaLasso 

(CV,RR, 
SMA) 

EN       
(2 = 0.3)

EN       
(2 = 0.5) 

EN       
(2 = 0.9)

tFDR 0.25 0.022  
0.01 

0.015  
0.008 

0.015  
0.008 

0.021  
0.010 

0.019  
0.009 

0.016  
0.008 

 0.3 0.025  
0.01 

0.018  
0.008 

0.018  
0.008 

0.024  
0.010 

0.021  
0.010 

0.018  
0.008 

 0.5 0.027   
0.010 

0.018  
0.008 

0.018  
0.008 

0.027  
0.010 

0.023  
0.010 

0.018  
0.008 

TPR1  0.442   
0.024 

0.382  
0.025 

0.382   
0.025 

0.400  
0.025 

0.412  
0.026 

0.392  
0.026 

TPR2 0.5 0.512   
0.024 

0.432  
0.027 

0.432   
0.027 

0.420  
0.026 

0.432  
0.027 

0.435  
0.027 

 0.7 0.495   
0.024 

0.425  
0.027 

0.425   
0.027 

0.415  
0.026 

0.428  
0.027 

0.425  
0.027 

 0.9 0.482   
0.025 

0.412  
0.027 

0.412   
0.027 

0.410  
0.026 

0.422  
0.026 

0.415  
0.026 
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Table S4   Penalized regression analysis using MCP with several fixed values of the second tuning 
parameter (2) and with FDR based selection of the value for the first tuning parameter, of 200 
replicates of chromosome 21 data with two isolated QTLs, and with sample size N = 201. FDR 
control was at the 0.05 level, and all methods used the analytic FDR. MCP represents Minimax Concave 
Penalty. See Table S1 for other definitions. 
 
Criterion T MCP      

(2 = 3) 
MCP      

(2 = 10) 
MCP      

(2 = 30) 
MCP      

(2 = 100) 
tFDR 0.25 0.022  

0.010 
0.018  
0.008 

0.020   
0.009 

0.018   
0.008 

 0.3 0.025  
0.010 

0.020  
0.009 

0.022   
0.009 

0.020   
0.009 

 0.5 0.025  
0.010 

0.020  
0.009 

0.022   
0.009 

0.022   
0.009 

TPR1  0.375  
0.025 

0.380  
0.025 

0.378   
0.025 

0.380   
0.025 

TPR2 0.5 0.432  
0.027 

0.435  
0.027 

0.432  
0.027 

0.435   
0.027 

 0.7 0.422  
0.027 

0.428  
0.027 

0.425  
0.027 

0.425   
0.027 

 0.9 0.410  
0.027 

0.415  
0.027 

0.412  
0.027 

0.412   
0.027 
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Table S5   Penalized regression analysis using Lasso, Adaptive Lasso and Elastic Net, with FDR 
based selection of the penalty parameter values, of 200 replicates of chromosome 21 data with 
eight QTLs, and with sample size N = 201. FDR control was at the 0.05 level, and all methods used the 
analytic FDR except Lasso perm which used the permutation FDR. EN represents the Elastic Net with 
Lasso weight (2) set to 0.3, 0.5 or 0.9. AdaLasso represents the Adaptive Lasso using weights obtained 
by Lasso with CV (CV), Ridge Regression with CV (RR), and SMA. See Table S1 for other definitions. 
 
Criterion T Lasso 

perm 
Lasso AdaLasso 

(CV) 
AdaLasso 
(RR,SMA) 

EN      
(2 = 
0.3) 

EN       
(2 = 
0.5) 

EN       
(2 = 
0.9) 

tFDR 0.25 0.006 + 
0.003 

0.020 + 
0.005 

0.019 + 
0.005 

0.020 + 
0.005 

0.026  
0.005 

0.023  
0.005 

0.019  
0.005 

 0.3 0.008 + 
0.003 

0.023 + 
0.005 

0.022 + 
00.005 

0.023 + 
00.005 

0.028  
0.005 

0.026  
0.005 

0.022  
0.005 

 0.5 0.024  
0.006 

0.042 ± 
0.007 

0.041  
0.006 

0.042  
0.007 

0.053  
0.006 

0.048  
0.006 

0.040  
0.006 

TPR1  0.315  
0.011 

0.378 ± 
0.014 

0.372  
0.014 

0.378  
0.014 

0.548  
0.017 

0.466  
0.016 

0.394  
0.014 

TPR2 0.5 0.613  
0.016 

0.692 ± 
0.018 

0.690  
0.018 

0.692  
0.018 

0.739  
0.018 

0.718  
0.018 

0.704  
0.018 

 0.7 0.514  
0.015 

0.597 ± 
0.018 

0.594  
0.018 

0.597  
0.018 

0.661  
0.018 

0.632  
0.018 

0.609  
0.018 

 0.9 0.366  
0.012 

0.441 ± 
0.015 

0.438  
0.015 

0.441  
0.015 

0.570  
0.017 

0.509  
0.016 

0.456  
0.015 
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Table S6   Penalized regression analysis using MCP with different fixed values of the second 
tuning parameter (2) and with FDR based selection of the value of the first tuning parameter, of 
200 replicates of chromosome 21 data with eight QTLs, and with sample size N = 201. FDR control 
was at the 0.05 level, and all methods used the analytic FDR. MCP represents Minimax Concave Penalty. 
See Table S1 for other definitions. 
 
Criterion T MCP      

(2 = 3) 
MCP      

(2 = 10) 
MCP      

(2 = 30) 
MCP      

(2 = 100) 
tFDR 0.25 0.018  

0.006 
0.018  
0.005 

0.018  
0.004 

0.019  
0.005 

 0.3 0.020  
0.007 

0.021  
0.005 

0.021  
0.005 

0.021  
0.005 

 0.5 0.029  
0.007 

0.037  
0.006 

0.037  
0.006 

0.040  
0.006 

TPR1  0.242  
0.010 

0.325  
0.013 

0.363  
0.014 

0.378 ± 
0.014 

TPR2 0.5 0.643  
0.018 

0.681  
0.018 

0.694  
0.018 

0.700  
0.018 

 0.7 0.476  
0.016 

0.566  
0.017 

0.593  
0.018 

0.599  
0.018 

 0.9 0.289  
0.011 

0.389  
0.014 

0.428  
0.015 

0.441  
0.015 
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Table S7   LD2lasso analyses of 20 randomly selected replicates of chromosome 21 data with two 
isolated QTLs, and with sample size N = 201. Lasso and EN (2 = 0.5) results are presented for 
comparison. For LD2lasso,  is the relative weight on the Lasso penalty, and the LD function h(r) was set 
to zero when the absolute correlation between two SNPs was |r| < 0.85 or 0.50. All methods used the 
analytic FDR method with control at the 0.05 level. See Table S1 for other definitions. 
 
Criterion T Lasso EN       

(2 = 0.5)
LD2lasso 
 = 0.9 
h(r) = r2 
|r| < 0.85 

LD2lasso 
 = 0.5 
h(r) = r2 
|r| < 0.85 

LD2lasso 
 = 0.9 

h(r) = |r| 
|r| < 0.85 

LD2lasso 
 = 0.5 

h(r) = |r| 
|r| < 0.85 

tFDR 0.25 0 0 0 0 0 0 
 0.3 0 0 0 0 0 0 
 0.5 0 0 0 0 0 0 

TPR1  
0.350  
0.089 

0.425  
0.092 

0.475  
0.098 

0.500  
0.101 

0.475  
0.098 

0.450  
0.101 

TPR2 0.5 0.450  
0.095 

0.475  
0.098 

0.500  
0.101 

0.525  
0.098 

0.500  
0.101 

0.475  
0.098 

 0.7 0.450  
0.095 

0.475  
0.098 

0.500  
0.101 

0.525  
0.098 

0.500  
0.101 

0.475  
0.098 

 0.9 0.425  
0.098 

0.450  
0.095 

0.475  
0.098 

0.525  
0.098 

0.475  
0.098 

0.450   
0.101 

 
Criterion T LD2lasso 

 = 0.9,  
h(r) = r2, |r| 

< 0.50 

LD2lasso 
 = 0.5,  
h(r) = r2, 
|r| < 0.50 

tFDR 0.25 0 0 
 0.3 0 0 
 0.5 0 0 

TPR1  
0.475  
0.098 

0.450  
0.101 

TPR2 0.5 0.500  
0.101 

0.475  
0.098 

 0.7 0.500  
0.101 

0.475  
0.098 

 0.9 0.475  
0.098 

0.450  
0.101 
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Table S8   LD2lasso analyses of 20 randomly selected replicates of chromosome 21 data with 
eight QTLs, and with sample size N = 201. Lasso and EN (2 = 0.5) results are presented for 
comparison. For LD2lasso,  is the relative weight on the Lasso penalty, and the LD function h(r) was set 
to zero when the absolute correlation between two SNPs was |r| < 0.85. All methods used the analytic 
FDR method with control at the 0.05 level. See Table S1 for other definitions. 
 
Criterion T Lasso EN        

(2 = 0.5) 
LD2lasso 
 = 0.9 
h(r) = r2 

|r| = 0.85 

LD2lasso 
 = 0.5 
h(r) = r2 
|r| = 0.85 

LD2lasso 
 = 0.9 

h(r) = |r| 
|r| = 0.85 

LD2lasso 
 = 0.5 

h(r) = |r| 
|r| = 0.85 

tFDR 0.25 0.005  
0.005 

0.014  
0.006 

0.191 ± 
0.041 

0.201 ± 
0.041 

0.195 ± 
0.041 

0.204 ± 
0.041 

 0.3 0.005  
0.005 

0.014  
0.006 

0.194 ± 
0.041 

0.204 ± 
0.041 

0.198 ± 
0.041 

0.207 ± 
0.044 

 0.5 0.024  
0.014 

0.033  
0.016 

0.252  
0.048 

0.259  
0.048 

0.256  
0.048 

0.269  
0.051 

TPR1  0.269  
0.041 

0.469  
0.044 

0.500  
0.051 

0.562  
0.054 

0.500  
0.051 

0.544  
0.06 

TPR2 0.5 0.631  
0.057 

0.688  
0.060 

0.769  
0.057 

0.769  
0.057 

0.769  
0.057 

0.744  
0.006 

 0.7 0.569  
0.057 

0.625  
0.057 

0.650  
0.057 

0.656  
0.057 

0.65  
0.057 

0.625  
0.067 

 0.9 0.419 + 
0.047 

0.512  
0.048 

0.569  
0.054 

0.600  
0.054 

0.569  
0.054 

0.581  
0.06 

 
 
Criterion T LD2lasso 

 = 0.9, 
h(r) = r2, |r| = 0.50 

LD2lasso 
 = 0.5, 

h(r) = r2, |r| = 0.50 
tFDR 0.25 0.194 ± 0.041 

(0.00058) 
0.166 ± 0.041 

(0.0037) 
 0.3 0.199 ± 0.041 

(0.00041) 
0.169 ± 0.041 

(0.0031) 
 0.5 0.255  0.048 

(6.271e-05) 
0.223  0.048 

(0.0045) 
TPR1  0.556  0.054 0.650  0.057 

TPR2 0.5 0.756  0.060 0.775  0.060 
 0.7 0.650  0.057 0.694  0.060 
 0.9 0.594  0.057 0.662  0.057 

 
  



10 SI  H. Yi et al. 

 

Table S9   Multi-split analysis using the method of Meinshausen et al. (2009) of 20 randomly 
chosen replicates of chromosome 21 data with two isolated QTLs or eight QTLs, and with sample 
size N=201. The analysis used Benjamini-Hochberg (BH) or Benjamini-Yekutieli (BY) FDR control. See 
Table S1 for other definitions. 
 

  Two QTLs Eight QTLs 
Criterion T Lasso BH BY Lasso BH BY 

tFDR 0.25 0 0 0 0.005  
0.005 

0 0 

 0.3 0 0 0 0.005  
0.005 

0 0 

 0.5 0 0 0 0.024  
0.014 

0 0 

TPR1  0.350  
0.089 

0.150  
0.073 

0.050  
0.035 

0.269  
0.041 

0.094  
0.025 

0.038  
0.016 

TPR2 0.5 0.450  
0.095 

0.175  
0.076 

0.050  
0.035 

0.631  
0.057 

0.206  
0.051 

0.069  
0.032 

 0.7 0.450  
0.095 

0.175  
0.076 

0.050  
0.035 

0.569  
0.057 

0.144  
0.041 

0.056  
0.029 

 0.9 0.425  
0.098 

0.175  
0.076 

0.050  
0.035 

0.419 + 
0.047 

0.100  
0.025 

0.044  
0.019 
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Table S10   Adaptive Lasso with Local FDR estimation with bootstrap size 100 and different cut-off 
values for the local FDR (locFDR), of 200 replicates of chromosome 21 data with two isolated 
QTLs, and with sample size N=201. For comparison, results for the Lasso with analytic FDR control are 
also shown. See Table S1 for other definitions. 
 

  Two QTLs Eight QTLs 
Criterion T Lasso AdaLasso 

locFDR=0.1 
AdaLasso 

locFDR=0.5 
Lasso AdaLasso 

locFDR=0.1 
AdaLasso 

locFDR=0.5 
AdaLasso 

locFDR=0.9 
tFDR 0.25 0.015  

 0.008 
0.020   
0.006 

0.328   
0.025 

0.020 ± 
0.005 

0 0.033  
0.006 

0.573  
0.014 

 0.3 0.018   
0.008 

0.020   
0.006 

0.353   
0.025 

0.023 ± 
0.005 

0 0.033  
0.006 

0.589  
0.015 

 0.5 0.018   
0.008 

0.020   
0.006 

0.354   
0.025 

0.042 ± 
0.007 

0.033   
0.011 

0.086  
0.009 

0.627  
0.014 

TPR1  0.382   
0.025 

0.150   
0.020 

0.400   
0.025 

0.378 ± 
0.014 

0.056   
0.006 

0.188  
0.010 

0.344  
0.009 

TPR2 0.5 0.432   
0.027 

0.175   
0.021 

0.575   
0.021 

0.692 ± 
0.018 

0.125   
0.014 

0.350  
0.016 

0.738  
0.014 

 0.7 0.425   
0.027 

0.175   
0.021 

0.500   
0.023 

0.597 ± 
0.018 

0.094   
0.010 

0.281  
0.013 

0.538  
0.014 

 0.9 0.412   
0.027 

0.175   
0.021 

0.475   
0.024 

0.441 ± 
0.015 

0.069   
0.007 

0.212  
0.010 

0.381  
0.010 
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Table S11   Two dimensional (2D) MCP implemented in PUMA, across 200 replicates of 
chromosome 21 data with eight QTLs, and with sample size N=201. Final SNP selection was based 
on p-values with different cut-offs.   

  2D MCP with different p-value thresholds 2D MCP 
analytic FDRCriterion T 110-07 110-06 110-05 0.05 

tFDR 0.25 0.025  
0.006 

0.061  
0.009 

0.138  
0.013 

0.729  
0.005 

0.013   
0.004 

 0.3 0.025  
0.006 

0.061  
0.009 

0.139  
0.013 

0.74  
0.004 

0.015   
0.004 

 0.5 0.025  
0.006 

0.066  
0.01 

0.142  
0.013 

0.756  
0.004 

0.032   
0.006 

TPR1  0.191  
0.009 

0.217  
0.009 

0.244  
0.009 

0.356  
0.01 

0.312   
0.014 

TPR2 0.5 0.516  
0.017 

0.581  
0.016 

0.632  
0.015 

0.839  
0.01 

0.644   
0.021 

 0.7 0.386  
0.013 

0.433  
0.013 

0.473  
0.013 

0.638  
0.012 

0.528   
0.019 

 0.9 0.231  
0.009 

0.261  
0.009 

0.289  
0.009 

0.414  
0.01 

0.365   
0.015 
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Table S12   Joint analysis of chromosomes 19, 21 and 22 by single marker analysis. Compared are 
pooled and separate analyses using the local FDR (locFDR) based thresholding procedure or the BH 
procedure, and the locFDR based grouping procedure of Cai and Sun (2009) referred to as Group 
locFDR. See Table S1 for other definitions. 

Criterion T Pooled 
locFDR 

Separate 
locFDR 

Group 
locFDR 

Pooled 
BH 

Separate 
BH 

tFDR 

0.25 0.026 ± 
0.004 

0.036 ± 
0.004 

0.052 ± 
0.005 

0.050 ± 
0.004 

0.058 ± 
0.005 

0.3 0.029 ± 
0.004 

0.039 ± 
0.004 

0.058 ± 
0.005 

0.056 ± 
0.005 

0.065 ± 
0.005 

0.5 0.087 ± 
0.006 

0.117 ± 
0.007 

0.135 ± 
0.007 

0.127 ± 
0.007 

0.156 ± 
0.007 

TPR1 
 0.576 ± 

0.014 
0.610 ± 
0.013 

0.634 ± 
0.013 

0.636 ± 
0.013 

0.659 ± 
0.012 

TPR2 

0.5 0.664 ± 
0.015 

0.694 ± 
0.013 

0.724 ± 
0.013 

0.720 ± 
0.014 

0.737 ± 
0.012 

0.7 0.624 ± 
0.014 

0.654 ± 
0.013 

0.682 ± 
0.013 

0.682 ± 
0.014 

0.699 ± 
0.012 

0.9 0.582 ± 
0.014 

0.616 ± 
0.013 

0.642 ± 
0.013 

0.644 ± 
0.013 

0.665 ± 
0.012 
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Table S13   Analyses of chromosomes 19, 21 and 22 by separate and pooled Lasso PR with analytic 
FDR control at the 0.05 level. Also compared are the results from separate and pooled analyses of the 
three chromosomes for individual chromosomes 21 and 22. See Table S1 for other abbreviations / 
definitions. 

 

Criterion T Separate Pooled C21  
Separate

C21  
Pooled 

C22  
Separate

C22  
Pooled  

tFDR 

0.25 0.028  
0.005 

0.023 
0.004 

0.021 ± 
0.004 

0.010  
0.003 

0.025 ± 
0.009 

0.024  
0.007 

0.3 0.028  
0.005 

0.024 ±
0.004 

0.021 ± 
0.004 

0.010  
0.003 

0.025 ± 
0.009 

0.024  
0.007 

0.5 
0.041  
0.005 

0.035 
0.005 

0.034 ± 
0.005 

0.024  
0.005 

0.028 ± 
0.009 

0.028  
0.008 

TPR1  
0.399  
0.011 

0.414 
0.013 

0.422 ± 
0.013 

0.390  
0.014 

0.305 ± 
0.022 

0.510  
0.024 

TPR2 

0.5 
0.656  
0.013 

0.664 
0.016 

0.733 ± 
0.016 

0.687  
0.017 

0.348 ± 
0.023 

0.572  
0.025 

0.7 
0.577  
0.012 

0.586 
0.015 

0.636 ± 
0.015 

0.591  
0.016 

0.340 ± 
0.023 

0.568  
0.025 

0.9 
0.456  
0.011 

0.472 
0.014 

0.486 ± 
0.014 

0.449  
0.015 

0.340 ± 
0.023 

0.565  
0.025 
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Figure S1   Histogram of the z-values pertaining to 21,530 SNPs on chromosome 21. The blue solid 

curve represents the N(0,1) distribution, which fits the empirical z-value distribution well. 
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File S2 
SUPPLEMENT S2 

HABC Study 

The Health ABC study is a prospective cohort study investigating the associations 

between body composition, weight-related health conditions, and incident functional 

limitation in older adults. Health ABC enrolled well-functioning, community-dwelling 

black (n=1281) and white (n=1794) men and women aged 70-79 years between April 

1997 and June 1998. Participants were recruited from a random sample of white and all 

black Medicare eligible residents in the Pittsburgh, PA, and Memphis, TN, metropolitan 

areas. The present study sample consists of 786 white participants with available 

genotyping and IL-6 SR data. 

  

Phenotypic Information 

To measure the level of IL-6 SR, venipuncture was performed for each of the 

participants after an overnight fast of at least 8 h, and serum samples were then frozen 

at -70^C. IL-6 SR levels were measured by ultrasensitive ELISA (R&D Systems) and 

had CVs of 3.5%–5.2%. 

  

Genotyping and Imputation 

Genomic DNA was extracted from buffy coat collected using PUREGENE® DNA 

Purification Kit during the baseline exam. Genotyping was performed by the Center for 

Inherited Disease Research (CIDR) using the Illumina Human1M-Duo BeadChip 

system. Samples were excluded from the dataset for the reasons of sample failure, 

genotypic sex mismatch, and first-degree relative of an included individual based on 

genotype data. Genotyping was successful for 1,151,215 SNPs in 2,802 unrelated 

individuals (1663 Caucasians and 1139 African Americans). Imputation was done for 

the autosomes using the MACH software version 1.0.16. SNPs with minor allele 

frequency ≥ 1%, call rate ≥97% and HWE p≥10-6 were used for imputation. HapMap II 

phased haplotypes were used as reference panels. For Caucasians, genotypes were 

available on 914,263 high quality SNPs for imputation based on the HapMap CEPH 

reference panel (release 22, build 36). 
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File S3 
Supplement S3 

 
 
 
################################################################# 
###### Simulate 200 SNP genotype data sets using Hapgen2 
################################################################# 
 
# Change work directory to the directory containing "hapgen2" software 
and HapMap2 Ref#24 haplotype data sets 
cd ~/.../Hapgen2 
 
# Do the loop to generate 200 SNP genotype data sets.  
# Note that the seed is the current time by default.  
# So it's better to generate a few data sets in each loop,  
# and do it for a few times with time gaps. 
for i in {1..10}; do  
./Hapgen2 -h hapmap_r24_b36_fwd.consensus.qc.poly.chr21_ceu.phased -l 
chr21.ceu.r24.legend -m genetic_map_chr21_CEU_b36.txt -dl 34238344 1 1 
1  -n 201 0 -o ./Results2/$i; done 
 
################################################################# 
############# R Code to pre-process SNP genotype data 
################################################################# 
 
iteration <- 200 # Number of SNP data replicates 
N <- 201   # Sample size 
# Record number of SNPs remaining after filtering by  
# MAF <= 0.01 and correlation >= 0.999. 
nSNPMAF <- nSNPMAFVar <- nSNPVarCor <- numeric(iteration)   
# Record SNP positions for each of the 200 SNP data. 
SNP.pos <- matrix(0, iteration, 30000) 
 
for (its in 1:iteration) { 
 ### Read each SNP data set 
 setwd(".../Hapgen2/Results2") 
 dataName <- paste(its,".controls.gen", sep="")  
 Data <- read.table(dataName) 
 Genotype0 <- Data[, -c(1:5)] # first 5 columns are info 
  
 ### compute allelic dose from three-column SNP data 
 Genotype1 <- matrix(0, nrow(Genotype0), N) # P*N SNP matrix 
 for (t in 1:N){ 
  index <- which(Genotype0[, (t-1)*3+1] ==1) 
  Genotype1[index,t] <- 0 
  index <- which(Genotype0[, (t-1)*3+2] ==1) 
  Genotype1[index,t] <- 1 
  index <- which(Genotype0[, t*3] ==1) 
  Genotype1[index,t] <- 2 
 } 
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 row.names(Genotype1) <- Data[, 3] # SNP positions 
  
 ### Remove SNPs with MAF <= 0.01 
 MAF <- rowSums(Genotype1) / (2 * ncol(Genotype1))         
 id1 <- c(which(MAF <= 0.01), which(MAF >= 0.99)) 
 Genotype2 <-  t(Genotype1[-id1,]) 
 colnames(Genotype2) <- rownames(Genotype2)[-id1] 
 nSNPMAF[its] <- ncol(Genotype2) # no. SNPs after MAF filter 
  
 ## Remove SNPs with variance 0 
 id2 <- c(which(colSums(Genotype2) == 0), which(colSums(Genotype2) 
== N), which(colSums(Genotype2) == (2*N)), which(colSums(Genotype2) == 
(3*N))) 
 Genotype3 <- Genotype2[,-id2] 
 colnames(Genotype3) <- colnames(Genotype2)[-id2] 
 nSNPMAFVar[its] <- ncol(Genotype3) # Record number of SNPs after 
MAF <= 0.01 filtering 
 X <- Genotype3 
  
 ### Remove SNPs with correlation > 0.999 
 for (t in 1:10) { 
  P <- ncol(X) 
  id2 <- c() 
  for (i in 1:(P-1)){ 
   if ((i+500) <= P) { 
    COR <- cor(X[,i], X[, (i+1):(i+500)]) 
    temp <- which( abs(COR) > 0.999) 
    id2 <- c(id2, i+temp) 
   } 
   if ((i+500) > P) { 
    COR <- cor(X[,i], X[, (i+1):P]) 
    temp <- which( abs(COR) > 0.999) 
    id2 <- c(id2, i+temp) 
   } 
  } 
  if (length(unique(id2)) > 0) { 
   tmp <- X[, -unique(id2)] 
   X <- tmp 
  } 
  if (length(unique(id2)) == 0) { 
   nSNPVarCor[its] <- ncol(X) 
   break 
  } 
 }  
  
 ### Change data to minor alleles consistent for all SNPs 
 tmp <- colSums(X) / (2*nrow(X))  
 id <- which(tmp >= 0.5) 
 X[, id] <- 2 - X[, id] 
 
 ### Record SNPs positions  
 SNP.pos[its, (1:ncol(X))] <- colnames(X) 
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 ### Save final, clean SNP data sets 
 setwd(".../Hapgen2/SNP_matrix") 
 dataName2 <- paste(its,".txt", sep="") # Define data name 
 write.table(X, dataName2, row.names=FALSE, col.names=FALSE) 
} 
 
### Save SNP positions for each SNP data replicate 
write.table(SNP.pos, '.../Hapgen2/SNP_matrix/position.txt', 
row.names=FALSE, col.names=FALSE) 
### Save number of SNPs after MAF and correlation scanning 
write.table(nSNPCor, '.../Hapgen2/SNP_matrix/nSNPCor2.txt', 
row.names=FALSE, col.names=FALSE) 
 
################################################################# 
#### Get the common SNPs across 200 data replicates 
################################################################# 
 
### Get the common SNP positions across 200 data replicates 
SNP.pos <-  read.table('.../Hapgen2/SNP_matrix/position.txt') 
pos1 <- SNP.pos[1, -which(SNP.pos[1,] == 0)] 
pos2 <- SNP.pos[2, -which(SNP.pos[2,] == 0)] 
comSNP <- pos1[ which(is.na(match(pos1, pos2)) == F) ] 
for (i in 3:iteration) { 
 tmp <- SNP.pos[i, -which(SNP.pos[i, ] == 0)]  
 comSNP <- tmp[ which(is.na(match(tmp, comSNP)) == F) ]  
} 
length(comSNP) # 9224 
 
### Save common SNP matrix across 200 data replicates 
X.all <- matrix(0, N*iteration, length(comSNP)) 
for (its in 1:iteration) { 
 dataName2 <- paste(its,".txt", sep="") 
 X <- read.table(dataName2) 
 X <- as.matrix(X) 
 id <- match(comSNP, SNP.pos[its, ]) 
 X.all[((its-1)*N +1):(its*N), ] <- X[, id] 
} 
write.table(X.all, '.../Hapgen2/SNP_matrix/commonSNPs.txt', 
row.names=FALSE, col.names=FALSE) 
### Save common SNPs positions 
write.table(comSNP, '.../Hapgen2/SNP_matrix/commSNPnames.txt', 
row.names=FALSE, col.names=FALSE) 
 
################################################################# 
############# Select two isolated QTL loci  
################################################################# 
 
### Select two QTL loci 
loc <- c(174, 8566)   
Q <- length(loc)   # Number of QTLs 
MAF <- colSums(X.all) / (2*nrow(X.all)) 
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MAF[loc]     
locQTL <- comSNP[loc]  #locations: 14516982 44540242 
X.2QTL <- X.all[, loc]    
 
### Calculate variance and correlation of 2 QTLs 
fi <- colSums(X.2QTL) / (2*nrow(X.2QTL))  
2*fi*(1-fi)    # SNPs variance based on HWE 
diag(var(X.2QTL))   # SNPs variance 
cor(X.2QTL)    # correlation of two QTLs 
 
### Test if the correlation of 2 QTLs is significant or not 
require("psych") 
r.test(N*iteration, cor(X.2QTL)[1,2])$p     # Not significant 
 
### Save QTL data across 200 data replicates 
write.table(X.2QTL, '.../Hapgen2/SNP_matrix/twoQTLs.txt', 
row.names=FALSE, col.names=FALSE) 
 
################################################################# 
###### Get two QTL locations for each SNP data replicates 
################################################################# 
 
SNP.pos <- read.table(".../Hapgen2/SNP_matrix/position.txt") 
N <- 201    
Q <- length(loc)   
locAll <- matrix(0, iteration, Q) 
 
for (its in 1:iteration) { 
 setwd(".../Hapgen2/SNP_matrix") 
 dataName2 <- paste(its,".txt", sep="") 
 X <- read.table(dataName2) 
 
 # Get location of the two QTLs in each SNP data 
 loc <- which(is.na(match(SNP.pos[its, -which(SNP.pos[its, ] == 
0)], locQTL)) == F) 
 locAll2[its, ] <- loc 
} 
 
# Save two QTL locations across 200 SNP data replicates 
write.table(locAll2, '.../Hapgen2/SNP_matrix/locAll2.txt', 
row.names=FALSE, col.names=FALSE) 
 
################################################################# 
###### Generate phenotype data Y with two QTLs  
################################################################# 
 
X.2QTL <- read.table(".../Hapgen2/SNP_matrix/twoQTLs.txt") 
locAll <- read.table(".../Hapgen2/SNP_matrix/locAll2.txt") 
h <- c(0.1, 0.1)   # Heritability of each QTL 
beta <- sqrt( h/diag(var(X.2QTL)) ) # var(Y) = 1 
var_res <- 1 - sum(h)   # residual variance 
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for (its in 1:iteration) { 
 setwd(".../Hapgen2/SNP_matrix") 
 dataName2 <- paste(its,".txt", sep="") 
 X <- read.table(dataName2) 
 Y <- as.matrix( X[, unlist(locAll[its, ])])%*%beta + rnorm(N, 0, 
sqrt(var_res)) 
 setwd(".../Hapgen2/Response_2QTL") 
 Yname <- paste("Y", its, ".txt", sep="") 
 write.table(Y, Yname, row.names=FALSE, col.names=FALSE) 
 
}  
 
################################################################# 
############# Select eight correlated QTL loci  
################################################################# 
 
### Select eight QTL loci: 2 groups of 2 SNPs with r^2=0.5, one 
### group of 4 SNPs with 0.01<=r^2<=0.1. 
loc <- c(195,198,  3337,3341,3343,3344,  8803,8814) 
Q <- length(loc)    
# Location of eight QTLs:  
# 1st group: 14562752, 14569224  
# 2nd grpup: 27048038, 27053105, 27068060, 27069599 
# 3rd group: 45312259, 45360242 
MAF <- colSums(X.all) / (2*nrow(X.all))  
locQTL <- comSNP[loc] 
X.8QTL <- X.all[, loc] 
 
### variance and correlation of eight QTLs 
fi <- colSums(X.8QTL) / (2*nrow(X.8QTL)) 
2*fi*(1-fi)     
diag(var(X.8QTL))    
cor(X.8QTL)     
 
### Test if correlation between groups is significant or not 
require("psych") 
r.test(N*iteration, cor(X.8QTL)[1,3])$p     # not significant 
 
### Save eight QTL data across 200 data replicates 
write.table(X.8QTL, '.../Hapgen2/SNP_matrix/eightQTLs.txt', 
row.names=FALSE, col.names=FALSE) 
 
################################################################ 
##### Get eight QTL locations for all SNP data replicates 
################################################################# 
 
SNP.pos <- read.table('.../Hapgen2/SNP_matrix/position.txt') 
N <- 201     
Q <- length(loc)   
locAll <- matrix(0, iteration, Q)  
 
for (its in 1:iteration) { 
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 setwd(".../Hapgen2/SNP_matrix") 
 dataName2 <- paste(its,".txt", sep="") 
 X <- read.table(dataName2) 
 loc <- which(is.na(match(SNP.pos[its, -which(SNP.pos[its, ] == 
0)], locQTL)) == F) 
 locAll8[its, ] <- loc 
} 
write.table(locAll8, '.../Hapgen2/SNP_matrix/locAll8.txt', 
row.names=FALSE, col.names=FALSE) 
 
################################################################# 
###### Generate phenotype data Y with 8 QTLs 
################################################################# 
 
X.8QTL <- read.table(".../Hapgen2/SNP_matrix/eightQTLs.txt") 
locAll <- read.table(".../Hapgen2/SNP_matrix/locAll8.txt") 
h <- c(rep(0.04, 2), rep(0.05, 4), rep(0.04, 2)) # QTL h2 
sum(h)       # Total h2 = 0.68 
E <- c(1, 1, 1, -1, 1, -1, -1, -1)  # effect signs 
beta <- sqrt(h/diag(var(X[, loc]))) * E   # var(Y) = 1 
var_res <- 1 - sum(h)   # residual variance 
 
for (its in 1:iteration) { 
 setwd(".../Hapgen2/SNP_matrix") 
 dataName2 <- paste(its,".txt", sep="") 
 X1 <- read.table(dataName2) 
 Y <- as.matrix( X1[, locAll[its, ]])%*%beta + rnorm(N, 0, 
sqrt(var_res)) 
 setwd(".../Hapgen2/Response_8QTL") 
 Yname <- paste("Y", its, ".txt", sep="") 
 write.table(Y, Yname, row.names=FALSE, col.names=FALSE) 
}  
 
################################################################# 
### actual heritability explained by each QTL by considering LD  
################################################################# 
 
R <- cov(X[, loc]) 
H <- indH <- numeric(Q) 
for (i in 1:Q) { 
 temp <- 0 
 for (j in 1:Q) { 
  H[i] <- H[i] + R[i, j]*beta[i]*beta[j] 
  if (j != i) temp <- temp + R[i, j]*beta[j]/R[i,i] 
 } 
 indH[i] <- R[i,i]*(beta[i] + temp)^2 
} 
sumH <- sum(H) 
totH <- sumH / (sumH + var_res)  
totH   # total heritability by taking into account LD  
individualH <- indH / (sumH + var_res) 
round(individualH, 3) # Actual individual heritability with LD 
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#################################################################### 
### required design/covariate matrix standardization function 
#################################################################### 
# first subtracts column mean and then divides column by X(T)X/N;   
# N = number of rows of X (sample size) 
standardize <- function(X)  
{ 
  n <- nrow(X) 
  center <- colMeans(X) 
  X.c <- sweep(X, 2, center) 
  scale <- sqrt(apply(X.c,2,crossprod)/n) 
  val <- sweep(X.c, 2, scale,"/") 
  attr(val,"center") <- center 
  attr(val,"scale") <- scale 
  val 
} 
 
#################################################################### 
### this function performs Elastic Net Penalized Regression  
### with analytic FDR control 
#################################################################### 
### Arguments:  
### X.D: N x p.D matrix of design covariates 
### X.SNP: N x p.SNP matrix of SNP covariates (gene doses)  
### N: sample size 
### p.D: number of design covariates 
### p.SNP: number of SNPs 
### y: N x 1 vector of continuous phenotypes (assumed normal) 
### alpha: weight on the lasso proportion of the penalty 
### nlambda: number of lasso/L1 tuning parameter values (lambda) 
### FDR.level: desired level at which to control the FDR 
### Strong recommendations: 
### Give meaningful names to the columns of X.D. 
### Name the columns of X.SNP with the corresponding SNP names 
### (rsxxx). 
### p.SNP should be a large value (at least several thousand). 
### alpha should be in the range of 0.5 to 0.7. 
### nlambda should be at least 100, we recommend 1000 
### (required for achieving FDR control near the desired level) 
### (and small nlambda is not computationally advantageous). 
### FDR control method is conservative, we therefore recommend 
### setting FDR.level to 0.05. 
### Additional information on matrix X.D: 
### If your design includes factors in addition to covariates, 
### please create matrix X.D by using the model.matrix function 
### of the stats R package as shown below: 
### X.D <- model.matrix(~chip+site+age+pc1)[,-1] 
### where chip and site are defined as factors and age and pc1 
### are covariates. E.g., 
### chip <- as.factor(chip), chip <- factor(chip,labels=temp) 
### In the penalized regression, each column of X.D will be  
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### treated as a covariate to which no shrinkage will be applied. 
### Requires: 
### current version of R package glmnet 
### Output:  EN.results <- EN.FDR(X.D,X.SNP,y,alpha,nlambda,FDR.level) 
### EN.results$alpha: alpha as provided in argument list 
### EN.results$nlambda: nlambda as provided in argument list 
### EN.results$FDR.level: FDR.level as provided in argument list 
### EN.results$n.SNP: number of SNPs selected (nonzero coefficients) 
### EN.results$which.SNP: identifiers of selected SNPs 
### EN.results$betas.SNP: coefficient estimates of selected SNPs 
### EN.results$FDR.achieved: nominal level of FDR control (should 
###  be just below the desired level) 
### EN.results$check.FDR: should be zero (if set to 1 then FDR 
###  control was not achieved - something went wrong!) 
 
 
EN.FDR <- function(X.D,X.SNP,y,alpha,nlambda,FDR.level) 
{ 
 library(glmnet) 
 
 if(is.null(X.D)) { 
  X.D.s <- NULL 
  n.fix <- 0 
 } else { 
  X.D.s <- standardize(X.D) 
  n.fix <- dim(X.D.s)[2] 
 } 
 X.SNP.s <- standardize(X.SNP)  
 scale <- attr(X.SNP.s, "scale") 
 nz <- which(scale > 1e-6) 
 X.SNP.s <- X.SNP.s[,nz,drop=FALSE] 
 n.Xsnp <- dim(X.SNP.s)[2] 
 X <- cbind(X.D.s,X.SNP.s) 
 penalty.factor <- c(rep(0,n.fix),rep(1,n.Xsnp)) 
 idx <- seq(1,nlambda) 
 
 # perform EN penalized regression on grid of lambda values 
 EN.fit <- 
glmnet(X,y,penalty.factor=penalty.factor,alpha=alpha,nlambda=nlambda) 
 lseq <- EN.fit$lambda 
 beta <- as.matrix(EN.fit$beta) 
 if(is.null(X.D)) {  
  beta.SNP <- beta 
 } else {  
  beta.SNP <- beta[-(1:n.fix),] } 
 c.nzero <- colSums(beta.SNP!=0) 
 R.vec <- rep(0,length(lseq)) 
 R.vec[which(c.nzero!=0)] <- 1/c.nzero[which(c.nzero!=0)] 
  
 # analytic FDR calculation 
 yy <- y - mean(y) 
 sigk <- sqrt( colSums( ( 
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matrix(rep(yy,length(lseq)),byrow=F,length(y))-X%*%beta )^2 ) ) 
 FDR <- 2*n.Xsnp*pnorm(q=(-
length(y)*lseq*alpha/sigk),mean=0,sd=1,lower.tail=TRUE,log.p=FALSE)*R.
vec 
 # find lambda value closest from below to the desired FDR level 
 diff <- FDR.level – FDR 
 ### this way: 
 lim <- min( (sum(diff>0)+10),nlambda ) 
 diff <- abs(diff[1:lim]) 
 lbest <- which.min(diff)[1] 
 ### or this way (ensures the selected lambda has FDR <= 
FDR.level): 
 diff <- diff[diff>0]  
 idx <- idx[diff>0] 
 lbest <- idx[which.min(diff)[1]] 
 ### end lbest 
  
 # output: 
 check.FDR <- 0 
 if(FDR[length(FDR)]<FDR.level) check.FDR <- 1 #should never 
happen 
 which.SNP <- which( beta.SNP[,lbest] !=0 )  
 betas.SNP <- beta.SNP[which.SNP,lbest] 
 which.SNP <- rownames(beta.SNP)[which.SNP] 
 n.SNP <- length(which.SNP)  
 FDR.achieved <- FDR.level - diff[lbest] 
 list(alpha=alpha,nlambda=nlambda,FDR.level=FDR.level,n.SNP=n.SNP,
which.SNP=which.SNP,betas.SNP=betas.SNP,FDR.achieved=FDR.achieved,chec
k.FDR=check.FDR) 
} 
 
 
 
 


