
ADAPTIVE ROBUST VARIABLE SELECTION

Jianqing Fan*, Yingying Fan†, and Emre Barut
Princeton University, University of Southern California and IBM T.J. Watson Research Center

Abstract

Heavy-tailed high-dimensional data are commonly encountered in various scientific fields and 

pose great challenges to modern statistical analysis. A natural procedure to address this problem is 

to use penalized quantile regression with weighted L1-penalty, called weighted robust Lasso (WR-

Lasso), in which weights are introduced to ameliorate the bias problem induced by the L1-penalty. 

In the ultra-high dimensional setting, where the dimensionality can grow exponentially with the 

sample size, we investigate the model selection oracle property and establish the asymptotic 

normality of the WR-Lasso. We show that only mild conditions on the model error distribution are 

needed. Our theoretical results also reveal that adaptive choice of the weight vector is essential for 

the WR-Lasso to enjoy these nice asymptotic properties. To make the WR-Lasso practically 

feasible, we propose a two-step procedure, called adaptive robust Lasso (AR-Lasso), in which the 

weight vector in the second step is constructed based on the L1-penalized quantile regression 

estimate from the first step. This two-step procedure is justified theoretically to possess the oracle 

property and the asymptotic normality. Numerical studies demonstrate the favorable finite-sample 

performance of the AR-Lasso.

Keywords and phrases

Adaptive weighted L1; High dimensions; Oracle properties; Robust regularization

1. Introduction

The advent of modern technology makes it easier to collect massive, large-scale data sets. A 

common feature of these data sets is that the number of covariates greatly exceeds the 

number of observations, a regime opposite to conventional statistical settings. For example, 

portfolio allocation with hundreds of stocks in finance involves a covariance matrix of about 

tens of thousands of parameters, but the sample sizes are often only in the order of hundreds 

(e.g., daily data over a year period (Fan et al., 2008)). Genome-wide association studies in 

biology involve hundreds of thousands of single-nucleotide polymorphisms (SNPs), but the 
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available sample size is usually in hundreds too. Data-sets with large number of variables 

but relatively small sample size pose great unprecedented challenges, and opportunities, for 

statistical analysis.

Regularization methods have been widely used for high-dimensional variable selection 

(Bickel and Li, 2006; Bickel et al., 2009; Efron et al., 2007; Fan and Li, 2001; Lv and Fan, 

2009; Tibshirani, 1996; Zhang, 2010; Zou, 2006). Yet, most existing methods such as 

penalized least-squares or penalized likelihood (Fan and Lv, 2011) are designed for light-

tailed distributions. Zhao and Yu (2006) established the irrepresentability conditions for the 

model selection consistency of the Lasso estimator. Fan and Li (2001) studied the oracle 

properties of nonconcave penalized likelihood estimators for fixed dimensionality. Lv and 

Fan (2009) investigated the penalized least-squares estimator with folded-concave penalty 

functions in the ultra-high dimensional setting and established a nonasymptotic weak oracle 

property. Fan and Lv (2008) proposed and investigated the sure independence screening 

method in the setting of light-tailed distributions. The robustness of the aforementioned 

methods have not yet been thoroughly studied and well understood.

Robust regularization methods such as the least absolute deviation (LAD) regression and 

quantile regression have been used for variable selection in the case of fixed dimensionality. 

See, for example, Li and Zhu (2008); Wang, Li and Jiang (2007); Wu and Liu (2009); Zou 

and Yuan (2008). The penalized composite likelihood method was proposed in Bradic et al. 

(2011) for robust estimation in ultra-high dimensions with focus on the efficiency of the 

method. They still assumed sub-Gaussian tails. Belloni and Chernozhukov (2011) studied 

the L1-penalized quantile regression in high-dimensional sparse models where the 

dimensionality could be larger than the sample size. We refer to their method as robust 

Lasso (R-Lasso). They showed that the R-Lasso estimate is consistent at the near-oracle rate, 

and gave conditions under which the selected model includes the true model, and derived 

bounds on the size of the selected model, uniformly in a compact set of quantile indices. 

Wang (2012) studied the L1-penalized LAD regression and showed that the estimate 

achieves near oracle risk performance with a nearly universal penalty parameter and 

established also a sure screening property for such an estimator. van de Geer and Müller 

(2012) obtained bounds on the prediction error of a large class of L1 penalized estimators, 

including quantile regression. Wang et al. (2012) considered the nonconvex penalized 

quantile regression in the ultra-high dimensional setting and showed that the oracle estimate 

belongs to the set of local minima of the nonconvex penalized quantile regression, under 

mild assumptions on the error distribution.

In this paper, we introduce the penalized quantile regression with the weighted L1-penalty 

(WR-Lasso) for robust regularization, as in Bradic et al. (2011). The weights are introduced 

to reduce the bias problem induced by the L1-penalty. The exibility of the choice of the 

weights provides exibility in shrinkage estimation of the regression coefficient. WR-Lasso 

shares a similar spirit to the folded-concave penalized quantile-regression (Wang et al., 

2012; Zou and Li, 2008), but avoids the nonconvex optimization problem. We establish 

conditions on the error distribution in order for the WR-Lasso to successfully recover the 

true underlying sparse model with asymptotic probability one. It turns out that the required 

condition is much weaker than the sub-Gaussian assumption in Bradic et al. (2011). The 
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only conditions we impose is that the density function of error has Lipschitz property in a 

neighborhood around 0. This includes a large class of heavy-tailed distributions such as the 

stable distributions, including the Cauchy distribution. It also covers the double exponential 

distribution whose density function is nondifferentiable at the origin.

Unfortunately, because of the penalized nature of the estimator, WR-Lasso estimate has a 

bias. In order to reduce the bias, the weights in WR-Lasso need to be chosen adaptively 

according to the magnitudes of the unknown true regression coefficients, which makes the 

bias reduction infeasible for practical applications.

To make the bias reduction feasible, we introduce the adaptive robust Lasso (AR-Lasso). 

The AR-Lasso first runs R-Lasso to obtain an initial estimate, and then computes the weight 

vector of the weighted L1-penalty according to a decreasing function of the magnitude of the 

initial estimate. After that, AR-Lasso runs WR-Lasso with the computed weights. We 

formally establish the model selection oracle property of AR-Lasso in the context of Fan and 

Li (2001) with no assumptions made on the tail distribution of the model error. In particular, 

the asymptotic normality of the AR-Lasso is formally established.

This paper is organized as follows. First, we introduce our robust estimators in Section 2. 

Then, to demonstrate the advantages of our estimator, we show in Section 3 with a simple 

example that Lasso behaves sub-optimally when noise has heavy tails. In Section 4.1, we 

study the performance of the oracle-assisted regularization estimator. Then in Section 4.2, 

we show that when the weights are adaptively chosen, WR-Lasso has the model selection 

oracle property, and performs as well as the oracle-assisted regularization estimate. In 

Section 4.3, we prove the asymptotic normality of our proposed estimator. The feasible 

estimator, AR-Lasso, is investigated in Section 5. Section 6 presents the results of the 

simulation studies. Finally, in Section 7 we present the proofs of the main theorems. 

Additional proofs, as well as the results of a genome-wide association study, are provided in 

the supplementary Appendix (Fan et al., 2013).

2. Adaptive Robust Lasso

Consider the linear regression model

(2.1)

where y is an n-dimensional response vector, X = (x1, …, xn)T = (x̃1, ···, x̃p) is an n × p fixed 

design matrix, β = (β1,…, βp)T is a p-dimensional regression coefficient vector, and ε = (ε1, 

…, εn)T is an n-dimensional error vector whose components are independently distributed 

and satisfy P(εi ≤ 0) = τ for some known constant τ ∈ (0, 1). Under this model,  is the 

conditional τth-quantile of yi given xi. We impose no conditions on the heaviness of the tail 

probability or the homoscedasticity of εi. We consider a challenging setting in which log p = 

o(nb) with some constant b > 0. To ensure the model identifiability and to enhance the 

model fitting accuracy and interpretability, the true regression coefficient vector β* is 

commonly imposed to be sparse with only a small proportion of nonzeros (Fan and Li, 2001; 

Tibshirani, 1996). Denoting the number of nonzero elements of the true regression 
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coefficients by sn, we allow sn to slowly diverge with the sample size n and assume that sn = 

o(n). To ease the presentation, we suppress the dependence of sn on n whenever there is no 

confusion. Without loss of generality, we write , i.e. only the first s entries 

are non-vanishing. The true model is denoted by

and its complement, , represents the set of noise variables.

We consider a fixed design matrix in this paper and denote by S = (S1, ···, Sn)T = (x̃1, ···, x̃s) 

the submatrix of X corresponding to the covariates whose coefficients are non-vanishing. 

These variables will be referred to as the signal covariates and the rest will be called noise 

covariates. The set of columns that correspond to the noise covariates is denoted by Q = 

(Q1, ···, Qn)T = (x̃s+1, ···, x̃p). We standardize each column of X to have L2-norm .

To recover the true model and estimate β*, we consider the following regularization problem

(2.2)

where ρτ (u) = u(τ − 1{u ≤ 0}) is the quantile loss function, and pλn(·) is a nonnegative 

penalty function on [0, ∞) with a regularization parameter λn ≥ 0. The use of quantile loss 

function in (2.2) is to overcome the difficulty of heavy tails of the error distribution. Since 

P(ε ≤ 0) = τ, (2.2) can be interpreted as the sparse estimation of the conditional τth quantile. 

Regarding the choice of pλn(·), it was demonstrated in Lv and Fan (2009) and Fan and Lv 

(2011) that folded-concave penalties are more advantageous for variable selection in high 

dimensions than the convex ones such as the L1-penalty. It is, however, computationally 

more challenging to minimize the objective function in (2.2) when pλ(·) is folded-concave. 

Noting that with a good initial estimate  of the true coefficient vector, 

we have

Thus, instead of (2.2) we consider the following weighted L1-regularized quantile regression

(2.3)

where d = (d1, ···, dp)T is the vector of non-negative weights, and ∘ is the Hadamard product, 

i.e., the componentwise product of two vectors. This motivates us to define the weighted 
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robust Lasso (WR-Lasso) estimate as the global minimizer of the convex function Ln(β) for 

a given non-stochastic weight vector:

(2.4)

The uniqueness of the global minimizer is easily guaranteed by adding a negligible L2-

regularization in implementation. In particular, when dj = 1 for all j, the method will be 

referred to as robust Lasso (R-Lasso).

The adaptive robust Lasso (AR-Lasso) refers specifically to the two-stage procedure in 

which the stochastic weights  for j = 1, ···, p are used in the second step for 

WR-Lasso and are constructed using a concave penalty pλn(·) and the initial estimates, , 

from the first step. In practice, we recommend using R-Lasso as the initial estimate and then 

using SCAD to compute the weights in AR-Lasso. The asymptotic result of this specific 

AR-Lasso is summarized in Corollary 1 in Section 5 for the ultra-high dimensional robust 

regression problem. This is a main contribution of the paper.

3. Suboptimality of Lasso

In this section, we use a specific example to illustrate that, in the case of heavy-tailed error 

distribution, Lasso fails at model selection unless the non-zero coefficients, , have 

a very large magnitude. We assume that the errors ε1, ···, εn have the identical symmetric 

stable distribution and the characteristic function of ε1 is given by

where α ∈ (0, 2). By Nolan (2012), E|ε1|p is finite for 0 < p < α, and E|ε1|p = ∞ for p ≥ α. 

Furthermore as z → ∞,

where  is a constant depending only on α, and we use the notation ~ to 

denote that two terms are equivalent up to some constant. Moreover, for any constant vector 

a = (a1, ···, an)T, the linear combination aTε has the following tail behavior

(3.1)

with ||·||α denoting the Lα-norm of a vector.

To demonstrate the suboptimality of Lasso, we consider a simple case in which the design 

matrix satisfies the conditions that STQ = 0, , the columns of Q satisfy |supp(x̃j)| = 

mn = O(n1/2) and supp(x̃k) ∩ supp(x̃j) = Ø for any k ≠ j and k, j ∈ {s + 1, ···, p}. Here, mn is a 
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positive integer measuring the sparsity level of the columns of Q. We assume that there are 

only fixed number of true variables, i.e., s is finite, and that maxij |xij| = O(n1/4). Thus, it is 

easy to see that p = O(n1/2). In addition, we assume further that all nonzero regression 

coefficients are the same and .

We first consider R-Lasso, which is the global minimizer of (2.4). We will later see in 

Theorem 2 that by choosing the tuning parameter

R-Lasso can recover the true support  = {1, ···, s} with probability tending to 1. Moreover, 

the signs of the true regression coefficients can also be recovered with asymptotic 

probability one as long as the following condition on signal strength is satisfied

(3.2)

Now, consider Lasso, which minimizes

(3.3)

We will see that for (3.3) to recover the true model and the correct signs of coefficients, we 

need a much stronger signal level than that is given in (3.2). By results in optimization 

theory, the Karush–Kuhn–Tucker (KKT) conditions guaranteeing the necessary and 

sufficient conditions for β̃ with  = supp(β̃) being a minimizer to (3.3) are

where  is the complement of ,  is the subvector formed by entries of β with indices 

in , and  and  are the submatrices formed by columns of X with indices in  and 

, respectively. It is easy to see from the above two conditions that for Lasso to enjoy the 

sign consistency, sgn(β̃) = sgn(β*) with asymptotic probability one, we must have these two 

conditions satisfied with  =  with probability tending to 1. Since we have assumed that 

QTS = 0 and n−1STS = I, the above sufficient and necessary conditions can also be written as

(3.4)

(3.5)
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Conditions (3.4) and (3.5) are hard for Lasso to hold simultaneously. The following 

proposition summarizes the necessary condition, whose proof is given in the supplementary 

material (Fan et al., 2013).

Proposition 1—In the above model, with probability at least 1 − e−c̃0, where c̃0 is some 

positive constant, Lasso does not have sign consistency, unless the following signal 

condition is satisfied

(3.6)

Comparing this with (3.2), it is easy to see that even in this simple case, Lasso needs much 

stronger signal levels than R-Lasso in order to have a sign consistency in the presence of a 

heavy-tailed distribution.

4. Model Selection Oracle Property

In this section, we establish the model selection oracle property of WR-Lasso. The study 

enables us to see the bias due to penalization, and that an adaptive weighting scheme is 

needed in order to eliminate such a bias. We need the following condition on the distribution 

of noise.

Condition 1—There exist universal constants c1 > 0 and c2 > 0 such that for any u 

satisfying |u| ≤ c1, fi(u)’s are uniformly bounded away from 0 and ∞ and

where fi(u) and Fi(u) are the density function and distribution function of the error εi, 

respectively.

Condition 1 implies basically that each fi(u) is Lipschitz around the origin. Commonly used 

distributions such as the double-exponential distribution and stable distributions including 

the Cauchy distribution all satisfy this condition.

Denote by H = diag{f1(0), ···, fn(0)}. The next condition is on the sub-matrix of X that 

corresponds to signal covariates and the magnitude of the entries of X.

Condition 2—The eigenvalues of  are bounded from below and above by some 

positive constants c0 and 1/c0, respectively. Furthermore,

Although Condition 2 is on the fixed design matrix, we note that the above condition on κn 

is satisfied with asymptotic probability one when the design matrix is generated from some 
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distributions. For instance, if the entries of X are independent copies from a sub-exponential 

distribution, the bound on κn is satisfied with asymptotic probability one as long as 

; if the components are generated from sub-Gaussian distribution, then the 

condition on κn is satisfied with probability tending to one when .

4.1. Oracle Regularized Estimator

To evaluate our newly proposed method, we first study how well one can do with the 

assistance of the oracle information on the locations of signal covariates. Then, we use this 

to establish the asymptotic property of our estimator without the oracle assistance. Denote 

by  the oracle regularized estimator (ORE) with  and 0 being the 

vector of all zeros, which minimizes Ln(β) over the space 

{ }. The next theorem shows that ORE is consistent, and 

estimates the correct sign of the true coefficient vector with probability tending to one. We 

use d0 to denote the first s elements of d.

Theorem 1—Let  with C1 > 0 a constant. If Conditions 1 

and 2 hold and , then there exists some constant c > 0 such that

(4.1)

If in addition , then with probability at least 1−n−cs,

where the above equation should be understood componentwisely.

As shown in Theorem 1, the consistency rate of  in terms of the vector L2-norm is given 

by γn. The first component of γn, , is the oracle rate within a factor of log n, 

and the second component C1λn||d0||2 reflects the bias due to penalization. If no prior 

information is available, one may choose equal weights d0 = (1, 1, ···, 1)T, which 

corresponds to R-Lasso. Thus for R-Lasso, with probability at least 1 − n−cs, it holds that

(4.2)

4.2. WR-Lasso

In this section, we show that even without the oracle information, WR-Lasso enjoys the 

same asymptotic property as in Theorem 1 when the weight vector is appropriately chosen. 

Since the regularized estimator β̂ in (2.4) depends on the full design matrix X, we need to 
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impose the following conditions on the design matrix to control the correlation of columns 

in Q and S.

Condition 3—With γn defined in Theorem 1, it holds that

where ||A||2,∞ = supx≠0 ||Ax||∞/||x||2 for a matrix A and vector x, and 

. Furthermore, log(p) = o(nb) for some constant b ∈ (0, 1).

To understand the implications of Condition 3, we consider the case of f1(0) = ⋯ = fn(0) ≡ 

f(0). In the special case of QT S = 0, Condition 3 is satisfied automatically. In the case of 

equal correlation, that is, n−1XTX having off-diagonal elements all equal to ρ, the above 

Condition 3 reduces to

This puts an upper bound on the correlation coefficient ρ for such a dense matrix.

It is well known that for Gaussian errors, the optimal choice of regularization parameter λn 

has the order  (Bickel et al., 2009). The distribution of the model noise with 

heavy tails demands a larger choice of λn to filter the noise for R-lasso. When 

, γn given in (4.2) is in the order of . In this case, Condition 3 

reduces to

(4.3)

For WR-Lasso, if the weights are chosen such that  and ||d1||∞ = 

O(1), then γn is in the order of , and correspondingly, Condition 3 becomes

This is a more relaxed condition than (4.3), since with heavy-tailed errors, the optimal γn 

should be larger than . In other words, WR-Lasso not only reduces the bias of the 

estimate, but also allows for stronger correlations among the signal and noise covariates. 

However, the above choice of weights depends on unknown locations of signals. A data-
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driven choice will be given in Section 5, in which the resulting AR-Lasso estimator will be 

studied.

The following theorem shows the model selection oracle property of the WR-Lasso 

estimator.

Theorem 2—Suppose Conditions 1 – 3 hold. In addition, assume that minj≥s+1 dj > c3 with 

some constant c3 > 0,

(4.4)

and , where κn is defined in Condition 2, γn is defined in Theorem 1, 

and c is some positive constant. Then, with probability at least 1− O(n−cs), there exists a 

global minimizer  of Ln(β) which satisfies

1. β̂
2 = 0;

2. .

Theorem 2 shows that the WR-Lasso estimator enjoys the same property as ORE with 

probability tending to one. However, we impose non-adaptive assumptions on the weight 

vector . For noise covariates, we assume minj>s dj > c3, which implies that 

each coordinate needs to be penalized. For the signal covariates, we impose (4.4), which 

requires ||d0||2 to be small.

When studying the nonconvex penalized quantile regression, Wang et al. (2012) assumed 

that κn is bounded and the density functions of εi’s are uniformly bounded away from 0 and 

∞ in a small neighborhood of 0. Their assumption on the error distribution is weaker than 

our Condition 1. We remark that the difference is because we have weaker conditions on κn 

and the penalty function (See Condition 2 and (4.4)). In fact, our Condition 1 can be 

weakened to the same condition as that in Wang et al. (2012) at the cost of imposing 

stronger assumptions on κn and the weight vector d.

Belloni and Chernozhukov (2011) and Wang (2012) imposed the restricted eigenvalue 

assumption of the design matrix and studied the L1-penalized quantile regression and LAD 

regression, respectively. We impose different conditions on the design matrix and allow 

flexible shrinkage by choosing d. In addition, our Theorem 2 provides a stronger result than 

consistency; we establish model selection oracle property of the estimator.

4.3. Asymptotic Normality

We now present the asymptotic normality of our estimator. Define Vn = (STHS)−1/2 and Zn 

= (Zn1, ⋯, Znn)T = SVn with Znj ∈ Rs for j = 1, ⋯, n.

Theorem 3—Assume the conditions of Theorem 2 hold, the first and second order 

derivatives  and  are uniformly bounded in a small neighborhood of 0 for all i = 1, 
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⋯, n, and that , maxi ||H1/2Zni||2 = o(s−7/2(log s)−1), and 

. Then, with probability tending to 1 there exists a global 

minimizer  of Ln(β) such that β̂
2 = 0. Moreover,

where c is an arbitrary s-dimensional vector satisfying cTc = 1, and d̃
0 is an s-dimensional 

vector with the jth element .

The proof of Theorem 3 is an extension of the proof on the asymptotic normality theorem 

for the LAD estimator in Pollard (1990), in which the theorem is proved for fixed 

dimensionality. The idea is to approximate Ln(β1, 0) in (2.4) by a sequence of quadratic 

functions, whose minimizers converge to normal distribution. Since Ln(β1, 0) and the 

quadratic approximation are close, their minimizers are also close, which results in the 

asymptotic normality in Theorem 3.

Theorem 3 assumes that maxi ||H1/2Zni||2 = o(s−7/2(log s)−1). Since by definition 

, it is seen that the condition implies s = o(n1/8). This assumption is 

made to guarantee that the quadratic approximation is close enough to Ln(β1, 0). When s is 

finite, the condition becomes maxi ||Zni||2 = o(1), as in Pollard (1990). Another important 

assumption is , which is imposed to make sure that the bias 

2−1nλncTVnd0 caused by the penalty term does not diverge. For instance, using R-Lasso will 

create a non-diminishing bias and thus cannot be guaranteed to have asymptotic normality.

Note that we do not assume a parametric form of the error distribution. Thus, our oracle 

estimator is in fact a semiparametric estimator with the error density as the nuisance 

parameter. Heuristically speaking, Theorem 3 shows that the asymptotic variance of 

 is . Since Vn = (ST HS)−1/2 and Zn = SVn, if the model 

errors εi are i.i.d. with density function fε(·), then this asymptotic variance reduces to 

. In the random design case where the true covariate vectors 

 are i.i.d. observations, n−1STS converges to  as n → ∞, and the asymptotic 

variance reduces to . This is the semiparametric efficiency bound 

derived by Newey and Powell (1990) for random designs. In fact, if we assume that (xi, yi) 

are i.i.d., then the conditions of Theorem 3 can hold with asymptotic probability one. Using 

similar arguments, it can be formally shown that  is asymptotically normal with 

covariance matrix equal to the aforementioned semiparametric efficiency bound. Hence, our 

oracle estimator is semiparametric efficient.
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5. Properties of the Adaptive Robust Lasso

In previous sections, we have seen that the choice of the weight vector d plays a pivotal role 

for the WR-Lasso estimate to enjoy the model selection oracle property and asymptotic 

normality. In fact, conditions in Theorem 2 require that minj≥s+1 dj > c3 and that ||d0||2 does 

not diverge too fast. Theorem 3 imposes an even more stringent condition, 

, on the weight vector d0. For R-Lasso,  and these 

conditions become very restrictive. For example, the condition in Theorem 3 becomes λn = 

O(n−1/2), which is too low for a thresholding level even for Gaussian errors. Hence, an 

adaptive choice of weights is needed to ensure that those conditions are satisfied. To this 

end, we propose a two-step procedure.

In the first step, we use R-Lasso, which gives the estimate β̂ini. As has been shown in Belloni 

and Chernozhukov (2011) and Wang (2012), R-Lasso is consistent at a near-oracle rate 

 and selects the true model  as a submodel (in other words, R-Lasso has the 

sure screening property using the terminology of Fan and Lv (2008)) with asymptotic 

probability one, namely,

We remark that our Theorem 2 also ensures the consistency of R-Lasso. Compared to 

Belloni and Chernozhukov (2011), Theorem 2 presents stronger results but also needs more 

restrictive conditions for R-Lasso. As will be shown in latter theorems, only the consistency 

of R-Lasso is needed in the study of AR-Lasso, so we quote the results and conditions on R-

Lasso in Belloni and Chernozhukov (2011) with the mind of imposing weaker conditions.

In the second step, we set d̂ = (d̂
1, ···, d̂

p)T with  where pλn(|·|) is a folded 

concave penalty function, and then solve the regularization problem (2.4) with a newly 

computed weight vector. Thus, vector d̂
0 is expected to be close to the vector 

 under L2-norm. If a folded concave penalty such as SCAD is 

used, then  will be close, or even equal, to zero for 1 ≤ j ≤ s and thus the magnitude 

of ||d̂
0||2 is negligible.

Now, we formally establish the asymptotic properties of AR-Lasso. We first present a more 

general result and then highlight our recommended procedure, which uses R-Lasso as the 

initial estimate and then uses SCAD to compute the stochastic weights, in Corollary 1. 

Denote by  with . Using the weight vector d̂, AR-Lasso 

minimizes the following objective function
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(5.1)

We also need the following conditions to show the model selection oracle property of the 

two-step procedure.

Condition 4—With asymptotic probability one, the initial estimate satisfies 

 with some constant C2 > 0.

As discussed above, if R-Lasso is used to obtain the initial estimate, it satisfies the above 

condition. Our second condition is on the penalty function.

Condition 5—  is non-increasing in t ∈ (0, ∞) and is Lipschitz with constant c5, that 

is,

for any β1, β2 ∈ R. Moreover,  for large enough n, where 

C2 is defined in Condition 4.

For the SCAD (Fan and Li, 2001) penalty,  is given by

(5.2)

for a given constant a > 2, and it can be easily verified that Condition 5 holds if 

.

Theorem 4—Assume conditions of Theorem 2 hold with d = d* and γn = an, where

with some constant C3 > 0, and . Then, under Conditions 4 and 5, 

with probability tending to one, there exists a global minimizer  of (5.1) such 

that β̂
2 = 0 and .

The results in Theorem 4 are analogous to those in Theorem 2. The extra term 

 in the convergence rate an, compared to the convergence rate γn in Theorem 
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2, is caused by the bias of the initial estimate β̂ini. Since the regularization parameter λn goes 

to zero, the bias of AR-Lasso is much smaller than that of the initial estimator β̂ini. 

Moreover, the AR-Lasso β̂ possesses the model selection oracle property.

Now we present the asymptotic normality of the AR-Lasso estimate.

Condition 6—The smallest signal satisfies . Moreover, it 

holds that  for any .

The above condition on the penalty function is satisfied when the SCAD penalty is used and 

 where a is the parameter in the SCAD penalty (5.2).

Theorem 5—Assume conditions of Theorem 3 hold with d = d* and γn = an, where an is 

defined in Theorem 4. Then, under Conditions 4 – 6, with asymptotic probability one, there 

exists a global minimizer β̂ of (5.1) having the same asymptotic properties as those in 

Theorem 3.

With the SCAD penalty, conditions in Theorems 4 and 5 can be simplified and AR-Lasso 

still enjoys the same asymptotic properties, as presented in the following corollary.

Corollary 1—Assume 

 with a the parameter in 

the SCAD penalty, and κn = o(n1/4s−1/2(log n)−3/2(log p)1/2). Further assume that 

 with C4 some positive constant. Then, under 

Conditions 1 and 2, with asymptotic probability one, there exists a global minimizer 

 of L̂
n(β) such that

If in addition, maxi ||H1/2Zni||2 = o(s−7/2(log s)−1), then we also have

where c is an arbitrary s-dimensional vector satisfying cTc = 1.

Corollary 1 provides sufficient conditions for ensuring the variable selection sign 

consistency of AR-Lasso. These conditions require that R-Lasso in the initial step has the 

sure screening property. We remark that in implementation, AR-Lasso is able to select the 

variables missed by R-Lasso, as demonstrated in our numerical studies in the next section. 

The theoretical comparison of the variable selection results of R-Lasso and AR-Lasso would 

be an interesting topic for future study. One set of (p, n, s, κn) satisfying conditions in 
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Corollary 1 is log p = O(nb1), s = o(n(1−b1)/2) and κn = o(nb1/4(log n)−3/2) with b1 ∈ (0, 1/2) 

some constant. Corollary 1 gives one specific choice of λn, not necessarily the smallest λn, 

which makes our procedure work. In fact, the condition on λn can be weakened to 

. Currently, we use the L2-norm  to bound this L∞-

norm, which is too crude. If one can establish  for an initial 

estimator , then the choice of λn can be as small as , the same order as that 

used in Wang (2012). On the other hand, since we are using AR-Lasso, the choice of λn is 

not as sensitive as R-Lasso.

6. Numerical Studies

In this section we evaluate the finite sample property of our proposed estimator with 

synthetic data. Please see the supplementary material (Fan et al., 2013) for a real life data set 

analysis, where we provide results of an eQTL study on the CHRNA6 gene.

To assess the performance of the proposed estimator and compare it with other methods, we 

simulated data from the high-dimensional linear regression model

where the data had n = 100 observations and the number of parameters was chosen as p = 

400. We fixed the true regression coefficient vector as

For the distribution of the noise, ε, we considered six symmetric distributions: Normal with 

variance 2 ( (0, 2)), a scale mixture of Normals for which  with probability 0.9 and 

 otherwise (MN1), a different scale mixture model where  and σi ~ 

Unif(1, 5) (MN2), Laplace, Student’s t with degrees of freedom 4 with doubled variance 

( ) and Cauchy. We take τ = 0.5, corresponding to L1-regression, throughout the 

simulation. Correlation of the covariates, Σx were either chosen to be identity (i.e. Σx = Ip) 

or they were generated from an AR(1) model with correlation 0.5, that is Σx(i,j) = 0.5|i−j|.

We implemented five methods for each setting:

1. L2-Oracle, which is the least squares estimator based on the signal covariates.

2. Lasso, the penalized least-squares estimator with L1-penalty as in Tibshirani 

(1996).

3. SCAD, the penalized least-squares estimator with SCAD penalty as in Fan and Li 

(2001).

4. R-Lasso, the robust Lasso defined as the minimizer of (2.4) with d = 1.
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5. AR-Lasso, which is the adaptive robust lasso whose adaptive weights on the penalty 

function were computed based on the SCAD penalty using the R-Lasso estimate as 

an initial value.

The tuning parameter, λn, was chosen optimally based on 100 validation data-sets. For each 

of these data-sets, we ran a grid search to find the best λn (with the lowest L2 error for β) for 

the particular setting. This optimal λn was recorded for each of the 100 validation data-sets. 

The median of these 100 optimal λn were used in the simulation studies. We preferred this 

procedure over cross-validation because of the instability of the L2 loss under heavy tails.

The following four performance measures were calculated:

1. L2 loss, which is defined as ||β* − β̂||2.

2. L1 loss, which is defined as ||β* − β̂||1.

3. Number of noise covariates that are included in the model, that is the number of 

false positives (FP).

4. Number of signal covariates that are not included, i.e. the number of false negatives 

(FN).

For each setting, we present the average of the performance measure based on 100 

simulations. The results are depicted in Tables 1 and 2. A boxplot of the L2 losses under 

different noise settings is also given in Figure 1 (the L2 loss boxplot for the independent 

covariate setting is similar and omitted). For the results in Tables 1 and 2, one should 

compare the performance between Lasso and R-Lasso and that between SCAD and AR-

Lasso. This comparison reflects the effectiveness of L1-regression in dealing with heavy-tail 

distributions. Furthermore, comparing Lasso with SCAD, and R-Lasso with AR-Lasso, 

shows the effectiveness of using adaptive weights in the penalty function.

Our simulation results reveal the following facts. The quantile based estimators were more 

robust in dealing with the outliers. For example, for the first mixture model (MN1) and 

Cauchy, R-Lasso outperformed Lasso, and AR-Lasso outperformed SCAD in all of the four 

metrics, and significantly so when the error distribution is the Cauchy distribution. On the 

other hand, for the light-tail distributions such as the normal distribution, the efficiency loss 

was limited. When the tails get heavier, for instance for the Laplace distribution, quantile 

based methods started to outperform the least-squares based approaches, more so when the 

tails got heavier.

The effectiveness of weights in AR-Lasso is self-evident. SCAD outperformed Lasso and 

AR-Lasso outperformed R-Lasso in almost all of the settings. Furthermore, for all of the 

error settings AR-Lasso had significantly lower L2 and L1 loss as well as a smaller model 

size compared to other estimators.

It is seen that when the noise does not have heavy tails, that is for the normal and the 

Laplace distribution, all the estimators are comparable in terms of L1 loss. As expected, 

estimators that minimize squared loss worked better than R-Lasso and AR-Lasso estimators 

under Gaussian noise, but their performances deteriorated as the tails got heavier. In 
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addition, in the two heteroscedastic settings, AR-Lasso had the best performance among 

others.

For Cauchy noise, least squares methods could only recover 1 or 2 of the true variables on 

average. On the other hand, L1-estimators (R-Lasso and AR-Lasso) had very few false 

negatives, and as evident from L2 loss values, these estimators only missed variables with 

smaller magnitudes.

In addition, AR-Lasso consistently selected a smaller set of variables than R-Lasso. For 

instance, for the setting with independent covariates, under the Laplace distribution, R-Lasso 

and AR-Lasso had on average 34.76 and 18.81 false positives, respectively. Also note that 

AR-Lasso consistently outperformed R-Lasso: It estimated β* (lower L1 and L2 losses), and 

the support of β* (lower averages for the number of false positives) more efficiently.

7. Proofs

In this section, we prove Theorems 1, 2 and 4 and provide the lemmas used in these proofs. 

The proofs of Theorems 3 and 5 and Proposition 1 are given in the supplementary Appendix 

(Fan et al., 2013).

We use techniques from empirical process theory to prove the theoretical results. Let 

. Then . For a given 

deterministic M > 0, define the set

Then, define the function

(7.1)

Lemma 1 in Section 7.4 gives the rate of convergence for Zn(M).

7.1. Proof of Theorem 1

We first show that for any  with ,

(7.2)

for sufficiently large n, where c is the lower bound for fi(·) in the neighborhood of 0. The 

intuition follows from the fact that β* is the minimizer of the function Evn(β) and hence in 

Taylor’s expansion of E[vn(β) − vn(β*)] around β*, the first order derivative is zero at the 

point β = β*. The left-hand side of (7.2) will be controlled by Zn(M). This yields the L2-rate 

of convergence in Theorem 1.

Fan et al. Page 17

Ann Stat. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To prove (7.2), we set . Then, for β ∈ (M),

Thus if , by E1{εi ≤ 0} = τ, Fubini’s theorem, mean value theorem, and 

Condition 1 it is easy to derive that

(7.3)

where the o(1) is uniformly over all i = 1, ···, n. When , the same result can be 

obtained. Furthermore, by Condition 2,

This together with (7.3) and the definition of vn(β) proves (7.2).

The inequality (7.2) holds for any , yet  may not 

be in the set. Thus, we let , where

which falls in the set (M). Then, by the convexity and the definition of ,

Using this and the triangle inequality we have

(7.4)

By the Cauchy-Schwarz inequality, the very last term is bounded by 

.

Define the event . Then by Lemma 1,
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(7.5)

On the event , by (7.4), we have

Taking . By Condition 2 and the assumption , it is 

easy to check that . Combining these two results with (7.2), we obtain that 

on the event ,

which entails that

Note that  implies . Thus, on the event ,

The second result follows trivially.

7.2. Proof of Theorem 2

Since  defined in Theorem 1 is a minimizer of Ln(β1, 0), it satisfies the KKT conditions. 

To prove that  is a global minimizer of Ln(β) in the original Rp space, 

we only need to check the following condition

(7.6)

where  for any n-vector u = (u1, ···, un)T with 

. Here,  denotes the vector . Then the KKT 

conditions and the convexity of Ln(β) together ensure that β̂ is a global minimizer of L(β).

Define events
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where γn is defined in Theorem 1 and

Then by Theorem 1 and Lemma 2 in Section 7.4, P(A1 ∩ A2) ≥1 − o(n−cs). Since β̂ ∈  on 

the event A1, the inequality (7.6) holds on the event A1 ∩ A2. This completes the proof of 

Theorem 2.

7.3. Proof of Theorem 4

The idea of the proof follows those used in the proof of Theorems 1 and 2. We first consider 

the minimizer of L̂
n(β) in the subspace { }. Let , 

where  with , ||v1||2 = 

C, and C > 0 is some large enough constant. By the assumptions in the theorem we have 

. Note that

(7.7)

where  and 

 with  for any vector 

u = (u1, ···, un)T. By the results in the proof of Theorem 1, , and 

moreover, with probability at least 1 − n−cs,

Thus, by the triangle inequality,

(7.8)

The second term on the right side of (7.7) can be bounded as

(7.9)

By triangle inequality and Conditions 4 and 5, it holds that
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(7.10)

Thus, combining (7.7)–(7.10) yields

Making ||v1||2 = C large enough, we obtain that with probability tending to one, L̂
n(β*+ ãnv) 

− L̂
n(β*) > 0. Then, it follows immediately that with asymptotic probability one, there exists 

a minimizer β̂
1 of L̂

n(β1, 0) such that  with some constant C3 > 0.

It remains to prove that with asymptotic probability one,

(7.11)

Then by KKT conditions,  is a global minimizer of L̂
n(β).

Now we proceed to prove (7.11). Since  for all j = s + 1, ···, p, we have that 

. Furthermore, by Condition 4, it holds that  with 

asymptotic probability one. Then, it follows that

Therefore, by Condition 5 we conclude that

(7.12)

From the conditions of Theorem 2 with γn = an, it follows from Lemma 2 (inequality (7.20)) 

that, with probability at least 1 − o(p−c),

(7.13)

Combining (7.12)–(7.13) and by the triangle inequality, it holds that with asymptotic 

probability one,
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Since the minimizer β̂
1 satisfies  with asymptotic probability one, the 

above inequality ensures that (7.11) holds with probability tending to one. This completes 

the proof.

7.4. Lemmas

This subsection contains Lemmas used in proofs of Theorems 1,2 and 4.

Lemma 1—Under Condition 2, for any t > 0, we have

(7.14)

Proof: Define ρ(s, y) = (y−s)(τ − 1{y− s ≤ 0}). Then, vn(β) in (7.1) can be rewritten as 

. Note that the following Lipschitz condition holds for ρ(·; yi)

(7.15)

Let W1, ···, Wn be a Rademacher sequence, independent of model errors ε1, ···, εn. The 

Lipschitz inequality (7.15) combined with the symmetrization theorem and Concentration 

inequality (see, for example, Theorems 14.3 and 14.4 in Büuhlmann and van de Geer 

(2011)) yields that

(7.16)

On the other hand, by the Cauchy-Schwarz inequality

By Jensen’s inequality and concavity of the square root function, E(X1/2) ≤ (EX)1/2 for any 

non-negative random variable X. Thus, these two inequalities ensure that the very right hand 

side of (7.16) can be further bounded by

(7.17)
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Therefore, it follows from (7.16) and (7.17) that

(7.18)

Next since n−1STS has bounded eigenvalues, for any ,

Combining this with the Lipschitz inequality (7.15), (7.18), and applying Massart’s 

concentration theorem (see Theorem 14.2 in Bühlmann and van de Geer (2011)) yields that 

for any t > 0,

This proves the Lemma.

Lemma 2—Consider a ball in Rs around 

 with some sequence γn → 0. 

Assume that minj>s dj > c3, , n1/2λn(log p)−1/2 → ∞, and 

. Then under Conditions 1–3, there exists some constant c > 0 such that

where .

Proof: For a fixed j ∈ {s + 1, ···, p} and , define

where  is the i-th row of the design matrix. The key for the proof is to use 

the following decomposition

(7.19)
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We will prove that with probability at least 1 − o(p−c),

(7.20)

(7.21)

(7.22)

Combining (7.19)–(7.22) with the assumption minj>s dj > c3 completes the proof of the 

Lemma.

Now we proceed to prove (7.20). Note that I1 can be rewritten as

(7.23)

By Condition 1,

where F(t) is the cumulative distribution function of εi, and 

. Thus, for any j > s,

This together with (7.23) and Cauchy-Schwartz inequality entails that

(7.24)

where H = diag{f1(0, ···, fn(0))}. We consider the two terms on the right hand side of (7.24) 

one by one. By Condition 3, the first term can be bounded as

(7.25)
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By Condition 1, . This together with Condition 2 ensures that the 

second term of (7.24) can be bounded as

Since β ∈ , it follows from the assumption  that

Plugging the above inequality and (7.25) into (7.24) completes the proof of (7.20).

Next we prove (7.21). By Hoeffding’s inequality, if  with c is some 

positive constant, then

Thus, with probability at least 1 − O(p−c), (7.21) holds.

We now apply Corollary 14.4 in Bühlmann and van de Geer (2011) to prove (7.22). To this 

end, we need to check conditions of the Corollary. For each fixed j, define the functional 

space Γj = {γβ,j : β ∈ }. First note that E[γβ,j(xi, yi)] = 0 for any γβ,j ∈ Γj. Second, since the 

 function is bounded, we have

Thus, .

Third, we will calculate the covering number of the functional space Γj, N(·, Γj, ||·||2). For 

any  and , by Condition 1 and the mean value 

theorem,

(7.26)
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where F(t) is the cumulative distribution function of εi, and a1i lies on the segment 

connecting  and . Let κn = maxij |xij|. Since fi(u)’s are uniformly 

bounded, by (7.26),

(7.27)

where C > 0 is some generic constant. It is known (see, for example, Lemma 14.27 in 

Bühlmann and van de Geer (2011)) that the ball  in Rs can be covered by (1 + 4γn/δ)s balls 

with radius δ. Since  can only take 3 different values {−1, 0, 1}, it 

follows from (7.27) that the covering number of Γj is 

. Thus, by calculus, for any 0 ≤ k ≤ (log2 n)/2,

Hence, conditions of Corollary 14.4 in Bühlmann and van de Geer (2011) are checked and 

we obtain that for any t > 0,

Taking  with C > 0 large enough constant we obtain that

Thus if , then with probability at least 1 − o(p−c), (7.22) 

holds. This completes the proof of the Lemma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Boxplots for L2 Loss with Correlated Covariates
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