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Abstract

Most papers on high-dimensional statistics are based on the assumption that none of the regressors 

are correlated with the regression error, namely, they are exogenous. Yet, endogeneity can arise 

incidentally from a large pool of regressors in a high-dimensional regression. This causes the 

inconsistency of the penalized least-squares method and possible false scientific discoveries. A 

necessary condition for model selection consistency of a general class of penalized regression 

methods is given, which allows us to prove formally the inconsistency claim. To cope with the 

incidental endogeneity, we construct a novel penalized focused generalized method of moments 

(FGMM) criterion function. The FGMM effectively achieves the dimension reduction and applies 

the instrumental variable methods. We show that it possesses the oracle property even in the 

presence of endogenous predictors, and that the solution is also near global minimum under the 

over-identification assumption. Finally, we also show how the semi-parametric efficiency of 

estimation can be achieved via a two-step approach.
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1. Introduction

In high-dimensional models, the overall number of regressors p grows extremely fast with 

the sample size n. It can be of order exp(nα), for some α ∈ (0, 1). What makes statistical 

inference possible is the sparsity and exogeneity assumptions. For example, in the linear 

model

(1.1)

it is assumed that the number of elements in S = {j : β0j ≠ 0} is small and EεX = 0, or more 

stringently
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(1.2)

The latter is called “exogeneity”. One of the important objectives of high-dimensional 

modeling is to achieve the variable selection consistency and make inference on the 

coefficients of important regressors. See, for example, Fan and Li (2001), Hunter and Li 

(2005), Zou (2006), Zhao and Yu (2006), Huang, Horowitz and Ma (2008), Zhang and 

Huang (2008), Wasserman and Roeder (2009), Lv and Fan (2009), Zou and Zhang (2009), 

Städler, Bühlmann and van de Geer (2010), and Bühlmann, Kalisch and Maathuis (2010). In 

these papers, (1.2) (or EεX = 0) has been assumed either explicitly or implicitly1. Condition 

of this kind is also required by the Dantzig selector of Candès and Tao (2007), which solves 

an optimization problem with constraint  for 

some C > 0.

In high-dimensional models, requesting that ε and all the components of X be uncorrelated 

as (1.2), or even more specifically

(1.3)

can be restrictive particularly when p is large. Yet, (1.3) is a necessary condition for popular 

model selection techniques to be consistent. However, violations to assumption either (1.2) 

or (1.3) can arise as a result of selection biases, measurement errors, autoregression with 

autocorrelated errors, omitted variables, and from many other sources (Engle, Hendry and 

Richard 1983). They also arise from unknown causes due to a large pool of regressors, some 

of which are incidentally correlated with the random noise Y−XTβ0. For example, in 

genomics studies, clinical or biological outcomes along with expressions of tens of 

thousands of genes are frequently collected. After applying variable selection techniques, 

scientists obtain a set of genes Ŝ that are responsible for the outcome. Whether (1.3) holds, 

however, is rarely validated. Because there are tens of thousands of restrictions in (1.3) to 

validate, it is likely that some of them are violated. Indeed, unlike low-dimensional least-

squares, the sample correlations between residuals ∊̂, based on the selected variables XŜ, and 

predictors X, are unlikely to be small, because all variables in the large set Ŝc are not even 

used in computing the residuals. When some of those are unusually large, endogeneity arises 

incidentally. In such cases, we will show that Ŝ can be inconsistent. In other words, violation 

of assumption (1.3) can lead to false scientific claims.

We aim to consistently estimate β0 and recover its sparsity under weaker conditions than 

(1.2) or (1.3) that are easier to validate. Let us assume that  and X can be 

partitioned as . Here XS corresponds to the nonzero coefficients β0S, which 

we call important regressors, and XN represents the unimportant regressors throughout the 

1In fixed designs, e.g., Zhao and Yu (2006), it has been implicitly assumed that  for all j < p.
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paper, whose coefficients are zero. We borrow the terminology of endogeneity from the 

econometric literature. A regressor is said to be endogenous when it is correlated with the 

error term, and exogenous otherwise. Motivated by the aforementioned issue, this paper 

aims to select XS with probability approaching one and making inference about β0S, 

allowing components of X to be endogenous. We propose a unified procedure that can 

address the problem of endogeneity to be present in either important or unimportant 

regressors, or both, and we do not require the knowledge of which case of endogeneity is 

present in the true model. The identities of XS are unknown before the selection.

The main assumption we make is that, there is a vector of observable instrumental variables 

W such that

(1.4)

2

Briefly speaking, W is called an “instrumental variable” when it satisfies (1.4) and is 

correlated with the explanatory variable X. In particular, as noted in the footnote, W = XS is 

allowed so that the instruments are unknown but no additional data are needed. Instrumental 

variables (IV) have been commonly used in the literature of both econometrics and statistics 

in the presence of endogenous regressors, to achieve identification and consistent 

estimations (e.g., Hall and Horowitz 2005). An advantage of such an assumption is that it 

can be validated more easily. For example, when W = XS, one needs only to check whether 

the correlations between ∊̂ and XŜ are small or not, with XŜ being a relatively low-

dimensional vector, or more generally, the moments that are actually used in the model 

fitting such as (1.5) below hold approximately In short, our setup weakens the assumption 

(1.2) to some verifiable moment conditions.

What makes the variable selection consistency (with endogeneity) possible is the idea of 

over identification. Briefly speaking, a parameter is called “over-identified” if there are 

more restrictions than those are needed to grant its identifiability (for linear models, for 

instance, when the parameter satisfies more equations than its dimension). Let (f1,…, fp) and 

(h1,…, hp) be two different sets of transformations, which can be taken as a large number of 

series terms, e.g., B-splines and polynomials. Here each fj and hj are scalar functions. Then 

(1.4) implies

Write F = (f1(W),…, fp(W))T, and H = (h1(W),…, hp(W))T. We then have EεF = EεH = 0. 

Let S be the set of indices of important variables, and let FS and HS be the subvectors of F 

2We thank the AE and referees for suggesting the use of a general vector of instrument W, which extends to the more general 
endogeneity problem, allowing the presence of endogenous important regressors. In particular, W is allowed to be XS, which amounts 
to assume that E(ε|XS) = 0 by (1.4), but allow E(ε|X) ≠ 0. In this case, we can allow the instruments W = XS to be unknown, and F 
and H to be defined below can be transformations of X. This is the setup of an earlier version of this paper, which is much weaker 
than (1.2) and allows some of XN to be endogenous.
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and H corresponding to the indices in S. Implied by EεF = EεH = 0, and , 

there exists a solution βS = β0S to the over-identified equations (with respect to βS) such as

(1.5)

In (1.5), we have twice as many linear equations as the number of unknowns, yet the 

solution exists and is given by βS = β0S. Because β0S satisfies more equations than its 

dimension, we call β0S to be over-identified. On the other hand, for any other set S̃ of 

variables, if S ⊄ S̃, then the following 2|S̃| equations (with |S̃| = dim(βS̃) unknowns)

(1.6)

have no solution as long as the basis functions are chosen such that FS̃ ≠ H S̃.3 The above 

setup includes W = XS with F = X and H = X2 as a specific example (or H = cos(X) + 1 if X 
contain many binary variables).

We show that in the presence of endogenous regressors, the classical penalized least squares 

method is no longer consistent. Under model

we introduce a novel penalized method, called focused generalized method of moments 

(FGMM), which differs from the classical GMM (Hansen 1982) in that the working 

instrument V(β) in the moment functions  for FGMM also 

depends irregularly on the unknown parameter β (which also depends on (F, H), see Section 

3 for details). With the help of over identification, the FGMM successfully eliminates those 

subset S̃ such that S ⊄ S̃. As we will see in Section 3, a penalization is still needed to avoid 

over-fitting. This results in a novel penalized FGMM.

We would like to comment that FGMM differs from the low-dimensional techniques of 

either moment selection (Andrews 1999, Andrews and Lu 2001) or shrinkage GMM (Liao 

2013) in dealing with mis-specifications of moment conditions and dimension reductions. 

The existing methods in the literature on GMM moment selections cannot handle high-

dimensional models. Recent literature on the instrumental variable method for high-

dimensional models can be found in, e.g., Belloni et al. (2012), Caner and Fan (2012), 

García (2011). In these papers, the endogenous variables are in low dimensions. More 

closely related work is by Gautier and Tsybakov (2011), who solved a constrained 

minimization as an extension of Dantzig selector. Our paper, in contrast, achieves the oracle 

3The compatibility of (1.6) requires very stringent conditions. If  are invertible, then a necessary condition for (1.6) to have 

a common solution is that , which does not hold in general when F ≠ H.
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property via a penalized GMM. Also, we study a more general conditional moment 

restricted model that allows nonlinear models.

The remainder of this paper is as follows: Section 2 gives a necessary condition for a general 

penalized regression to achieve the oracle property. We also show that in the presence of 

endogenous regressors, the penalized least squares method is inconsistent. Sections 3 

constructs a penalized FGMM, and discusses the rationale of our construction. Section 4 

shows the oracle property of FGMM. Section 5 discusses the global optimization. Section 6 

focuses on the semi-parametric efficient estimation after variable selection. Section 7 

discusses numerical implementations. We present simulation results in Section 8. Finally, 

Section 9 concludes. Proofs are given in the appendix.

Notation

Throughout the paper, let λmin(A) and λmax(A) be the smallest and largest eigenvalues of a 

square matrix A. We denote by ‖A‖F, ‖A‖ and ‖A‖∞ as the Frobenius, operator and element-

wise norms of a matrix A respectively, defined respectively as ‖A‖F = tr1/2(AT A), 

, and ‖A‖∞ = maxi,j ‖Aij‖. For two sequences an and bn, write an ≪ bn 

(equivalently, bn ≫ an) if an = o(bn). Moreover, |β|0 denotes the number of nonzero 

components of a vector β. Finally,  and  denote the first and second derivatives of 

a penalty function Pn(t), if exist.

2. Necessary Condition for Variable Selection Consistency

2.1. Penalized regression and necessary condition

Let s denote the dimension of the true vector of nonzero coefficients β0S. The sparse 

structure assumes that s is small compared to the sample size. A penalized regression 

problem, in general, takes a form of:

where Pn(·) denotes a penalty function. There are relatively less attentions to the necessary 

conditions for the penalized estimator to achieve the oracle property. Zhao and Yu (2006) 

derived an almost necessary condition for the sign consistency, which is similar to that of 

Zou (2006) for the least squares loss with Lasso penalty. To the authors' best knowledge, so 

far there has been no necessary condition on the loss function for the selection consistency 

in the high-dimensional framework. Such a necessary condition is important, because it 

provides us a way to justify whether a specific loss function can result in a consistent 

variable selection.

Theorem 2.1 (Necessary Condition)—Suppose:

i. Ln(β) is twice differentiable, and
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ii. There is a local minimizer β̂ = (β̂
S, β̂

N)T of

such that P(β̂
N = 0) → 1, and √s ‖β̂ − β0‖ = op(1).

iii. The penalty satisfies: Pn(·) ≥ 0, Pn(0) = 0,  is non-increasing when t ∈ (0, u) 

for some u > 0, and . Then for any l ≤ p,

(2.1)

The implication (2.1) is fundamentally different from the “irrepresentable condition” in 

Zhao and Yu (2006) and that of Zou (2006). It imposes a restriction on the loss function 

Ln(·), whereas the “irrepresentable condition” is derived under the least squares loss and 

E(εX) = 0. For the least squares, (2.1) reduces to either  or EεXl = 0, 

which requires a exogenous relationship between ε and X. In contrast, the irrepresentable 

condition requires a type of relationship between important and unimportant regressors and 

is specific to Lasso. It also differs from the Karush-Kuhn-Tucker (KKT) condition (e.g., Fan 

and Lv 2011) in that it is about the gradient vector evaluated at the true parameters rather 

than at the local minimizer.

The conditions on the penalty function in condition (iii) are very general, and are satisfied 

by a large class of popular penalties, such as Lasso (Tibshirani 1996), SCAD (Fan and Li 

2001) and MCP (Zhang 2010), as long as their tuning parameter λn → 0. Hence this theorem 

should be understood as a necessary condition imposed on the loss function instead of the 

penalty.

2.2. Inconsistency of least squares with endogeneity

As an application of Theorem 2.1, consider a linear model:

(2.2)

where we may not have E(εX) = 0.

The conventional penalized least squares (PLS) problem is defined as:

Fan and Liao Page 6

Ann Stat. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In the simpler case when s, the number of nonzero components of β0, is bounded, it can be 

shown that if there exist some regressors correlated with the regression error ε, the PLS does 

not achieve the variable selection consistency. This is because (2.1) does not hold for the 

least squares loss function. Hence without the possibly ad-hoc exogeneity assumption, PLS 

would not work any more, as more formally stated below.

Theorem 2.2 (Inconsistency of PLS)—Suppose the data are i.i.d., s = O(1), and X has 

at least one endogenous component, that is, there is l such that |E(Xlε)| > c for some c > 0. 

Assume that , Eε4 < ∞, and Pn (t) satisfies the conditions in Theorem 2.1. If 

, corresponding to the coefficients of (XS, XN), is a local minimizer of

then either ‖β̃
S – β0S ‖ = op(1), or lim supn→∞ P(β̃

N = 0) < 1.

The index l in the condition of the above theorem does not have to be an index of an 

important regressor. Hence the consistency for penalized least squares will fail even if the 

endogeneity is only present on the unimportant regressors.

We conduct a simple simulated experiment to illustrate the impact of endogeneity on the 

variable selection. Consider

In the design, the unimportant regressors are endogenous. The penalized least squares (PLS) 

with SCAD-penalty was used for variable selection. The λ's in the table represent the tuning 

parameter used in the SCAD-penalty. The results are based on the estimated , 

obtained from minimizing PLS and FGMM loss functions respectively (we shall discuss the 

construction of FGMM loss function and its numerical minimization in detail subsequently). 

Here β̃
S and β̂

N represent the estimators for coefficients of important and unimportant 

regressors respectively.

From Table 1, PLS selects many unimportant regressors (FP). In contrast, the penalized 

FGMM performs well in both selecting the important regressors and eliminating the 
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unimportant ones. Yet, the larger MSES of β̂
S by FGMM is due to the moment conditions 

used in the estimate. This can be improved further in Section 6. Also, when endogeneity is 

present on the important regressors, PLS estimator will have larger bias (see additional 

simulation results in Section 8.)

3. Focused GMM

3.1. Definition

Because of the presence of endogenous regressors, we introduce an instrumental variable 

(IV) regression model. Consider a more general nonlinear model:

(3.1)

where Y stands for the dependent variable; g :ℝ × ℝ → ℝ is a known function. For 

simplicity, we require g be one-dimensional, and should be thought of as a possibly 

nonlinear residual function. Our result can be naturally extended to a multi-dimensional g 

function. Here W is a vector of observed random variables, known as instrumental variables.

Model (3.1) is called a conditional moment restricted model, which has been extensively 

studied in the literature, e.g., Newey (1993), Donald et al. (2009), Kitamura et al (2004). The 

high-dimensional model is also closely related to the semi/nonparametric model estimated 

by sieves with a growing sieve dimension, e.g., Ai and Chen (2003). Recently van de Geer 

(2008) and Fan and Lv (2011) considered generalized linear models without endogeneity. 

Some interesting examples of the generalized linear model that fit into (3.1) are:

• linear regression, g(t1, t2) = t1 − t2;

• logit model, g(t1, t2) = t1 − exp(t2)/(1 + exp(t2));

• probit model, g(t1, t2) = t1 − Φ(t2) where Φ(·) denotes the standard normal 

cumulative distribution function.

Let (f1, …, fp) and (h1,…, hp) be two different sets of transformations of W, which can be 

taken as a large number of series basis, e.g., B-splines, Fourier series, polynomials (see 

Chen 2007 for discussions of the choice of sieve functions). Here each fj and hj are scalar 

functions. Write F = (f1(W),…, fp(W))T, and H = (h1(W),…, hp(W))T. The conditional 

moment restriction (3.1) then implies that

(3.2)

where FS and HS are the subvectors of F and H whose supports are on the oracle set S = {j ≤ 

p : β0j ≠ 0}. In particular, when all the components of XS are known to be exogenous, we 

can take F = X and H = X2 (the vector of squares of X taken coordinately), or H = cos(X) + 

1 if X is a binary variable. A typical estimator based on moment conditions like (3.2) can be 

obtained via the generalized method of moments (GMM, Hansen 1982). However, in the 

problem considered here, (3.2) cannot be used directly to construct the GMM criterion 

function, because the identities of XS are unknown.
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Remark 3.1—One seemingly working solution is to define V as a vector of 

transformations of W, for instance V = F, and employ GMM to the moment condition 

E[g(Y, XT β0)V] = 0. However, one has to take dim(V) ≥ dim(β) = p to guarantee that the 

GMM criterion function has a unique minimizer (in the linear model for instance). Due to p 

≫ n, the dimension of V is too large, and the sample analogue of the GMM criterion 

function may not converge to its population version due to the accumulation of high-

dimensional estimation errors.

Let us introduce some additional notation. For any β ∈ ℝp/{0}, and i = 1, …, n, define r = |

β|0-dimensional vectors

Fi(β) = (fl1(Wi),…, flr(Wi))T and Hi(β) = (hl1(Wi),…, hlr(Wi))T, where (l1, …, lr) are the 

indices of nonzero components of β. For example, if p = 3 and β = (−1, 0, 2)T, then Fi(β) = 

(f1(Wi), f3(Wi))T, and Hi(β) = (h1(Wi), h3(Wi))T, i ≤ n.

Our focused GMM (FGMM) loss function is defined as

(3.3)

where wj1 and wj2 are given weights. For example, we will take  and 

 to standardize the scale (here  represents the sample variance). 

Writing in the matrix form, for Vi(β) = (Fi(βT,H i(β)T)T,

where J(β) = diag{wl11, …, wlr1, wl12, …, wlr2}.4

Unlike the traditional GMM, the “working instrumental variables” V(β) depend irregularly 

on the unknown β. As to be further explained, this ensures the dimension reduction, and 

allows to focus only on the equations with the IV whose support is on the oracle space, and 

is therefore called the focused GMM or FGMM for short.

We then define the FGMM estimator by minimizing the following criterion function:

(3.4)

4For technical reasons we use a diagonal weight matrix and it is likely non-optimal. However, it does not affect the variable selection 
consistency in this step.
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Sufficient conditions on the penalty function Pn(|βj|) for the oracle property will be presented 

in Section 4. Penalization is needed because otherwise small coefficients in front of 

unimportant variables would be still kept in minimizing LFGMM (β). As to become clearer in 

Section 6, the FGMM focuses on the model selection and estimation consistency without 

paying much effort to the efficient estimation of β0S.

3.2. Rationales behind the construction of FGMM

3.2.1. Inclusion of V(β)—We construct the FGMM criterion function using

A natural question arises: why not just use one set of IV's so that V(β) = F(β)? We now 

explain the rationale behind the inclusion of the second set of instruments H(β). To simplify 

notation, let Fij = fj(Wi) and Hij = hj(Wi) for j ≤ p and i ≤ n. Then Fi = (Fi1,…, Fip) and Hi = 

(Hi1,…, Hip). Also write Fj = fj (W) and Hj = hj (W) for j ≤ p.

Let us consider a linear regression model (2.2) as an example. If H(β) were not included and 

V(β) = F(β) had been used, the GMM loss function would have been constructed as

(3.5)

where for the simplicity of illustration, J(β) is taken as an identity matrix. We also use the 

L0-penalty Pn(|βj|) = λnI(|βj|≠0) for illustration. Suppose that the true 

where only the first s components are nonzero and that s > 1. If we, however, restrict 

ourselves to βp = (0, …, 0, βp), the criterion function now becomes

It is easy to see its minimum is just λn. On the other hand, if we optimize QFGMM on the 

oracle space , then

As a result, it is inconsistent for variable selection.

The use of L0-penalty is not essential in the above illustration. The problem is still present if 

the L1-penalty is used, and is not merely due to the biasedness of L1-penalty. For instance, 
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recall that for the SCAD penalty with hyper parameter (a, λn), Pn(·) is non-decreasing, and 

 when t ≥ aλn. Given that minj∈S|β0j|≫λn,

On the other hand,  which is strictly less than 

QFGMM(β0). So the problem is still present when an asymptotically unbiased penalty (e.g., 

SCAD, MCP) is used.

Including an additional term H(β) in V(β) can overcome this problem. For example, if we 

still restrict to βp = (0,…, βp) but include an additional but different IV Hip, the criterion 

function then becomes, for the L0 penalty:

In general, the first two terms cannot achieve op(1) simultaneously as long as the two sets of 

transformations {fj(·)} and {hj(·)} are fixed differently. so long as n is large and

(3.6)

As a result, QFGMM(βp) is bounded away from zero with probability approaching one.

To better understand the behavior of QFGMM (β), it is more convenient to look at the 

population analogues of the loss function. Because the number of equations in

(3.7)

is twice as many as the number of unknowns (nonzero components in β), if we denote S̃ as 

the support of β, then (3.7) has a solution only when 

, which does not hold in general unless S̃ = S, 

the index set of the true nonzero coefficients. Hence it is natural for (3.7) to have a unique 

solution β = β0. As a result, if we define
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the population version of LFGMM, then as long as β is not close to β0, G should be bounded 

away from zero. Therefore, it is reasonable for us to assume that for any δ > 0, there is γ(δ) 

> 0 such that

(3.8)

On the other hand,  implies G(β0) = 0.

Our FGMM loss function is essentially a sample version of G(β), so minimizing LFGMM(β) 

forces the estimator to be close to β0, but small coefficients in front of unimportant but 

exogenous regressors may still be allowed. Hence a concave penalty function is added to 

LFGMM to define QFGMM.

3.2.2. Indicator function—Another question readers may ask is that why not define 

LFGMM(β) to be, for some weight matrix J,

(3.9)

that is, why not replace the irregular β-dependent V(β) with V, and use the entire 2p-

dimensional V = (FT, HT)T as the IV? This is equivalent to the question why the indicator 

function in (3.3) cannot be dropped.

The indicator function is used to prevent the accumulation of estimation errors under the 

high dimensionality. To see this, rewrite (3.9) to be:

Since dim(Vi) = 2p ≫ n, even if each individual term evaluated at β = β0 is , the 

sum of p terms would become stochastically unbounded. In general, (3.9) does not converge 

to its population analogue when p ≫ n because the accumulation of high-dimensional 

estimation errors would have a non-negligible effect.

In contrast, the indicator function effectively reduces the dimension and prevents the 

accumulation of estimation errors. Once the indicator function is included, the proposed 

FGMM loss function evaluated at β0 becomes:
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which is small because E[g(Y, XTβ0)FS] = E[g(Y, XTβ0)HS] = 0 and that there are only s = |

S|0 terms in the summation.

Recently, there has been growing literature on the shrinkage GMM, e.g., Caner (2009), 

Caner and Zhang (2013), Liao (2013), etc, regarding estimation and variable selection based 

on a set of moment conditions like (3.2). The model considered by these authors is restricted 

to either a low-dimensional parameter space or a low-dimensional vector of moment 

conditions, where there is no such a problem of error accumulations.

4. Oracle Property of FGMM

FGMM involves a non-smooth loss function. In the appendix, we develop a general 

asymptotic theory for high-dimensional models to accommodate the non-smooth loss 

function.

Our first assumption defines the penalty function we use. Consider a similar class of folded 

concave penalty functions as that in Fan and Li (2001).

For any β = (β1,…, βs)T ∈ ℝs, and |βj| ≠ 0, j = 1,…, s, define

(4.1)

which is  if the second derivative of Pn is continuous. Let

represent the strength of signals.

Assumption 4.1

The penalty function Pn(t) : [0, ∞) → ℝ satisfies:

i. Pn(0) = 0

ii. Pn(t) is concave, non-decreasing on [0, ∞), and has a continuous derivative 

when t > 0.

iii. .

iv. There exists c > 0 such that supβ∈B(β0S,cdn) η(β) = o(1).

These conditions are standard. The concavity of Pn(·) implies that η(β) ≥ 0 for all β ∈ ℝs. It 

is straightforward to check that with properly chosen tuning parameters, the Lq penalty (for q 

≤ 1), hard-thresholding (Antoniadis 1996), SCAD (Fan and Li 2001), and MCP (Zhang 

2010) all satisfy these conditions. As thoroughly discussed by Fan and Li (2001), a penalty 
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function that is desirable for achieving the oracle properties should result in an estimator 

with three properties: unbiasedness, sparsity and continuity (see Fan and Li 2001 for 

details). These properties motivate the needs of using a folded concave penalty.

The following assumptions are further imposed. Recall that for j ≤ p, Fj = fj (W) and Hj = hj 

(W).

Assumption 4.2

i. The true parameter β0 is uniquely identified by E(g(Y, XT β0)|W) = 0.

ii. (Y1, X1),…, (Yn, Xn) are independent and identically distributed.

Remark 4.1

Condition (i) above is standard in the GMM literature (e.g., Newey 1993, Donald et al. 

2009, Kitamura et al. 2004). This condition is closely related to the “over-identifying 

restriction”, and ensures that we can always find two sets of transformations F and H such 

that the equations in (3.2) are uniquely satisfied by βS = β0S. In linear models, this is a 

reasonable assumption, as discussed in Section 3.2. In nonlinear models, however, requiring 

the identifiability from either E(g(Y, XTβ0)|W) = 0 or (3.2) may be restrictive. Indeed, 

Dominguez and Lobato 2004) showed that the identification condition in (i) may depend on 

the marginal distributions of W. Furthermore, in nonparametric regression problems as in 

Bickel et al. (2009) and Ai and Chen (2003), the sufficient condition of Condition (i) is even 

more complicated, which also depends on the conditional distribution of X|W, and is known 

to be statistically untestable (see Newey and Powell 2003, Canay et al 2013).

Assumption 4.3

There exist b1, b2, b3 > 0 and r1, r2, r3 > 0 such that for any t > 0,

i. P(|g(Y, XTβ0)| > t) ≤ exp(−(t/b1)r1),

ii. maxl≤p P(|Fl| > t) ≤ exp(−(t/b2)r2), maxl≤p P(|Hl > t) ≤ exp(−(t/b3)r3).

iii. minj∈S var(g(Y, XT β0)Fj) and minj∈S var(g(Y, XT β0)Hj) are bounded away from 

zero.

iv. var(Fj) and var(Hj) are bounded away from both zero and infinity uniformly in j = 

1,…, p and p ≥ 1.

We will assume g(·,·) to be twice differentiable, and in the following assumptions, let

Assumption 4.4

i. g(·,·) is twice differentiable.

ii. supt1, t2 |m(t1, t2)| < ∞, and supt1, t2 |q(t1, t2)| <∞.
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It is straightforward to verify Assumption 4.4 for linear, logistic and probit regression 

models.

Assumption 4.5

There exist C1 > 0 and C2 > 0 such that

These conditions require that the instrument VS be not weak, that is, VS should not be 

weakly correlated with the important regressors. In the generalized linear model, 

Assumption 4.5 is satisfied if proper conditions on the design matrices are imposed. For 

example, in the linear regression model and probit model, we assume the eigenvalues of 

 and  are bounded away 

from both zero and infinity respectively, where ϕ(·) is the standard normal density function. 

Conditions in the same spirit are also assumed in, e.g., Bradic et al. (2011), and Fan and Lv 

(2011).

Define

(4.2)

Assumption 4.6

i. For some c > 0, λmin(ϒ) > c.

ii.
, , and 

.

iii.  and sup‖β − β0S ‖≤dn/4η(β)=o((s log p)−1/2).

iv.
.

This assumption imposes a further condition jointly on the penalty, the strength of the 

minimal signal and the number of important regressors. Condition (i) is needed for the 

asymptotic normality of the estimated nonzero coefficients. When either SCAD or MCP is 

used as the penalty function with a tuning parameter λn, 

and  when λn = o(dn). Thus Conditions (ii)-(iv) in the assumption are satisfied as 

long as . This requires the signal dn be strong and s be 

small compared to n. Such a condition is needed to achieve the variable selection 

consistency.
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Under the foregoing regularity conditions, we can show the oracle property of a local 

minimizer of QFGMM (3.4).

Theorem 4.1

Suppose s3 log p = o(n). Under Assumptions 4.1-4.6, there exists a local minimizer 

 of QFGMM(β) with β̂
S and β̂

N being sub-vectors of β̂ whose coordinates are in 

S and Sc respectively, such that:

i.

for any unit vector α ∈ ℝs, ‖α‖ = 1, where ,

ii.

In addition, the local minimizer β̂ is strict with probability at least 1 – δ for an 

arbitrarily small δ > 0 and all large n.

iii. Let Ŝ = {j ≤ p : β̂
j ≠ 0}. Then

Remark 4.2

As was shown in an earlier version of this paper Fan and Liao (2012), when it is known that 

E[g(Y, XTβ0)|XS] = 0 but likely E[g(Y, XTβ0)|X] ≠ 0, we can take V = (FT, HT)T to be 

transformations of X that satisfy Assumptions 4.3-4.6. In this way, we do not need an extra 

instrumental variable W, and Theorem 4.1 still goes through, while the traditional methods 

(e.g., penalized least squares in the linear model) can still fail as shown by Theorem 2.2. In 

the high-dimensional linear model, compared to the classical assumption: E(ε|X) = 0, our 

condition E(ε| XS) = 0 is relatively easier to validate as XS is a low-dimensional vector.

Remark 4.3

We now explain our required lower bound on the signal . When a 

penalized regression is used, which takes the form , it is 

required that if Ln (β) is differentiable, . This often leads 

to a requirement of the lower bound of dn. Therefore, such a lower bound of dn depends on 

the choice of both the loss function Ln(β) and the penalty. For instance, in the linear model 

Fan and Liao Page 16

Ann Stat. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



when least squares with a SCAD penalty is employed, this condition is equivalent to 

. It is also known that the adaptive lasso penalty requires the minimal signal 

to be significantly larger than (Huang, Ma and Zhang 2008). In our framework, the 

requirement  arises from the use of the new FGMM loss function. Such a 

condition is stronger than that of the least squares loss function, which is the price paid to 

achieve variable selection consistency in the presence of endogeneity. This condition is still 

easy to satisfy as long as s grows slowly with n.

Remark 4.4

Similar to the “irrpresentable condition” for Lasso, the FGMM requires important and 

unimportant explanatory variables not be strongly correlated. This is fulfilled by 

Assumption 4.6(iv). For instance, in the linear model and VS contains XS as in our earlier 

version, this condition implies . Strong correlation 

between (XS, XN) is also ruled out by the identifiability condition Assumption 4.2. To 

illustrate the idea, consider a case of perfect linear correlation:  for some (α, 

δ) with δ ≠ 0. Then, . As a result, the FGMM can be variable 

selection inconsistent because β0 and (β0S − α, δ) are observationally equivalent, violating 

Assumption 4.2.

5. Global minimization

With the over identification condition, we can show that the local minimizer in Theorem 4.1 

is nearly global. To this end, define an l∞ ball centered at β0 with radius δ:

Assumption 5.1 (over-identification)

For any δ > 0, there is γ > 0 such that

This high-level assumption is hard to avoid in high-dimensional problems. It is the empirical 

counterpart of (3.8). In classical low-dimensional regression models, this assumption has 

often been imposed in the econometric literature, e.g., Andrews (1999), Chernozhukov and 

Hong (2003), among many others. Let us illustrate it by the following example.
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Example 5.1

Consider a linear regression model of low dimensions: , which 

implies  and  where p is either bounded or 

slowly diverging with n. Now consider the following problem:

Once  for all index set S̃ ≠ S, the objective 

function is then minimized to zero uniquely by β = β0. Moreover, for any δ > 0 there is γ > 0 

such that when β ∉ Θδ ∪ {0}, we have G(β) > γ > 0. Assumption 5.1 then follows from the 

uniform weak law of large number: with probability approaching one, uniformly in (β ∉ Θδ 

∪ {0},

When p is much larger than n, the accumulation of the fluctuations from using the law of 

large number is no longer negligible. It is then challenging to show that ‖E[g(Yi, XTβ)V(β)] ‖ 

is close to  uniformly for high-dimensional β's, which is why we 

impose Assumption 5.1 on the empirical counterpart instead of the population.

Theorem 5.1

Assume . Under Assumption 5.1 and those of Theorem 4.1, the 

local minimizer β̂ in Theorem 4.1 satisfies: for any δ > 0, there exists γ > 0,

The above theorem demonstrates that β̂ is a nearly global minimizer. For SCAD and MCP 

penalties, the condition  holds when λn = o(s−1), which is satisfied 

if s is not large.

Remark 5.1

We exclude the set {0} from the searching area in both Assumption 5.1 and Theorem 5.1 

because we do not include the intercept in the model so X(0) = 0 by definition, and hence 

QFGMM(0) = 0. It is reasonable to believe that zero is not close to the true parameter, since 

we assume there should be at least one important regressor in the model. On the other hand, 
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if we always keep X1 = 1 to allow for an intercept, there is no need to remove {0} in either 

Assumption 5.1 or the above theorem. Such a small change is not essential.

Remark 5.2

Assumption 5.1 can be slightly relaxed so that γ is allowed to decay slowly at a certain rate. 

The lower bound of such a rate is given by Lemma D.2 in the appendix. Moreover, Theorem 

5.1 is based on an over-identification assumption, which is essentially different from the 

global minimization theory in the recent high-dimensional literature, e.g., Zhang (2010), 

Bühlmann and van de Geer (2011, ch 9), and Zhang and Zhang (2012).

6. Semi-parametric efficiency

The results in Section 5 demonstrate that the choice of the basis functions {fj, hj}j≤p forming 

F and H influences the asymptotic variance of the estimator. The resulting estimator is in 

general not efficient. To obtain a semi-parametric efficient estimator, one can employ a 

second step post-FGMM procedure. In the linear regression, a similar idea has been used by 

Belloni and Chernozhukov (2013).

After achieving the oracle properties in Theorem 4.1, we have identified the important 

regressors with probability approaching one, that is,

This reduces the problem to a low-dimensional problem. For simplicity, we restrict s = O(1). 

The problem of constructing semi-parametric efficient estimator (in the sense of Newey 

(1990) and Bickel et al. (1998)) in a low-dimensional model

has been well studied in the literature (see, for example, Chamberlain (1987), Newey 

(1993)). The optimal instrument that leads to the semi-parametric efficient estimation of β0S 

is given by D(W)σ(W)−2, where

Newey (1993) showed that the semi-parametric efficient estimator of β0S can be obtained by 

GMM with the moment condition:

(6.1)

Fan and Liao Page 19

Ann Stat. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In the post-FGMM procedure, we replace XS with the selected X̂
S obtained from the first-

step penalized FGMM. Suppose there exist consistent estimators D̂(W) and σ̂ (W)2 of D(W) 

and σ(W)2. Let us assume the true parameter ‖β0S‖∞ < M for a large constant M > 0. We 

then estimate β0S by solving

(6.2)

on {βS : ‖β0S‖∞ ≤ M}, and the solution is assumed to be unique.

Assumption 6.1

i. There exist C1 > 0 and C2 > 0 so that

In addition, there exist σ̂(w)2 and D̂ (w) such that

where χ is the support of W.

ii.

The consistent estimators for D(w) and σ(w)2 can be obtained in many ways. We present a 

few examples below.

Example 6.1 (Homoskedasticity)

Suppose  for some nonlinear function h(·). Then σ(w)2 = E(ε2|W = w) = 

σ2, which does not depend on w under homoskedasticity. In this case, equations (6.1) and 

(6.2) do not depend on σ2.

Example 6.2 (Simultaneous linear equations)

In the simultaneous linear equation model, XS linearly depends on W as:

for some coefficient matrix Π, where u is independent of W. Then D(w) = E(XS|W = w) = 

Πw. Let X̂ = (X̂
S1, …, X̂

Sn), W̄ = (W1, …, Wn). We then estimate D(w) by Π̂w, where Π̂ = 

(X̂W̄T)(W̄W̄)−1.
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Example 6.3 (Semi-nonparametric estimation)

We can also assume a semi-parametric structure on the functional forms of D(w) and σ(w)2:

where D(·;θ1) and σ2(·;θ2) are semi-parametric functions parameterized by θ1 and θ2. Then 

D(w) and σ(w)2 are estimated using a standard semi-parametric method. More generally, we 

can proceed by a pure nonparametric approach via respectively regressing 

 and  on W, provided that the dimension of W is either 

bounded or growing slowly with n (see Fan and Yao, 1998).

Theorem 6.1

Suppose s = O(1), Assumption 6.1 and those of Theorem 4.1 hold. Then

and [E(σ(W)−2D(W)D(W)T)]–1 is the semi-parametric efficiency bound in Chamberlain 

(1987).

7. Implementation

We now discuss the implementation for numerically minimizing the penalized FGMM 

criterion function.

7.1. Smoothed FGMM

As we previously discussed, including an indicator function benefits us in dimension 

reduction. However, it also makes LFGMM unsmooth. Hence, minimizing QFGMM(β) = 

LFGMM(β)+Penalty is generally NP-hard.

We overcome this discontinuity problem by applying the smoothing technique as in 

Horowitz (1992) and Bondell and Reich (2012), which approximates the indicator function 

by a smooth kernel K : (−∞,∞) → ℝ that satisfies

1. 0 ≤ K(t) < M for some finite M and all t ≥ 0.

2. K(0) = 0 and lim|t|→∞ K(t) = 1.

3. lim sup|t|→∞ |K′(t)t| = 0, and lim sup|t|→∞ |K″(t)t2| < ∞.

We can set , where F(t) is a twice differentiable cumulative distribution 

function. For a pre-determined small number hn, LFGMM is approximated by a continuous 

function LK(β) with the indicator replaced by . The objective function of the 

smoothed FGMM is given by
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As hn→0+,  converges to I(βj≠0), and hence LK(β) is simply a smoothed version of 

LFGMM (β). As an illustration, Figure 1 plots such a function.

Smoothing the indicator function is often seen in the literature on high-dimensional variable 

selections. Recently, Bondell and Reich (2012) approximate I(t≠0) by  to obtain a 

tractable non-convex optimization problem. Intuitively, we expect that the smoothed FGMM 

should also achieve the variable selection consistency. Indeed, the following theorem 

formally proves this claim.

Theorem 7.1—Suppose  for a small constant γ ∈ (0, 1). Under the 

assumptions of Theorem 4.1 there exists a local minimizer β̂′ of the smoothed FGMM QK(β) 

such that, for ,

In addition, the local minimizer β̂′ is strict with probability at least 1 − δ for an arbitrarily 

small δ > 0 and all large n.

The asymptotic normality of the estimated nonzero coefficients can be established very 

similarly to that of Theorem 4.1, which is omitted for brevity.

7.2. Coordinate descent algorithm

We employ the iterative coordinate algorithm for the smoothed FGMM minimization, which 

was used by Fu (1998), Daubechies et al. (2004), Fan and Lv (2011), etc. The iterative 

coordinate algorithm minimizes one coordinate of β at a time, with other coordinates kept 

fixed at their values obtained from previous steps, and successively updates each coordinate. 

The penalty function can be approximated by local linear approximation as in Zou and Li 

(2008).

Specifically, we run the regular penalized least squares to obtain an initial value, from which 

we start the iterative coordinate algorithm for the smoothed FGMM. Suppose β(l) is obtained 

at step l. For k ∈ {1, …, p}, denote by  a (p − 1)-dimensional vector consisting of all 

the components of (β(l) but . Write  as the p-dimensional vector that replaces 

with t. The minimization with respect to t while keeping  fixed is then a univariate 

minimization problem, which is not difficult to implement. To speed up the convergence, we 

can also use the second order approximation of  along the kth component at :
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(7.1)

where  is a quadratic function of t. We solve for

(7.2)

which admits an explicit analytical solution, and keep the remaining components at step l. 

Accept t* as an updated kth component of β(l) only if  strictly 

decreases. The coordinate descent algorithm runs as follows.

1. Set l = 1. Initialize β(1) = β̂*, where β̂* solves

using the coordinate descent algorithm as in Fan and Lv (2011).

2. Successively for k = 1, …, p, let t* be the minimizer of

Update  as t* if

Otherwise set . Increase l by one when k = p.

3. Repeat Step 2 until | QK(β(l))−QK (β(l+1))| < ε, for a pre-determined small ε.

When the second order approximation (7.1) is combined with SCAD in Step 2, the local 

linear approximation of SCAD is not needed. As demonstrated in Fan and Li (2001), when 

Pn(t) is defined using SCAD, the penalized optimization of the form 

 has an analytical solution.

We can show that the evaluated objective values {QK(β(l))}l≥1 is a bounded Cauchy 

sequence. Hence for an arbitrarily small ε > 0, the above algorithm stops after finitely many 

steps. Let M(β) denote the map defined by the algorithm from β(l) to β(l+1). We define a 

stationary point of the function QK(β) to be any point β at which the gradient vector of QK(β) 
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is zero. Similar to the local linear approximation of Zou and Li (2008), we have the 

following result regarding the property of the algorithm.

Theorem 7.2—The sequence {QK (β(l))}l≥1 is a bounded non-increasing Cauchy sequence. 

Hence for any arbitrarily small ε > 0, the coordinate descent algorithm will stop after finitely 

many iterations. In addition, if QK (β) = QK (M(β)) only for stationary points of QK(·) and if 

β* is a limit point of the sequence {(β(l)) l≥1, then β* is a stationary point of QK (β).

Theoretical analysis of non-convex regularization in the recent decade has focused on 

numerical procedures that can find local solutions (Hunter and Li 2005, Kim et al. 2008, 

Brehenry and Huang 2011). Proving that the algorithm achieves a solution that possesses the 

desired oracle properties is technically difficult. Our simulated results demonstrate that the 

proposed algorithm indeed reaches the desired sparse estimator. Further investigation along 

the lines of Zhang and Zhang (2012) and Loh and Wainwright (2013) is needed to 

investigate the statistical properties of the solution to non-convex optimization problems, 

which we leave as future research.

8. Monte Carlo Experiments

8.1. Endogeneity in both important and unimportant regressors

To test the performance of FGMM for variable selection, we simulate from a linear model:

with p = 50 or 200. Regressors are classified as being exogenous (independent of ε) and 

endogenous. For each component of X, we write  if Xj is endogenous, and  if 

Xj is exogenous, and  and  are generated according to:

where {ε, u1, …, up} are independent N(0, 1). Here F = (F1, …, Fp)T and H = (H1, …, Hp)T 

are the transformations (to be specified later) of a three-dimensional instrumental variable 

W = (W1, W2, W3)T ∼ N3(0, I3). There are m endogenous variables (X1, X2, X3, X6, …, 

X2+m)T, with m = 10 or 50. Hence three of the important regressors (X1, X2, X3) are 

endogenous while two are exogenous (X4, X5).

We apply the Fourier basis as the working instruments:
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The data contain n = 100 i.i.d. copies of (Y, X, F, H). PLS and FGMM are carried out 

separately for comparison. In our simulation we use SCAD with pre-determined tuning 

parameters of λ as the penalty function. The logistic cumulative distribution function with h 

= 0.1 is used for smoothing:

There are 100 replications per experiment. Four performance measures are used to compare 

the methods. The first measure is the mean standard error (MSES) of the important 

regressors, determined by the average of ‖β̂
S − β0S‖ over the 100 replications, where S = {1, 

…, 5}. The second measure is the average of the MSE of unimportant regressors, denoted by 

MSEN. The third measure is the number of correctly selected non-zero coefficients, that is, 

the true positive (TP), and finally, the fourth measure is the number of incorrectly selected 

coefficients, the false positive (FP). In addition, the standard error over the 100 replications 

of each measure is also reported. In each simulation, we initiate β(0) = (0,…, 0)T, and run a 

penalized least squares (SCAD(λ)) for λ = 0.5 to obtain the initial value for the FGMM 

procedure. The results of the simulation are summarized in Table 2, which compares the 

performance measures of PLS and FGMM.

PLS has non-negligible false positives (FP). The average FP decreases as the magnitude of 

the penalty parameter increases, however, with a relatively large MSES for the estimated 

nonzero coefficients, and the FP rate is still large compared to that of FGMM. The PLS also 

misses some important regressors for larger λ. It is worth noting that the larger MSES for 

PLS is due to the bias of the least squares estimation in the presence of endogeneity. In 

contrast, FGMM performs well in both selecting the important regressors, and in correctly 

eliminating the unimportant regressors. The average MSES of FGMM is significantly less 

than that of PLS since the instrumental variable estimation is applied instead. In addition, 

after the regressors are selected by the FGMM, the post-FGMM further reduces the mean 

squared error of the estimators.

8.2. Endogeneity only in unimportant regressors

Consider a similar linear model but only the unimportant regressors are endogenous and all 

the important regressors are exogenous, as designed in Section 2.2, so the true model is as 

the usual case without endogeneity. In this case, we apply (F, H) = (X, X2) as the working 

instruments for FGMM with SCAD(λ) penalty, and need only data X and Y = (Y1, …, Yn). 

We still compare the FGMM procedure with PLS. The results are reported in Table 3.

It is clearly seen that even though only the unimportant regressors are endogenous, however, 

the PLS still does not seem to select the true model correctly. This illustrates the variable 

selection inconsistency for PLS even when the true model has no endogeneity. In contrast, 

the penalized FGMM still performs relatively well.
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8.3. Weak minimal signals

To study the effect on variable selection when the strength of the minimal signal is weak, we 

run another set of simulations with the same data generating process as in Design 1 but we 

change β4 = −0.5 and β5 = 0.1, and keep all the remaining parameters the same as before. 

The minimal nonzero signal becomes |β5| = 0.1. Three of the important regressors are 

endogenous as in Design 1. Table 4 indicates that the minimal signal is so small that it is not 

easily distinguishable from the zero coefficients.

9. Conclusion and Discussion

Endogeneity can arise easily in the high-dimensional regression due to a large pool of 

regressors, which causes the inconsistency of the penalized least-squares methods and 

possible false scientific discoveries. Based on the over-identification assumption and valid 

instrumental variables, we propose to penalize an FGMM loss function. It is shown that 

FGMM possesses the oracle property, and the estimator is also a nearly global minimizer.

We would like to point out that this paper focuses on correctly specified sparse models, and 

the achieved results are “pointwise” for the true model. An important issue is the uniform 

inference where the sparse model may be locally misspecified. While the oracle property is 

of fundamental importance for high-dimensional methods in many scientific applications, it 

may not enable us to make valid inference about the coefficients uniformly across a large 

class of models (Leeb and Pötscher 2008, Belloni et al. 2013)5. Therefore, the “post-double-

selection” method with imperfect model selection recently proposed by Belloni et al. (2013) 

is important for making uniform inference. Research along that line under high-dimensional 

endogeneity is important and we shall leave it for the future agenda.

Finally, as discussed in Bickel et al. (2009) and van de Geer (2008), high-dimensional 

regression problems can be thought of as an approximation to a nonparametric regression 

problem with a “dictionary” of functions or growing number of sieves. Then in the presence 

of endogenous regressors, model (3.1) is closely related to the non-parametric conditional 

moment restricted model considered by, e.g., Newey and Powell (2003), Ai and Chen 

(2003), and Chen and Pouzo (2008). While the penalization in the latter literature is similar 

to ours, it plays a different role and is introduced for different purposes. It will be interesting 

to find the underlying relationships between the two models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Proofs for Section 2

Throughout the Appendix, C will denote a generic positive constant that may be different in 

different uses. Let sgn(·) denote the sign function.

A.1. Proof of Theorem 2.1

Proof. When β̂ is a local minimizer of Qn(β), by the Karush-Kuhn-Tucker (KKT) condition, 

∀l ≤ p,

where  if βl̂ ≠ 0;  if β̂
l = 0, and we denote 

. By the monotonicity of , we have . By 

Taylor expansion and the Cauchy-Schwarz inequality, there is β̃ on the segment joining β̂ 

and β0 so that, on the event β̂
N = 0, (β̂

j − β0j = 0 for all j ∉ S)

The Cauchy-Schwarz inequality then implies that maxl≤p |∂Ln(β̂)/∂βl − ∂Ln(β0)/∂βl| is 

bounded by

By our assumption, √s‖β̂
S − β 0S‖ = op(1). Because P(β̂

N = 0) → 1,

(A.1)

This yields that ∂Ln(β0)/∂βl = op(1).

A.2. Proof of Theorem 2.2

Proof. Let  be the i.i.d. data of Xl where Xl is an endogenous regressor. For the 

penalized LS, . Under the theorem assumptions, by the strong 
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law of large number  almost surely, 

which does not satisfy (2.1) of Theorem 2.1.

Appendix B: General Penalized Regressions

We present some general results for the oracle properties of penalized regressions. These 

results will be employed to prove the oracle properties for the proposed FGMM. Consider a 

penalized regression of the form:

Lemma B.1

Under Assumption 4.1, if (β = (β1,…, βs)T is such that maxj≤s |βj − β0S,j| ≤ dn, then

Proof. By Taylor's expansion, there exists β* (  for each j) lying on the line segment 

joining β and β0S, such that

Then .

Since  is non-increasing (as Pn is concave),  for all j ≤ s. Therefore 

.

In the theorems below, with S = {j : β0j ≠ 0}, define a so-called “oracle space” ℬ = {β ∈ 

ℝp : βj = 0 if j ∉ S}. Write Ln(βS, 0) = Ln(β) for . Let βS = (βS1,…, βSs) and
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Theorem B.1 (Oracle Consistency)

Suppose Assumption 4.1 holds. In addition, suppose Ln(βS, 0) is twice differentiable with 

respect to βS in a neighborhood of β0S restricted on the subspace ℬ, and there exists a 

positive sequence an = o(dn) such that:

i.

ii. For any ε > 0, there is Cε > 0 so that for all large n,

(B.1)

iii. For any ε > 0, δ > 0, and any nonnegative sequence αn = o(dn), there is N > 0 such 

that when n > N,

(B.2)

Then there exists a local minimizer  of

such that . In addition, for an arbitrarily small ε > 0, the 

local minimizer β̂ is strict with probability at least 1 − ε, for all large n.

Proof. The proof is a generalization of the proof of Theorem 3 in Fan and Lv (2011). Let 

. It is our assumption that kn = o(1). Write Q1(βS) = Qn(βS, 0), and L1(βS) 

= Ln(βS, 0). In addition, write

Define τ = {β ∈ ℝs : ‖ β − β0S‖ ≤knτ} for some τ > 0. Let ∂ τ denote the boundary of τ. 

Now define an event
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On the event Hn(τ), by the continuity of Q1, there exists a local minimizer of Q1 inside τ. 

Equivalently, there exists a local minimizer  of Qn restricted on 

inside . Therefore, it suffices to show that ∀ε > 0, there exists τ > 0 

so that P(Hn(τ)) > 1 − ε for all large n, and that the local minimizer is strict with probability 

arbitrarily close to one.

For any βS ∈ ∂ τ, which is ‖βS − β0S‖ = knτ, there is β* lying on the segment joining βS and 

β0S such that by the Taylor's expansion on L1 (βS):

By Condition (i) ‖∇L1(β0S)‖ = Op(an), for any ε > 0, there exists C1 > 0, so that the event H1 

satisfies P(H1) > 1 − ε/4 for all large n, where

(B.3)

In addition, Condition (ii) yields that there exists Cε > 0 such that the following event H2 

satisfies P(H2) ≥ 1 − ε/4 for all large n, where

(B.4)

Define another event H3 = {‖∇2L1(β0S) − ∇2L1(β*)‖F < Cε/4}. Since ‖βS − β0S‖ = knτ, by 

Condition (B.2) for any τ > 0, P(H3) > 1 — ε/4 for all large n. On the event H2 ∩ H3, the 

following event H4 holds:

By Lemma B.1, . Hence for any 

βS ∈ ∂ τ, on H1 ∩ H4,

For , we have . Therefore, we can choose 

τ > 8(C1 + 1)/(3Cε) so that Q1(βS)−Q1(β0S) ≥ 0 uniformly for β ∈ ∂ τ. Thus for all large n, 

when τ > 8(C1 + 1)/(3Cε),
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It remains to show that the local minimizer in τ (denoted by β̂
S) is strict with a probability 

arbitrarily close to one. For each h ∈ ℝ/{0}, define

By the concavity of Pn(·), ψ(·) ≥ 0. We know that L1 is twice differentiable on ℝs. For βS ∈ 

τ Let A(βS) = ∇2L1(βS) − diag{ψ(βS1), …, ψ(βSs)}. It suffices to show that A(β̂
S) is positive 

definite with probability arbitrarily close to one. On the event H5 = {η(β̂
S) ≤ supβ∈B(β0S,cdn) 

η(β)} (where cdn is as defined in Assumption 4.1(iv)),

Also define events H6 = {‖∇2L1(βS) − ∇2L1(β0S)‖F < Cε/4} and H7 = {λmin(∇2L1(β0S)) > 

Cε. Then on H5∩H6∩H7, for any α ∈ ℝs satisfying ‖α‖ = 1, by Assumption 4.1(iv),

for all large n. This then implies λmin(A(β̂
S)) ≥ Cε/4 for all large n.

We know that P(λmin[∇2L1(β0S)] > Cε) > 1 − ε. It remains to show that P(H5 ∩ H6) > 1 — ε 

for arbitrarily small ε. Because kn = o(dn), for an arbitrarily small ε > 0, P(H5) > P(β̂
S ∈ 

B(β0S, cdn)) ≥ 1 − ε/2 for all large n. Finally,

The previous theorem assumes that the true support S is known, which is not practical. We 

therefore need to derive the conditions under which S can be recovered from the data with 

probability approaching one. This can be done by demonstrating that the local minimizer of 

Qn restricted on ℬ is also a local minimizer on ℝp. The following theorem establishes the 

variable selection consistency of the estimator, defined as a local solution to a penalized 

regression problem on ℝp.
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For any β ∈ ℝp, define the projection function

(B.5)

Theorem B.2(Variable selection)

Suppose Ln : ℝp → ℝ satisfies the conditions in Theorem B.1, and Assumption 4.1 holds. 

Assume the following Condition A holds:

Condition A: With probability approaching one, for β̂
S in Theorem B.1, there exists a 

neighborhood ℋ ⊂ ℝp of , such that for all  but βN ≠ 0,

(B.6)

Then (i) with probability approaching one,  is a local minimizer in ℝp of

(ii) For an arbitrarily small ε > 0, the local minimizer β̂ is strict with probability at least 1 − 

ε, for all large n.

Proof. Let  with β̂
S being the local minimizer of Q1(βS) as in Theorem B.1. We 

now show: with probability approaching one, there is a random neighborhood of β̂, denoted 

by ℋ, so that ∀β = (βS, βN) ∈ ℋ with βN ≠ 0, we have Qn(β̂) < Qn(β). The last inequality is 

strict.

To show this, first note that we can take ℋ sufficiently small so that Q1(β̂) ≤ Q1(βS) because 

β̂
S is a local minimizer of Q1(βS) from Theorem B.1. Recall the projection defined to be 

, and Qn( β) = Q1(βS) by the definition of Q1. We have Qn(β̂) = Q1(β̂
S) ≤ 

Q1(βS) = Qn( β). Therefore, it suffices to show that with probability approaching one, there 

is a sufficiently small neighborhood of ℋ of β ^, so that for any  with 

βN ≠ 0, Qn( β) < Qn(β).

In fact, this is implied by Condition (B.6):

(B.7)
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The above inequality, together with the last statement of Theorem B.1 implies part (ii) of the 

theorem.

Appendix C: Proofs for Section 4

Throughout the proof, we write FiS = Fi(β0S), HiS = Hi(β0S) and .

Lemma C.1

i.

ii.

iii. supβ∈ℝp λmax(J(β)) = Op(1), and λmin(J(β0)) is bounded away from zero with 

probability approaching one.

Proof. Parts (i)(ii) follow from an application of the standard large deviation theory by using 

Bernstein inequality and Bonferroni's method. Part (iii) follows from the assumption that 

var(Fj) and var(Hj) are bounded uniformly in j ≤ p.

C.1. Verifying conditions in Theorems B.1, B.2

C.1.1. Verifying conditions in Theorem B.1

For any β ∈ℝp, we can write . Define

Then L̃
FGMM (βS) = LFGMM(βS, 0).

Condition (i)— , where

(C.1)

By Assumption 4.5, ‖An(β0)‖ = Op(1). In addition, the elements in J(β0) are uniformly 

bounded in probability due to Lemma C.1. Hence 

. Due to , using 

the exponential-tail Bernstein inequality with Assumption 4.3 plus Bonferroni inequality, it 

can be shown that there is C > 0 such that for any t > 0,

Fan and Liao Page 33

Ann Stat. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



which implies . Similarly, 

. Hence 

.

Condition (ii)—Straightforward but tedious calculation yields

where Σ(β0S) = 2An(β0S)J(β0)An(β0S)T, and M(β0S) = 2Z(β0S)B(β0S), with (suppose XiS = 

(Xil1, …, Xils)
T)

It is not hard to obtain , and ‖Z(β0S)‖F = Op(s), and hence 

.

Moreover, there is a constant C > 0,  and 

 for all large n and any ε > 0. This then implies 

P(λmin[J(β0)] > C) > 1 − ε. Recall Assumption 4.5 that λmin(EAn(β0S)EAn(β0S)T) > C2 for 

some C2 > 0. Define events

Then on the event ,
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Note that . Hence Condition (B.1) is then satisfied.

Condition (iii)—It can be shown that for any nonnegative sequence αn = o(dn) where dn = 

mink∈S |β0k|/2, we have

(C.2)

holds for any ε and δ > 0. As for Σ(βS), note that for all βS such that ‖βS − β0S‖ < dn/2, we 

have βS,k ≠ 0 for all k ≤ s. Thus J(βS) = J(β0S). Then P(sup‖βS−β0S‖<αn‖Σ(βS) − Σ(β0S)‖F ≤ δ) 

> 1 − ε holds since P(sup‖βS−β0S‖<αn‖An(βS) − An(β0S)‖F ≤ δ) > 1 − ε.

C.1.2. Verifying conditions in Theorem B.2

Proof. We verify Condition A of Theorem B.2, that is, with probability approaching one, 

there is a random neighborhood ℋ of , such that for any 

with βN ≠ 0, condition (B.6) holds.

Let F( β) = {Fl : l ∈ S, βl ≠ 0} and H( β) = {Hl: l ∈ S, βl ≠ 0} for any fixed . 

Define

where J1( β) and J2( β) are the upper-|S|0 and lower-|S|0 sub matrices of J( β). Hence 

LFGMM( (β)) = Ξ( β). Then LFGMM(β) − Ξ(β) equals

where wl1 = 1/var̂(Fl and wl2 = 1/var ̂(Hl. So LFGMM(β) ≥ Ξ(β). This then implies LFGMM( 

β) − LFGMM(β) ≤ Ξ( β) − Ξ(β). By the mean value theorem, there exists λ ∈ (0,1), for 

,
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Let ℋ be a neighborhood of  (to be determined later). We have shown that Ξ ( 

β) − Ξ (β) = Σl∉S,βl≠0 βl(al(β) + bl(β)), for any β ∈ ℋ,

and bl(β) is defined similarly based on H. Note that h lies in the segment joining β and β, 

and is determined by β, hence should be understood as a function of β. By our assumption, 

there is a constant M, such that |m(t1, t2) | and |q(t1, t2)|, the first and second partial 

derivatives of g, and  are all bounded by M uniformly in t1, t2 and l, k ≤ p. Therefore 

the Cauchy-Schwarz and triangular inequalities imply

Hence there is a constant M1 such that if we define the event (again, keep in mind that h is 

determined by β)

then P(Bn) → 1. In addition with probability one,

where, . For some deterministic sequence rn (to be determined later), we can 

define the above ℋ to be dddd

then supβ∈ℋ‖β − β̂‖1 < rn. By the mean value theorem and Cauchy Schwarz inequality, there 

is β̃:
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Hence there is a constant M2 such that P(Z1 < M2√srn) → 1.

Let . By the triangular inequality and mean value theorem, there are h̃ and 

lying in the segment between β̂ and β0 such that

where we used the assumption that . We showed that 

 in the proof of verifying conditions in Theorem B.1. 

Hence by Theorem B.1, . Thus
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By the assumption , hence , where M1 is 

defined in the event Bn. Consequently, if we define an event 

, then P(Bn ∩ Dn → 1, and on the event Bn ∩ 

Dn,

We can , and thus .

On the other hand, Because ( β)j = βj for either j ∈ S or βj = 0, there exists λ2 ∈ (0,1),

For all l ∉ S, |βl| ≤ ‖β − β0‖1 < rn. Due to the non-increasingness of , 

. We can make rn further smaller so that 

 which is satisfied for example, when rn < λn if SCAD(λn) is used as the 

penalty. Hence

Using the same argument we can show . Hence LFGMM( β) 

− LFGMM(β) < Σl∉S,βl≠0 βl (al(β)+bl(β)) ≤ Σl∉S Pn(|βl|) for all β ∈ {β : ‖β − β̂‖1 < rn} under 

the event Bn ∩ Dn. Here rn is such that  and . 

This proves Condition A of Theorem B.2 due to P(Bn ∩ Dn) → 1.

C.2. Proof of Theorem 4.1: parts (ii) (iii)

We apply Theorem B.2 to infer that with probability approaching one, is a local 

minimizer of QFGMM(β). Note that under the event that  is a local minimizer of 

QFGMM (β), we then infer that Qn (β) has a local minimizer such that β̂
N = 0. This 

reaches the conclusion of part (ii). This also implies P(Ŝ ⊂ S) → 1.

By Theorem B.1, and  as proved in verifying conditions 

in Theorem B.1, we have ‖β0S − β̂
S‖ = op(dn). So
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This implies P(S ⊂ Ŝ) → 1. Hence P(Ŝ = S) → 1.

C.3. Proof of Theorem 4.1: part (i)

Let .

Lemma C.2

Under Assumption 4.1,

where ∘ denotes the element-wise product.

Proof. Write , where . By the 

triangular inequality and Taylor expansion,

where β* lies on the segment joining β̂
S and β0S. For any ε > 0 and all large n,

This implies η(β*) = Op(max‖βS−β0S‖<dn/4 η(β)). Therefore, 

 is upper-bounded by

which implies the result since .

Lemma C.3

Let Ωn = √nΓ−1/2. Then for any unit vector α ∈ℝs,

Fan and Liao Page 39

Ann Stat. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Proof. We have ∇L̃
FGMM(β0S) = 2An(β0S)J(β0)Bn, where . 

We write ,  and Γ = 

4AJ(β0)ϒJ(β0)TAT.

By the weak law of large number and central limit theorem for iid data,

for any unit vector α̃∈ℝ2s. Hence by the Slutsky's theorem,

Proof of Theorem 4.1: part (i)

Proof. The KKT condition of βŜ gives

(C.3)

By the mean value theorem, there exists β* lying on the segment joining β0S and β̂
S such that

Let D = (∇2L̃
FGMM(β*) − ∇2L̃

FGMM(β0S))(β̂
S − β0S). It then follows from (C.3) that for 

, and any unit vector α,

In the proof of Theorem 4.1, condition (ii), we showed that ∇2L̃
FGMM(β0S) = Σ + Op(1). 

Hence by Lemma C.3, it suffices to show .

By Assumptions 4.5 and 4.6(i), λmin(Γn)−1/2 = Op(1).Thus ‖ αTΩn‖ = Op(√n). Lemma C.2 

then implies  is bounded by 

.
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It remains to prove ‖D‖ = op(n−1/2), and it suffices to show that

(C.4)

due to , and Assumption 4.6 that 

. Showing (C.4) is straightforward given the continuity of ∇2L̃
FGMM.

Appendix D: Proofs for Sections 5 and 6

The local minimizer in Theorem 4.1 is denoted by  and P(β̂
N) → 1. Let 

.

D.1. Proof of Theorem 5.1

Lemma D.1

Proof. We have, . By Taylor expansion, 

with some β̂ in the segment joining β0S and β̂
S,

Note that  is bounded due to Assumption 4.5. Apply Taylor 

expansion again, with some β̂*, the above term is bounded by

Fan and Liao Page 41

Ann Stat. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Note that supt1,t2| q(t1, t2)| < ∞ by Assumption 4.4. The second term in the above is 

bounded by . Combining these terms, 

 is bounded by 

.

Lemma D.2

Under the theorem's assumptions

Proof. By the foregoing lemma, we have

Now, for some β̃
Sj in the segment joining β̂

Sj and β0j,

The result then follows.

Note that ∀δ > 0,

Hence by Assumption 5.1, there exists γ > 0,
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On the other hand, by Lemma D.2, QFGMM(β̂
G) = op(1). Therefore,

Q.E.D.

D.2. Proof of Theorem 6.1

Lemma D.3

Define . Under the theorem assumptions, supβS ∈ Θ 

‖ρ(βS) − ρn(βS)‖ = op(1).

Proof. We first show three convergence results:

(D.1)

(D.2)

(D.

3)

Because both supw ‖D̂ (w) − D(w)‖ and supw |σ̂(w)2 − σ(w)2| are op(1), proving (D.1) and 

(D.2) is straightforward. In addition, given the assumption that 

, (D.3) follows from the uniform law of large number. 

Hence we have,
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In addition, the event XS = X̂
S occurs with probability approaching one, given the selection 

consistency P(Ŝ = S) → 1 achieved in Theorem 4.1.

The result then follows because .

Given Lemma D.3, Theorem 6.1 follows from a standard argument for the asymptotic 

normality of GMM estimators as in Hansen (1982) and Newey and McFadden (1994, 

Theorem 3.4). The asymptotic variance achieves the semi-parametric efficiency bound 

derived by Chamberlain (1987) and Severini and Tripathi (2001). Therefore, β̂* is semi-

parametric efficient.

Appendix E: Proofs for Section 7

The proof of Theorem 7.1 is very similar to that of Theorem 4.1, which we leave to the 

online supplementary material, downloadable from http://terpconnect.umd.edu/∼yuanliao/

high/supp.pdf

Proof of Theorem 7.2

Proof. Define . We first show 

Ql,k ≤ Ql,k−1 for 1 < k ≤ p and Ql+1,1 ≤ Ql,p. For 1 < k ≤ p, Ql,k − Ql,k−1 equals

Note that the difference between  and  only lies on the kth 

position. The kth position of  is  while that of  is . 

Hence by the updating criterion, Ql,k ≤ Ql,k−1 for k ≤ p.

Because  is the first update in the l + 1th iteration, 

. Hence

On the other hand, for ,
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Hence . Note that 

 differs β(l) only on the first position. By the updating criterion, Ql+1,1 − Ql,p ≤ 

0.

Therefore, if we define {Lm}m≥1 = {Q1,1, …,Q1,p, Q2,1, …,Q2,p, …}, then we have shown 

that {Lm}m≥1 is a non-increasing sequence. In addition, Lm ≥ 0 for all m ≥ 1. Hence Lm is a 

bounded convergent sequence, which also implies that it is Cauchy. By the definition of 

QK(β(l)), we have QK(β(l)) = Ql,p, and thus {QK(β(l))}l≥1 is a sub-sequence of {Lm}. Hence it 

is also bounded Cauchy. Therefore, for any ε > 0, there is N > 0, when l1, l2 > N, | QK(β(l1)) 

− QK(β(l2))| < ε, which implies that the iterations will stop after finite steps.

The rest of the proof is similar to that of the Lyapunov's theorem of Lange (1995, Prop. 4). 

Consider a limit point β* of {β(l)} l≥1 such that there is a subsequence limk→∞ β(lk) = β*. 

Because both QK(·) and M(·) are continuous, and QK(β(l)) is a Cauchy sequence, taking 

limits yields

Hence β* is a stationary point of QK(β).
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Fig 1.  as an approximation to I(t≠0)
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