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Abstract

Most papers on high-dimensional statistics are based on the assumption that none of the regressors
are correlated with the regression error, namely, they are exogenous. Yet, endogeneity can arise
incidentally from a large pool of regressors in a high-dimensional regression. This causes the
inconsistency of the penalized least-squares method and possible false scientific discoveries. A
necessary condition for model selection consistency of a general class of penalized regression
methods is given, which allows us to prove formally the inconsistency claim. To cope with the
incidental endogeneity, we construct a novel penalized focused generalized method of moments
(FGMM) criterion function. The FGMM effectively achieves the dimension reduction and applies
the instrumental variable methods. We show that it possesses the oracle property even in the
presence of endogenous predictors, and that the solution is also near global minimum under the
over-identification assumption. Finally, we also show how the semi-parametric efficiency of
estimation can be achieved via a two-step approach.

Keywords

Focused GMM; Sparsity recovery; Endogenous variables; Oracle property; Conditional moment
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efficiency

1. Introduction

In high-dimensional models, the overall number of regressors p grows extremely fast with
the sample size n. It can be of order exp(n?), for some a € (0, 1). What makes statistical
inference possible is the sparsity and exogeneity assumptions. For example, in the linear
model

Y=XTBy+e, (11

it is assumed that the number of elements in S = {j : f; # 0} is small and EeX = 0, or more
stringently
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E(e|X)=E(Y — XT3|X)=0. (1.2)

The latter is called “exogeneity”. One of the important objectives of high-dimensional
modeling is to achieve the variable selection consistency and make inference on the
coefficients of important regressors. See, for example, Fan and Li (2001), Hunter and Li
(2005), Zou (2006), Zhao and Yu (2006), Huang, Horowitz and Ma (2008), Zhang and
Huang (2008), Wasserman and Roeder (2009), Lv and Fan (2009), Zou and Zhang (2009),
Stadler, Buhlmann and van de Geer (2010), and BiihImann, Kalisch and Maathuis (2010). In
these papers, (1.2) (or E€X = 0) has been assumed either explicitly or implicitly. Condition
of this kind is also required by the Dantzig selector of Candés and Tao (2007), which solves

1=n T logp
an optimization problem with constraint manSp|;Zi:1Xij(K - XiB)l<c \| =, for
some C > 0.

In high-dimensional models, requesting that & and all the components of X be uncorrelated
as (1.2), or even more specifically

E(Y - X'B))X;=0, Vj=1,...,p, (13)

can be restrictive particularly when p is large. Yet, (1.3) is a necessary condition for popular
model selection techniques to be consistent. However, violations to assumption either (1.2)
or (1.3) can arise as a result of selection biases, measurement errors, autoregression with
autocorrelated errors, omitted variables, and from many other sources (Engle, Hendry and
Richard 1983). They also arise from unknown causes due to a large pool of regressors, some
of which are incidentally correlated with the random noise Y-X' /. For example, in
genomics studies, clinical or biological outcomes along with expressions of tens of
thousands of genes are frequently collected. After applying variable selection techniques,
scientists obtain a set of genes Sthat are responsible for the outcome. Whether (1.3) holds,
however, is rarely validated. Because there are tens of thousands of restrictions in (1.3) to
validate, it is likely that some of them are violated. Indeed, unlike low-dimensional least-
squares, the sample correlations between residuals e,Abased on the selected variables X and
predictors X, are unlikely to be small, because all variables in the large set S° are not even
used in computing the residuals. When some of those are unusually large, endogeneity arises
incidentally. In such cases, we will show that S can be inconsistent. In other words, violation
of assumption (1.3) can lead to false scientific claims.

We aim to consistently estimate f and recover its sparsity under weaker conditions than

(1.2) or (1.3) that are easier to validate. Let us assume that Boz(ﬁf{s, O)T and X can be

partitioned as X:(Xz, Xz)T. Here Xg corresponds to the nonzero coefficients fys, which
we call important regressors, and Xy represents the unimportant regressors throughout the

1 n _
Lin fixed designs, e.g., Zhao and Yu (2006), it has been implicitly assumed that ™ ZizlgiXij—Op(l) forall j < p.
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paper, whose coefficients are zero. We borrow the terminology of endogeneity from the
econometric literature. A regressor is said to be endogenous when it is correlated with the
error term, and exogenous otherwise. Motivated by the aforementioned issue, this paper
aims to select Xg with probability approaching one and making inference about £y,
allowing components of X to be endogenous. We propose a unified procedure that can
address the problem of endogeneity to be present in either important or unimportant
regressors, or both, and we do not require the knowledge of which case of endogeneity is
present in the true model. The identities of Xg are unknown before the selection.

The main assumption we make is that, there is a vector of observable instrumental variables
W such that

Ee|W]=0. (14)

Briefly speaking, W is called an “instrumental variable” when it satisfies (1.4) and is
correlated with the explanatory variable X. In particular, as noted in the footnote, W = Xg is
allowed so that the instruments are unknown but no additional data are needed. Instrumental
variables (IV) have been commonly used in the literature of both econometrics and statistics
in the presence of endogenous regressors, to achieve identification and consistent
estimations (e.g., Hall and Horowitz 2005). An advantage of such an assumption is that it
can be validated more easily. For example, when W = Xg, one needs only to check whether
the correlations between e and Xgare small or not, with X gbeing a relatively low-
dimensional vector, or more generally, the moments that are actually used in the model
fitting such as (1.5) below hold approximately In short, our setup weakens the assumption
(1.2) to some verifiable moment conditions.

What makes the variable selection consistency (with endogeneity) possible is the idea of
over identification. Briefly speaking, a parameter is called “over-identified” if there are
more restrictions than those are needed to grant its identifiability (for linear models, for
instance, when the parameter satisfies more equations than its dimension). Let (fy,..., fp) and
(hy,..., hp) be two different sets of transformations, which can be taken as a large number of
series terms, e.g., B-splines and polynomials. Here each fj and h; are scalar functions. Then
(1.4) implies

E(ef;(W))=E(zh;(W))=0, j=1,....p.

Write F = (f (W), ..., f,(W))T, and H = (hy(W),..., hy(W))T. We then have E&F = E¢H = 0.
Let S be the set of indices of important variables, and let F5 and Hg be the subvectors of F

2\We thank the AE and referees for suggesting the use of a general vector of instrument W, which extends to the more general
endogeneity problem, allowing the presence of endogenous important regressors. In particular, W is allowed to be Xs, which amounts
to assume that E(&Xs) = 0 by (1.4), but allow E(&X) # 0. In this case, we can allow the instruments W = Xs to be unknown, and F
and H to be defined below can be transformations of X. This is the setup of an earlier version of this paper, which is much weaker
than (1.2) and allows some of X\ to be endogenous.
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and H corresponding to the indices in S. Implied by EcF = EeH = 0, and e=Y — Xzﬁos,
there exists a solution f5 = fys to the over-identified equations (with respect to f) such as

E(Y —XIB,)F,=0and E(Y — X! B,)H,=0. (15)

In (1.5), we have twice as many linear equations as the number of unknowns, yet the
solution exists and is given by S5 = fs. Because Sy satisfies more equations than its
dimension, we call fys to be over-identified. On the other hand, for any other set S of
variables, if S ¢ S, then the following 2|S|~equations (with |S|~: dim(fs) unknowns)

E(Y —=XIB,)F,=0and E(Y — X8, )H.=0 (15

have no solution as long as the basis functions are chosen such that Fg # H 5.3 The above
setup includes W = Xg with F = X and H = X2 as a specific example (or H = cos(X) + 1 if X
contain many binary variables).

We show that in the presence of endogenous regressors, the classical penalized least squares
method is no longer consistent. Under model

V=X +e, E(g]W)=0,

we introduce a novel penalized method, called focused generalized method of moments
(FGMM), which differs from the classical GMM (Hansen 1982) in that the working

instrument V(A) in the moment functions WIZ?:I(Yi — X!B)V(B) for FGMM also
depends irregularly on the unknown parameter g (which also depends on (F, H), see Section
3 for details). With the help of over identification, the FGMM successfully eliminates those
subset S such that S ¢ S. As we will see in Section 3, a penalization is still needed to avoid
over-fitting. This results in a novel penalized FGMM.

We would like to comment that FGMM differs from the low-dimensional techniques of
either moment selection (Andrews 1999, Andrews and Lu 2001) or shrinkage GMM (Liao
2013) in dealing with mis-specifications of moment conditions and dimension reductions.
The existing methods in the literature on GMM moment selections cannot handle high-
dimensional models. Recent literature on the instrumental variable method for high-
dimensional models can be found in, e.g., Belloni et al. (2012), Caner and Fan (2012),
Garcia (2011). In these papers, the endogenous variables are in low dimensions. More
closely related work is by Gautier and Tsybakov (2011), who solved a constrained
minimization as an extension of Dantzig selector. Our paper, in contrast, achieves the oracle

T
3The compatibility of (1.6) requires very stringent conditions. If EF§X§ are invertible, then a necessary condition for (1.6) to have

7\—1 T\—1
a common solution is that (EF§X§) E(YFS):(EHS XS) E(YHg ) which does not hold in general when F # H.
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property via a penalized GMM. Also, we study a more general conditional moment
restricted model that allows nonlinear models.

The remainder of this paper is as follows: Section 2 gives a necessary condition for a general
penalized regression to achieve the oracle property. We also show that in the presence of
endogenous regressors, the penalized least squares method is inconsistent. Sections 3
constructs a penalized FGMM, and discusses the rationale of our construction. Section 4
shows the oracle property of FGMM. Section 5 discusses the global optimization. Section 6
focuses on the semi-parametric efficient estimation after variable selection. Section 7
discusses numerical implementations. We present simulation results in Section 8. Finally,
Section 9 concludes. Proofs are given in the appendix.

Throughout the paper, let Amin(A) and Amax(A) be the smallest and largest eigenvalues of a
square matrix A. We denote by [|Allg, [|JAll and ||Al|» as the Frobenius, operator and element-
wise norms of a matrix A respectively, defined respectively as [|Al|e = trY/2(AT A),

|A[|=AY2 (AT A), and [|All5 = max;j [|IAjjll. For two sequences a, and by, write a, < by,

max

(equivalently, by, > ay,) if a, = o(by). Moreover, |8 denotes the number of nonzero

components of a vector A. Finally, P, (t)and P, (¢) denote the first and second derivatives of
a penalty function Py (t), if exist.

2. Necessary Condition for Variable Selection Consistency

2.1. Penalized regression and necessary condition

Let s denote the dimension of the true vector of nonzero coefficients fs. The sparse
structure assumes that s is small compared to the sample size. A penalized regression
problem, in general, takes a form of:

p
ﬁrfé]léf})Ln(B)+ZPn(|ﬂj D’

Jj=1

where Py(+) denotes a penalty function. There are relatively less attentions to the necessary
conditions for the penalized estimator to achieve the oracle property. Zhao and Yu (2006)
derived an almost necessary condition for the sign consistency, which is similar to that of
Zou (2006) for the least squares loss with Lasso penalty. To the authors' best knowledge, so
far there has been no necessary condition on the loss function for the selection consistency
in the high-dimensional framework. Such a necessary condition is important, because it
provides us a way to justify whether a specific loss function can result in a consistent
variable selection.

Theorem 2.1 (Necessary Condition)—Suppose:

i. Ln(P) istwice differentiable, and

Ann Stat. Author manuscript; available in PMC 2015 January 08.
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Ln(Bo) | _
5% | 2mes; |
ii. Thereisalocal minimizerﬂ; (ﬂSA,/%\,A)T of
p

Jj=1

such that P(B = 0) — 1, and Vs |- Rl = op(1).

iil. The penalty satisfies: Py(-) = 0, P(0) = 0, P,(t) is non-increasing when t € (0, u)

for some u >0, and lim,, _oolim,_o+ P, (t)=0. Then for any I <p,

‘ 9Ln(By)

95

—P0. (2.1

The implication (2.1) is fundamentally different from the “irrepresentable condition” in
Zhao and Yu (2006) and that of Zou (2006). It imposes a restriction on the loss function
Ln(-), whereas the “irrepresentable condition” is derived under the least squares loss and

E(eX) = 0. For the least squares, (2.1) reduces to either n_IZ:;lgiXil:‘)p(l) or EeX; =0,
which requires a exogenous relationship between ¢and X. In contrast, the irrepresentable
condition requires a type of relationship between important and unimportant regressors and
is specific to Lasso. It also differs from the Karush-Kuhn-Tucker (KKT) condition (e.g., Fan
and Lv 2011) in that it is about the gradient vector evaluated at the true parameters rather
than at the local minimizer.

The conditions on the penalty function in condition (iii) are very general, and are satisfied
by a large class of popular penalties, such as Lasso (Tibshirani 1996), SCAD (Fan and Li
2001) and MCP (Zhang 2010), as long as their tuning parameter A, — 0. Hence this theorem
should be understood as a necessary condition imposed on the loss function instead of the
penalty.

2.2. Inconsistency of least squares with endogeneity

As an application of Theorem 2.1, consider a linear model:

v=X"By+e=XIB +e, (22

where we may not have E(eX) = 0.

The conventional penalized least squares (PLS) problem is defined as:
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n P
smin > (%; - XT8)"+ Y P13
=1

Jj=1

In the simpler case when s, the number of nonzero components of £, is bounded, it can be
shown that if there exist some regressors correlated with the regression error ¢, the PLS does
not achieve the variable selection consistency. This is because (2.1) does not hold for the
least squares loss function. Hence without the possibly ad-hoc exogeneity assumption, PLS
would not work any more, as more formally stated below.

Theorem 2.2 (Inconsistency of PLS)—Suppose the data are i.i.d., s = O(1), and X has
at least one endogenous component, that is, there is | such that |E(X,€)| > ¢ for some ¢ > 0.

Assume that £ X' < oo, E&* < 0o, and Py, (t) satisfies the conditions in Theorem 2.1. If

~ ~ ~7. T
Bz(ﬁf, 62) , corresponding to the coefficients of (Xs, Xy), is a local minimizer of
1< T a2 P
—> (Vi =X7B)+>_Pa(l55]),
i=1 j=1

then either ||ﬂ5~—ﬂ05 || = 0p(2), or lim supp P(ﬁ{z 0)<1.

The index | in the condition of the above theorem does not have to be an index of an
important regressor. Hence the consistency for penalized least squares will fail even if the
endogeneity is only present on the unimportant regressors.

We conduct a simple simulated experiment to illustrate the impact of endogeneity on the
variable selection. Consider

Y=XTBy+e, e~N(0,1),
,8052(5, —4,7,—-2,1.5); Boj=0, for6 < j < p.
X;=Z;forj <5, X;=(Z;+5)(1+¢€), for6 < j < p.
Z~Ny(0,3"), independent ofe, with (Z)i_j=0.5li_j|.

In the design, the unimportant regressors are endogenous. The penalized least squares (PLS)
with SCAD-penalty was used for variable selection. The A's in the table represent the tuning
parameter used in the SCAD-penalty. The results are based on the estimated (B:, Bi)T,
obtained from minimizing PLS and FGMM loss functions respectively (we shall discuss the
construction of FGMM loss function and its numerical minimization in detail subsequently).
Here ﬂsﬂand ﬂNA represent the estimators for coefficients of important and unimportant
regressors respectively.

From Table 1, PLS selects many unimportant regressors (FP). In contrast, the penalized
FGMM performs well in both selecting the important regressors and eliminating the

Ann Stat. Author manuscript; available in PMC 2015 January 08.
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unimportant ones. Yet, the larger MSEg of ﬂgfby FGMM is due to the moment conditions
used in the estimate. This can be improved further in Section 6. Also, when endogeneity is
present on the important regressors, PLS estimator will have larger bias (see additional
simulation results in Section 8.)

3. Focused GMM

3.1. Definition

Because of the presence of endogenous regressors, we introduce an instrumental variable
(V) regression model. Consider a more general nonlinear model:

E[g(Y,XB,.)[W]=0, @.1)

where Y stands for the dependent variable; g :R x R — R is a known function. For
simplicity, we require g be one-dimensional, and should be thought of as a possibly
nonlinear residual function. Our result can be naturally extended to a multi-dimensional g
function. Here W is a vector of observed random variables, known as instrumental variables.

Model (3.1) is called a conditional moment restricted model, which has been extensively
studied in the literature, e.g., Newey (1993), Donald et al. (2009), Kitamura et al (2004). The
high-dimensional model is also closely related to the semi/nonparametric model estimated
by sieves with a growing sieve dimension, e.g., Ai and Chen (2003). Recently van de Geer
(2008) and Fan and Lv (2011) considered generalized linear models without endogeneity.
Some interesting examples of the generalized linear model that fit into (3.1) are:

» linear regression, g(ty, tp) =t — ty;
« logit model, g(ty, tp) = t1 — exp(t2)/(1 + exp(t));

e probit model, g(t, tp) = t; — ®(ty) where &(:) denotes the standard normal
cumulative distribution function.

Let (f3, ..., fp) and (hy,..., hp) be two different sets of transformations of W, which can be
taken as a large number of series basis, e.g., B-splines, Fourier series, polynomials (see
Chen 2007 for discussions of the choice of sieve functions). Here each f; and h; are scalar
functions. Write F = (fy (W), ..., f,(W))T, and H = (hy(W),..., hy(W))T. The conditional
moment restriction (3.1) then implies that

E[g(Y, XEBOS)FS]:(L andE[g(Y, XEBOS)HS]:Ov (3-2)

where Fg and Hg are the subvectors of F and H whose supports are on the oracle set S = {j <
P : foj # 0}. In particular, when all the components of Xs are known to be exogenous, we
can take F = X and H = X2 (the vector of squares of X taken coordinately), or H = cos(X) +
1if X is a binary variable. A typical estimator based on moment conditions like (3.2) can be
obtained via the generalized method of moments (GMM, Hansen 1982). However, in the
problem considered here, (3.2) cannot be used directly to construct the GMM criterion
function, because the identities of Xg are unknown.

Ann Stat. Author manuscript; available in PMC 2015 January 08.
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Remark 3.1—O0ne seemingly working solution is to define V as a vector of
transformations of W, for instance V = F, and employ GMM to the moment condition
E[g(Y, XT &)V] = 0. However, one has to take dim(V) = dim(B) = p to guarantee that the
GMM criterion function has a unique minimizer (in the linear model for instance). Due to p
> n, the dimension of V is too large, and the sample analogue of the GMM criterion
function may not converge to its population version due to the accumulation of high-
dimensional estimation errors.

Let us introduce some additional notation. For any < RP/{0},andi =1, ..., n, definer = |
Po-dimensional vectors

Fi(8) = (f|1(Wi),..., f|r(Wi))T and H;(h) = (h|l(Wi),..., h|r(Wi))T, where (14, ..., I;) are the
indices of nonzero components of 8. For example, if p =3 and #= (-1, 0, 2)T, then F;() =
(fL(W3), f3(W3))T, and Hi(8) = (ha(W;), ha(W;))T, i <n.

Our focused GMM (FGMM) loss function is defined as

2
+w;o

n

P
Lycaa(B)=) 15,40 {wjl HZQ(K" X7 B)f;(W;)
j=1

2
1 n
—Zg(Yi,XiTﬁ)hj(Wi)] , (33)
=1 ni:l
where wj; and wj, are given weights. For example, we will take w;,=1/var(f;(W)) and
wjo=1/var(h;(W))to standardize the scale (here ;.. represents the sample variance).
Writing in the matrix form, for Vi(8) = (Fi(6".H i(")T,

n T n
Lycam (B)= %ng,x?mvi(ﬂ)} J(B) [%ng,xmvxm ,

=1

where J() = diag{w;1, ..., W} 1, Wi;2, .., W|r2}.4

Unlike the traditional GMM, the “working instrumental variables” V() depend irregularly
on the unknown B. As to be further explained, this ensures the dimension reduction, and
allows to focus only on the equations with the 1V whose support is on the oracle space, and
is therefore called the focused GMM or FGMM for short.

We then define the FGMM estimator by minimizing the following criterion function:

P
Qe (B)=Lggun (5)+an(|5g D (3.4)

=1

4For technical reasons we use a diagonal weight matrix and it is likely non-optimal. However, it does not affect the variable selection
consistency in this step.
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Sufficient conditions on the penalty function Py(|4) for the oracle property will be presented
in Section 4. Penalization is needed because otherwise small coefficients in front of
unimportant variables would be still kept in minimizing Lrgmm (8)- As to become clearer in
Section 6, the FGMM focuses on the model selection and estimation consistency without
paying much effort to the efficient estimation of fs.

3.2. Rationales behind the construction of FGMM

3.2.1. Inclusion of V(B)—We construct the FGMM criterion function using

A natural question arises: why not just use one set of 1V's so that V(8) = F(5)? We now
explain the rationale behind the inclusion of the second set of instruments H(#). To simplify
notation, let Fj; = fj(Wj) and Hjj = hj(W;) for j<p andi<n. Then F; = (Fjy,..., Fjp) and Hj =
(Hiz,.--, Hip). Also write Fj = f; (W) and H;j = h; (W) for j<p.

Let us consider a linear regression model (2.2) as an example. If H(#) were not included and
V(p) = F(H) had been used, the GMM loss function would have been constructed as

n 2
L(B)=I -3 0 - XTBF(B)]

i=1

(3.5)

where for the simplicity of illustration, J(f) is taken as an identity matrix. We also use the

Lo-penalty Pn(|4) = )«nl(lﬁ|¢0) for illustration. Suppose that the true ﬂoz(ﬁg;, 0,... ,O)T

where only the first s components are nonzero and that s > 1. If we, however, restrict
ourselves to 4, = (0, ..., 0, ), the criterion function now becomes

n 2
1
QFGMM (ﬁp): EZ(Y?. - Xz’pﬁp)Fip +An-
i=1

It is easy to see its minimum is just A,. On the other hand, if we optimize Qggmm On the
T
)

oracle space B8=(82,0), then

mqu"l QFCMM (5) > S)\n.
B=(B3,0)" By #0

As a result, it is inconsistent for variable selection.

The use of Ly-penalty is not essential in the above illustration. The problem is still present if
the L1-penalty is used, and is not merely due to the biasedness of L1-penalty. For instance,

Ann Stat. Author manuscript; available in PMC 2015 January 08.
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recall that for the SCAD penalty with hyper parameter (a, 4y), Pn(:) is hon-decreasing, and

b, (f)—( )/\2 when t > aly. Given that minjes|fj>> A,

(a +1))\23.

QFGMM(IBO >ZP (|/60]D>5P mln|ﬂ0]‘ 9 n

JjeSs

On the other hand, Qv (Bp)=Pu((5,]) < 5 ))\2 which is strictly less than
Qramm(B)- So the problem is still present when an asymptotically unbiased penalty (e.g.,
SCAD, MCP) is used.

Including an additional term H(p) in V() can overcome this problem. For example, if we
still restrict to 4, = (0, ..., /&) but include an additional but different IV Hjp, the criterion
function then becomes, for the Ly penalty:

2
+

2
1 n
—> (Vi = Xipp) Hip | +An.

i=1

S

QFGI\/H\l

Z (Vi — XipBp) F

In general, the first two terms cannot achieve op(1) simultaneously as long as the two sets of
transformations {fj(-)} and {hj()} are fixed differently. so long as n is large and
(EX,F,) "E(YF,) # (EX,H,) 'E(YH,). (36)
As aresult, Qegmm(B) is bounded away from zero with probability approaching one.
To better understand the behavior of Qrgmm (B), it is more convenient to look at the
population analogues of the loss function. Because the number of equations in
E[(Y - X"B)F(8)]=0and E[(Y - X"B)H(B)]=0 (37)

is twice as many as the number of unknowns (nonzero components in f), if we denote S as
the support of 4, then (3.7) has a solution only when

—1 —1 ~
(EFng) E(YFg):(EHéxg) E(YH_), which does not hold in general unless S =S,
the index set of the true nonzero coefficients. Hence it is natural for (3.7) to have a unique
solution f= f. As a result, if we define

G(B)=|E(Y - XTB)F(B)|*+|E(Y — X"B)H(B)|’,
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the population version of Lrgpmm, then as long as Sis not close to £, G should be bounded
away from zero. Therefore, it is reasonable for us to assume that for any 6> 0, there is {6)
> 0 such that

inf G 8).
18— Bo L >5,820 (B)>709)- (34

On the other hand, E(s|W)=E(Y — X’ 3, .[W)=0implies G(&) = 0.

0s

Our FGMM loss function is essentially a sample version of G(f), so minimizing Legmm ()
forces the estimator to be close to £, but small coefficients in front of unimportant but
exogenous regressors may still be allowed. Hence a concave penalty function is added to

Lrgmm to define Qrgmm-

3.2.2. Indicator function—Another question readers may ask is that why not define
Lrgmm (D) to be, for some weight matrix J,

T
1 1
;Zg(Yi,X?ﬂ)Vz—] J[;Zg(m,X?ﬁm . (39
i=1 i=1

that is, why not replace the irregular f-dependent V(f) with V, and use the entire 2p-
dimensional V = (FT, HT)T as the I\V? This is equivalent to the question why the indicator
function in (3.3) cannot be dropped.

The indicator function is used to prevent the accumulation of estimation errors under the
high dimensionality. To see this, rewrite (3.9) to be:

2

J=1

2 2
1 1 n ‘ T . ; l n ‘ . )
VEAH'(.FJ) (EZIQ(Y;’XZ B)EJ) +V€Lr(H) (nZEZI.g(}/Z?Xz ﬁ)HZ]) .

= J

1
Since dim(V;) = 2p > n, even if each individual term evaluated at 8= /% is O» (;) the
sum of p terms would become stochastically unbounded. In general, (3.9) does not converge
to its population analogue when p > n because the accumulation of high-dimensional

estimation errors would have a non-negligible effect.

In contrast, the indicator function effectively reduces the dimension and prevents the
accumulation of estimation errors. Once the indicator function is included, the proposed
FGMM loss function evaluated at £ becomes:

n 2
<%29(Yi7 XiTﬁO)Hij> )

i=1

1 (1 S|
Zm(;;Q(Yi,Xz—T@])Fm‘) +V€Lr(H4)

jES J J

Ann Stat. Author manuscript; available in PMC 2015 January 08.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Fan and Liao Page 13

which is small because E[g(Y, XTf)Fs] = E[g(Y, XTf)Hs] = 0 and that there are only s = |
S|p terms in the summation.

Recently, there has been growing literature on the shrinkage GMM, e.g., Caner (2009),
Caner and Zhang (2013), Liao (2013), etc, regarding estimation and variable selection based
on a set of moment conditions like (3.2). The model considered by these authors is restricted
to either a low-dimensional parameter space or a low-dimensional vector of moment
conditions, where there is no such a problem of error accumulations.

4. Oracle Property of FGMM

FGMM involves a non-smooth loss function. In the appendix, we develop a general
asymptotic theory for high-dimensional models to accommodate the non-smooth loss
function.

Our first assumption defines the penalty function we use. Consider a similar class of folded
concave penalty functions as that in Fan and Li (2001).

Forany B= (By,.... A)T € RS, and |4 # 0, j = 1,..., s, define

P, (ts) — Pt
7(B)=lim supmax sup — M,
o+ J<s t<t ta—1 4.1

(tlatQ) € (‘ﬁj| -6 |/8j‘+6)

which is max <, — P, (|3;]) if the second derivative of Py is continuous. Let
1. ,
dn:§ min{|Bo;|:fo; # 0,j=1,...,p}

represent the strength of signals.

Assumption 4.1

The penalty function Py(t) : [0, co) — R satisfies:
i. Pp0)=0
i P (t) is concave, non-decreasing on [0, oo), and has a continuous derivative Pr/l (t)
whent> 0.
. /5P, (d,)=0(d,)
iv. There exists ¢ > 0 such that supgeg(gys,cdn) A0 = 0(1).

These conditions are standard. The concavity of P(-) implies that 7(8) = 0 for all € RS, It
is straightforward to check that with properly chosen tuning parameters, the Lq penalty (for g
< 1), hard-thresholding (Antoniadis 1996), SCAD (Fan and Li 2001), and MCP (Zhang
2010) all satisfy these conditions. As thoroughly discussed by Fan and Li (2001), a penalty
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function that is desirable for achieving the oracle properties should result in an estimator
with three properties: unbiasedness, sparsity and continuity (see Fan and Li 2001 for
details). These properties motivate the needs of using a folded concave penalty.

The following assumptions are further imposed. Recall that for j < p, Fj = fj (W) and H; = h;
(W).

Assumption 4.2
i.  The true parameter £ is uniquely identified by E(g(Y, XT &)|W) = 0.

ii.  (Yq, Xg),-.., (Yn, Xp) are independent and identically distributed.

Remark 4.1

Condition (i) above is standard in the GMM literature (e.g., Newey 1993, Donald et al.
2009, Kitamura et al. 2004). This condition is closely related to the “over-identifying
restriction”, and ensures that we can always find two sets of transformations F and H such
that the equations in (3.2) are uniquely satisfied by f = fs. In linear models, this is a
reasonable assumption, as discussed in Section 3.2. In nonlinear models, however, requiring
the identifiability from either E(g(Y, XT/)|W) = 0 or (3.2) may be restrictive. Indeed,
Dominguez and Lobato 2004) showed that the identification condition in (i) may depend on
the marginal distributions of W. Furthermore, in nonparametric regression problems as in
Bickel et al. (2009) and Ai and Chen (2003), the sufficient condition of Condition (i) is even
more complicated, which also depends on the conditional distribution of X|W, and is known
to be statistically untestable (see Newey and Powell 2003, Canay et al 2013).

Assumption 4.3

There exist by, by, b3 >0 and rq, rp, r3 > 0 such that for any t > 0,
i, P(lg(Y, XT/)| > t) < exp(=(t/by)"),
iil.  maxi<p P(IF| > t) < exp(=(t/b2)"2), max<p P(IH) > t) < exp(—(t/b3)"3).

iii. minjeg var(g(Y, X A)Fj) and minjes var(g(Y, X" A)Hj) are bounded away from
zero.

iv. var(Fj) and var(H;) are bounded away from both zero and infinity uniformly in j =
1,...,pandp=1

We will assume g(-,-) to be twice differentiable, and in the following assumptions, let

ag(t1,t2) 0%g(t1,t2) F
m(tlatQ):thaQ(tlatQ):Ttgavsz HZ .

Assumption 4.4

i. g(,) istwice differentiable.

il supyy, tp IM(ty, t2)] < oo, and supy, 1, [q(ty, t2)| <co.
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It is straightforward to verify Assumption 4.4 for linear, logistic and probit regression
models.

Assumption 4.5
There exist C; > 0 and C, > 0 such that

T
Amax[ (Em(Y,XTB )X, VI)(Em(Y, Xgﬁos)xsvg)chl.
Amin[ (Em(Y, XIB, )X V) (Em(Y,XIB, )X, VT) ]<Cy;

0s

These conditions require that the instrument Vg be not weak, that is, Vg should not be
weakly correlated with the important regressors. In the generalized linear model,
Assumption 4.5 is satisfied if proper conditions on the design matrices are imposed. For
example, in the linear regression model and probit model, we assume the eigenvalues of

(EX VT (EX VD) and (Eo(XTBy)X, V) (E¢(XTBy)X, VT)" are bounded away
from both zero and infinity respectively, where ¢(:) is the standard normal density function.
Conditions in the same spirit are also assumed in, e.g., Bradic et al. (2011), and Fan and Lv
(2011).

Define

YT=var(g(Y, XZBOS)VS). (4.2)

Assumption 4.6

i. Forsomec>0, Anin(Y) >c.

5P, (dy)-+s/(logp) /n+ 5 (logs) /n=0( P, (0")), P (d,)5?=0(1), and

s/ (logp)/n=0(d,).

/

W P (dn)=0(1/ v/ns) and sups- s j<cyarXB=0((s log )12

iv.
max;.s HEm(y,XT,BO)XjVSH \V (logs)/n:o(Pn(0+)),

This assumption imposes a further condition jointly on the penalty, the strength of the
minimal signal and the number of important regressors. Condition (i) is needed for the
asymptotic normality of the estimated nonzero coefficients. When either SCAD or MCP is
used as the penalty function with a tuning parameter A, £ "(dn)zsupl\ﬁfﬁosHgdn/4n(6):0
and P;(()Jr):)\n when A, = o(dy). Thus Conditions (ii)-(iv) in the assumption are satisfied as
long as s \/logp/n+s®logs/n < A, < dn. This requires the signal d,, be strong and s be

small compared to n. Such a condition is needed to achieve the variable selection
consistency.
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Under the foregoing regularity conditions, we can show the oracle property of a local
minimizer of Qegmm (3.4).

Theorem 4.1
Suppose s3 log p = o(n). Under Assumptions 4.1-4.6, there exists a local minimizer
N A A T ~ - “
6:([3:, Bz) of Qremm(P) with fs and Sy being sub-vectors of fwhose coordinates are in

S and S° respectively, such that:

ﬁaTF71/2 Z(Bg _ 1805)_>dN(07 1)’

for any unit vector a € RS, |laf = 1, where A=Em(Y, X" )X, VI,

T=4AJ(B,)TI(By)AT, and Y =2AJ3,)A".

A

lim P(8,=0)=1.

In addition, the local minimizerﬂfs strict with probability at least 1 — §for an
arbitrarily small 6> 0 and all large n.

iii. LetS={j<p :,q;t 0}. Then

P(5=S) — 1.

Remark 4.2
As was shown in an earlier version of this paper Fan and Liao (2012), when it is known that
E[g(Y, XT40)|Xs] = 0 but likely E[g(Y, XT4)|X] # 0, we can take V = (FT, HNT to be
transformations of X that satisfy Assumptions 4.3-4.6. In this way, we do not need an extra
instrumental variable W, and Theorem 4.1 still goes through, while the traditional methods
(e.g., penalized least squares in the linear model) can still fail as shown by Theorem 2.2. In
the high-dimensional linear model, compared to the classical assumption: E(gX) = 0, our
condition E(g Xg) = 0 is relatively easier to validate as Xs is a low-dimensional vector.

Remark 4.3

We now explain our required lower bound on the signal s \/logp/n=0(d,). When a

. r
penalized regression is used, which takes the form mlﬂﬁLn(5)+Zj21Pn(|5j|), it is

required that if L, (f) is differentiable, max ¢ |0L,(8)/98; \:o(P,,'L(OJF)). This often leads
to a requirement of the lower bound of d,,. Therefore, such a lower bound of d,, depends on
the choice of both the loss function L,(4) and the penalty. For instance, in the linear model
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when least squares with a SCAD penalty is employed, this condition is equivalent to
\/logp/n=0o(dy). It is also known that the adaptive lasso penalty requires the minimal signal

to be significantly larger than V logp/”(Huang, Ma and Zhang 2008). In our framework, the

requirement s \/logp/n=o(d,,) arises from the use of the new FGMM loss function. Such a
condition is stronger than that of the least squares loss function, which is the price paid to
achieve variable selection consistency in the presence of endogeneity. This condition is still
easy to satisfy as long as s grows slowly with n.

Remark 4.4

Similar to the “irrpresentable condition” for Lasso, the FGMM requires important and
unimportant explanatory variables not be strongly correlated. This is fulfilled by
Assumption 4.6(iv). For instance, in the linear model and Vg contains Xg as in our earlier

version, this condition implies max, ¢ || EX;X || 1/logs/n=0(\,). Strong correlation
between (Xs, Xy) is also ruled out by the identifiability condition Assumption 4.2. To
illustrate the idea, consider a case of perfect linear correlation: Xfa — ngS:O for some (a,

8 with §#0. Then, X” 8,=XT(8,, — a)+X% 8. As a result, the FGMM can be variable
selection inconsistent because £ and (fys — @, J) are observationally equivalent, violating
Assumption 4.2.

5. Global minimization

With the over identification condition, we can show that the local minimizer in Theorem 4.1
is nearly global. To this end, define an I, ball centered at & with radius &

©s={8 € R”:|3; — Boi|<é,i=1,...,p}.

Assumption 5.1 (over-identification)

For any 6> 0, there is y> 0 such that

n 2

1
lim P inf [|=Y gV, XTB)Vi(B)|| >7 ) =1.
lim_ <5eé?u{0}n§g( B)Vi(B)| “Y)

This high-level assumption is hard to avoid in high-dimensional problems. It is the empirical
counterpart of (3.8). In classical low-dimensional regression models, this assumption has
often been imposed in the econometric literature, e.g., Andrews (1999), Chernozhukov and
Hong (2003), among many others. Let us illustrate it by the following example.
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Example 5.1

Consider a linear regression model of low dimensions: E(Y — XZ[&OS |W)=0, which

implies E[(Y — X1 8, )Fs]=0and E[(Y — X” 3,.)H,]=0where p is either bounded or
slowly diverging with n. Now consider the following problem:

minG(8) = min| E(Y — X"BF@)| +|EY - X"B)H(B)|".

Once [EF§X§]_1E[FSY] # [EHSX;.F]_lE[HgY] for all index set S # S, the objective
function is then minimized to zero uniquely by g = f. Moreover, for any §> 0 thereisy >0
such that when g ¢ ©5U {0}, we have G(f) > vy > 0. Assumption 5.1 then follows from the
uniform weak law of large number: with probability approaching one, uniformly in (6 ¢ ©5

u {0},

2 2

=R = XI B S HLB)Y: - XTB)| >7/2

i=1

When p is much larger than n, the accumulation of the fluctuations from using the law of
large number is no longer negligible. It is then challenging to show that [|[E[g(Yi, X'AV(A] |

1 n
is close to| Ezizlg(Yi, X7 B)V,(8)| uniformly for high-dimensional 8s, which is why we
impose Assumption 5.1 on the empirical counterpart instead of the population.

Theorem 5.1

Assume max, P, (|6;])=0(s ). Under Assumption 5.1 and those of Theorem 4.1, the
local minimizer gin Theorem 4.1 satisfies: for any §> 0, there exists y> 0,

nh_I}OlOP (QFGMM(B)+7< inf QFGMM(B)) =1.

BeOsU{0}

The above theorem demonstrates thatﬂfs a nearly global minimizer. For SCAD and MCP

penalties, the condition maxjesP;(|ﬁgj|):o(s*1) holds when A, = o(s™1), which is satisfied
if sis not large.

Remark 5.1

We exclude the set {0} from the searching area in both Assumption 5.1 and Theorem 5.1
because we do not include the intercept in the model so X(0) = 0 by definition, and hence
Qramm(0) = 0. It is reasonable to believe that zero is not close to the true parameter, since
we assume there should be at least one important regressor in the model. On the other hand,
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if we always keep X1 = 1 to allow for an intercept, there is no need to remove {0} in either
Assumption 5.1 or the above theorem. Such a small change is not essential.

Assumption 5.1 can be slightly relaxed so that yis allowed to decay slowly at a certain rate.
The lower bound of such a rate is given by Lemma D.2 in the appendix. Moreover, Theorem
5.1 is based on an over-identification assumption, which is essentially different from the
global minimization theory in the recent high-dimensional literature, e.g., Zhang (2010),
Biihmann and van de Geer (2011, ch 9), and Zhang and Zhang (2012).

6. Semi-parametric efficiency

The results in Section 5 demonstrate that the choice of the basis functions {fj, hj}j<p forming
F and H influences the asymptotic variance of the estimator. The resulting estimator is in
general not efficient. To obtain a semi-parametric efficient estimator, one can employ a
second step post-FGMM procedure. In the linear regression, a similar idea has been used by
Belloni and Chernozhukov (2013).

After achieving the oracle properties in Theorem 4.1, we have identified the important
regressors with probability approaching one, that is,

5={j:8; # 0}, X;=(X;:j € §), P(§=S) — 1.

This reduces the problem to a low-dimensional problem. For simplicity, we restrict s = O(1).
The problem of constructing semi-parametric efficient estimator (in the sense of Newey
(1990) and Bickel et al. (1998)) in a low-dimensional model

E[g(Y,X!B,,)[W]=0

has been well studied in the literature (see, for example, Chamberlain (1987), Newey
(1993)). The optimal instrument that leads to the semi-parametric efficient estimation of fyg
is given by D(W)a(W) =2, where

T
ag(Y, X5 ,@OS)

5E W), o (W) =Blg(Y, X B,,) W),

D(W)=E(

Newey (1993) showed that the semi-parametric efficient estimator of 5 can be obtained by
GMM with the moment condition:

E[g(Y,XIB,,)c(W) > D(W)]=0. (6.1)
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In the post-FGMM procedure, we replace Xg with the selected X; obtained from the first-
step penalized FGMM. Suppose there exist consistent estimators D(W) and UEW)Z of D(W)
and o(W)2. Let us assume the true parameter |fslloo < M for a large constant M > 0. We
then estimate fys by solving

1< o T . o
Pn(BS)ZgZQ(Yi’X,iSBS)U(Wi) ‘D(W:)=0, (52)
im1

on {A : ||fosllo < M}, and the solution is assumed to be unique.

Assumption 6.1
i. Thereexist C; >0and C, > 0 so that

Ci<h 1nf a(w) < supo(w)*<Cs.
WEYX

In addition, there exist dW)z and DA(W) such that

p[(w)? — 7(w)?[=0,(1), andsup [ D(w) ~ D(w)|= 0, (1)

where yis the support of W.
T 4
E(SupHBHDOSMg(Y" X Bg) )<oo.

The consistent estimators for D(w) and o{w)? can be obtained in many ways. We present a
few examples below.

Example 6.1 (Homoskedasticity)

Suppose Y'=h(X" 3, . )-+e for some nonlinear function h(-). Then o(w)? = E(W = w) =
&2, which does not depend on w under homoskedasticity. In this case, equations (6.1) and
(6.2) do not depend on 2.

Example 6.2 (Simultaneous linear equations)

In the simultaneous linear equation model, Xg linearly depends on W as:
9(v,XTB,)=Y - XTB,, X ,=IIW+u

for some coeff|C|ent matrix II, where u is independent of W. Then D(w) = E(XS|W w) =
Iw. Let X = (X51, .. XSn) W= (W4, ..., Wp). We then estimate D(w) by Tw, where I =
(XWTWw).
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Example 6.3 (Semi-nonparametric estimation)

We can also assume a semi-parametric structure on the functional forms of D(w) and o(w)?2:
D(w)=D(w;61), U(w)2:02(w;62),

where D(-;6,) and o?(-; ) are semi-parametric functions parameterized by & and &. Then
D(w) and o{w)? are estimated using a standard semi-parametric method. More generally, we
can proceed by a pure nonparametric approach via respectively regressing

AT AT A~ 2
9g(Y, XZﬁS)/a,BS and ¢(Y, XZ,BS) on W, provided that the dimension of W is either
bounded or growing slowly with n (see Fan and Yao, 1998).

Theorem 6.1
Suppose s = O(1), Assumption 6.1 and those of Theorem 4.1 hold. Then

-1

V(B = B,s)=*N(0,[E(c(W) *D(W)D(W)T)] ),

and [E(o(W)~2D(W)D(W)N] 1 is the semi-parametric efficiency bound in Chamberlain
(1987).

7. Implementation

We now discuss the implementation for numerically minimizing the penalized FGMM
criterion function.

7.1. Smoothed FGMM

As we previously discussed, including an indicator function benefits us in dimension
reduction. However, it also makes Lrgmm unsmooth. Hence, minimizing Qegmm(8) =
Lremm(B)+Penalty is generally NP-hard.

We overcome this discontinuity problem by applying the smoothing technique as in
Horowitz (1992) and Bondell and Reich (2012), which approximates the indicator function
by a smooth kernel K : (=00,00) — R that satisfies

1. 0<K(t) <M for some finite M and all t = 0.
2. K(0)=0and limy_, K() = 1.

3. 1im supp—o0 [K'())t] = 0, and lim supjg—oo [K” ()] < cc.

F(t) - F(0)
We can set & (t)= 1-F(0) - where F(t) is a twice differentiable cumulative distribution

function. For a pre-determined small number hy, Lrgmm 1S @approximated by a continuous

function Lk (f) with the indicator replaced by K(ﬁ?/hn). The objective function of the
smoothed FGMM is given by
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As h,—07, K(ﬁf/hn) converges to I(ﬂ];to), and hence Lk(#) is simply a smoothed version of
Legmm (B). As an illustration, Figure 1 plots such a function.

Smoothing the indicator function is often seen in the literature on high-dimensional variable

(hn+1)t
selections. Recently, Bondell and Reich (2012) approximate | zo) by “Thott to obtain a
tractable non-convex optimization problem. Intuitively, we expect that the smoothed FGMM
should also achieve the variable selection consistency. Indeed, the following theorem

formally proves this claim.

Theorem 7.1—Suppose ! ~7=o(4? ) for a small constant y € (0, 1). Under the
assumptions of Theorem 4.1 there exists a local minimizer # of the smoothed FGMM Qg ()

such that, for § ={j < p:3; # 0},
P(S=S) 1.

In addition, the local minimizer ﬂAis strict with probability at least 1 — §for an arbitrarily
small §> 0 and all large n.

The asymptotic normality of the estimated nonzero coefficients can be established very
similarly to that of Theorem 4.1, which is omitted for brevity.

7.2. Coordinate descent algorithm

We employ the iterative coordinate algorithm for the smoothed FGMM minimization, which
was used by Fu (1998), Daubechies et al. (2004), Fan and Lv (2011), etc. The iterative
coordinate algorithm minimizes one coordinate of fat a time, with other coordinates kept
fixed at their values obtained from previous steps, and successively updates each coordinate.
The penalty function can be approximated by local linear approximation as in Zou and L.i
(2008).

Specifically, we run the regular penalized least squares to obtain an initial value, from which
we start the iterative coordinate algorithm for the smoothed FGMM. Suppose A" is obtained

atstep l. Fork € {1, ..., p}, denote by ﬁgl,)k) a (p — 1)-dimensional vector consisting of all
the components of (A but 5. Write (5?,),6), t) as the p-dimensional vector that replaces 3.

with t. The minimization with respect to t while keeping ﬁgljk) fixed is then a univariate
minimization problem, which is not difficult to implement. To speed up the convergence, we

can also use the second order approximation of L ([321_)k,)> t) along the kth component at ﬁ,(f):

Ann Stat. Author manuscript; available in PMC 2015 January 08.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Fan and Liao Page 23

oL, (BY) Dy, 1L (BY)

LBy &)~ LB+ == =50+ 4

where L (ﬁgl,)k), t)is a quadratic function of t. We solve for

t'= arg mgnik(ﬁggk)a t)""P?;(‘/BI(cl) |)|t|7 (7.2)

which admits an explicit analytical solution, and keep the remaining components at step .

P l
Accept t* as an updated kth component of A only if L« (5(1))+Zj:1pn(\5§. D) strictly
decreases. The coordinate descent algorithm runs as follows.

1. Setl=1. Initialize AV = B*, where g solves

) 1 n T 9 P
ﬂrréﬁ;aﬂ{g(mxi B +j2:jlpn(|ﬂ]|>

using the coordinate descent algorithm as in Fan and Lv (2011).

2. Successively fork =1, ..., p, let t* be the minimizer of

minL, (8, )+ P, (|8 [t

Update 5. as t* if

Lo (B )+ Pallt <L (BY)+Pa(8)).

Otherwise set 3= ") Increase | by one when k = p.
3. Repeat Step 2 until | Q(A")-Qk (A1*D)| < &, for a pre-determined small «.

When the second order approximation (7.1) is combined with SCAD in Step 2, the local
linear approximation of SCAD is not needed. As demonstrated in Fan and Li (2001), when
P (1) is defined using SCAD, the penalized optimization of the form

. 1 . .
mmﬁemi(z — 8)*4+AP,(|8|) has an analytical solution.

We can show that the evaluated objective values {Qx(A")}1>1 is a bounded Cauchy
sequence. Hence for an arbitrarily small £ > 0, the above algorithm stops after finitely many
steps. Let M(B) denote the map defined by the algorithm from A to A*1. We define a
stationary point of the function Qk(#) to be any point fat which the gradient vector of Qx(H
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is zero. Similar to the local linear approximation of Zou and Li (2008), we have the
following result regarding the property of the algorithm.

Theorem 7.2—The sequence {Qk (AV)}»1 is a bounded non-increasing Cauchy sequence.
Hence for any arbitrarily small &> 0, the coordinate descent algorithm will stop after finitely
many iterations. In addition, if Qk (8) = Qk (M(#)) only for stationary points of Qg (') and if
B* is a limit point of the sequence {(6") |»1, then * is a stationary point of Qk (B).

Theoretical analysis of non-convex regularization in the recent decade has focused on
numerical procedures that can find local solutions (Hunter and Li 2005, Kim et al. 2008,
Brehenry and Huang 2011). Proving that the algorithm achieves a solution that possesses the
desired oracle properties is technically difficult. Our simulated results demonstrate that the
proposed algorithm indeed reaches the desired sparse estimator. Further investigation along
the lines of Zhang and Zhang (2012) and Loh and Wainwright (2013) is needed to
investigate the statistical properties of the solution to non-convex optimization problems,
which we leave as future research.

8. Monte Carlo Experiments

8.1. Endogeneity in both important and unimportant regressors

To test the performance of FGMM for variable selection, we simulate from a linear model:
Y:XT/80+€7 (ﬂ()l: e 5505):(57 _4a 77 _27 15)5/80_]:07 for 6 S j S p

with p = 50 or 200. Regressors are classified as being exogenous (independent of &) and
endogenous. For each component of X, we write X;=X75 if X; is endogenous, and X;=X7 if
Xj is exogenous, and X5 and X7 are generated according to:

X5 =(Fyt Hy 1) 3e+1), Xy =Fy+ Hyvus,

where {z, uy, ..., Up} are independent N(0, 1). Here F = (Fy, ..., Fp)Tand H = (Hy, ..., Hp)T
are the transformations (to be specified later) of a three-dimensional instrumental variable
W = (Wy, Wy, W3)T ~ N3(0, I3). There are m endogenous variables (X1, X2, X3, Xg, ...,
Xo4m)T, with m = 10 or 50. Hence three of the important regressors (X1, Xo, X3) are
endogenous while two are exogenous (X4, Xsg).

We apply the Fourier basis as the working instruments:

F=/2{sin(jnWy)+sin(jmWs)+sin(j7W3):j < p},
H= \/2{cos(jnW1)+cos(jnTWa)+cos(j7W3):j < p}.
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The data contain n = 100 i.i.d. copies of (Y, X, F, H). PLS and FGMM are carried out
separately for comparison. In our simulation we use SCAD with pre-determined tuning
parameters of A as the penalty function. The logistic cumulative distribution function with h
= 0.1 is used for smoothing:

2 2
Fo-sre () (7)1

There are 100 replications per experiment. Four performance measures are used to compare
the methods. The first measure is the mean standard error (MSEg) of the important
regressors, determined by the average of ||ﬂ5A— Sos|| over the 100 replications, where S = {1,
..., 5}. The second measure is the average of the MSE of unimportant regressors, denoted by
MSEy. The third measure is the number of correctly selected non-zero coefficients, that is,
the true positive (TP), and finally, the fourth measure is the number of incorrectly selected
coefficients, the false positive (FP). In addition, the standard error over the 100 replications
of each measure is also reported. In each simulation, we initiate #9 = (0,..., 0)T, and run a
penalized least squares (SCAD(L)) for A = 0.5 to obtain the initial value for the FGMM
procedure. The results of the simulation are summarized in Table 2, which compares the
performance measures of PLS and FGMM.

PLS has non-negligible false positives (FP). The average FP decreases as the magnitude of
the penalty parameter increases, however, with a relatively large MSEg for the estimated
nonzero coefficients, and the FP rate is still large compared to that of FGMM. The PLS also
misses some important regressors for larger A. It is worth noting that the larger MSEg for
PLS is due to the bias of the least squares estimation in the presence of endogeneity. In
contrast, FGMM performs well in both selecting the important regressors, and in correctly
eliminating the unimportant regressors. The average MSEg of FGMM is significantly less
than that of PLS since the instrumental variable estimation is applied instead. In addition,
after the regressors are selected by the FGMM, the post-FGMM further reduces the mean
squared error of the estimators.

8.2. Endogeneity only in unimportant regressors

Consider a similar linear model but only the unimportant regressors are endogenous and all
the important regressors are exogenous, as designed in Section 2.2, so the true model is as

the usual case without endogeneity. In this case, we apply (F, H) = (X, X?) as the working

instruments for FGMM with SCAD(A) penalty, and need only data X and Y = (Yq, ..., Yp).
We still compare the FGMM procedure with PLS. The results are reported in Table 3.

It is clearly seen that even though only the unimportant regressors are endogenous, however,
the PLS still does not seem to select the true model correctly. This illustrates the variable
selection inconsistency for PLS even when the true model has no endogeneity. In contrast,
the penalized FGMM still performs relatively well.
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8.3. Weak minimal signals

To study the effect on variable selection when the strength of the minimal signal is weak, we
run another set of simulations with the same data generating process as in Design 1 but we
change 4, = -0.5 and /5 = 0.1, and keep all the remaining parameters the same as before.
The minimal nonzero signal becomes || = 0.1. Three of the important regressors are
endogenous as in Design 1. Table 4 indicates that the minimal signal is so small that it is not
easily distinguishable from the zero coefficients.

9. Conclusion and Discussion

Endogeneity can arise easily in the high-dimensional regression due to a large pool of
regressors, which causes the inconsistency of the penalized least-squares methods and
possible false scientific discoveries. Based on the over-identification assumption and valid
instrumental variables, we propose to penalize an FGMM loss function. It is shown that
FGMM possesses the oracle property, and the estimator is also a nearly global minimizer.

We would like to point out that this paper focuses on correctly specified sparse models, and
the achieved results are “pointwise” for the true model. An important issue is the uniform
inference where the sparse model may be locally misspecified. While the oracle property is
of fundamental importance for high-dimensional methods in many scientific applications, it
may not enable us to make valid inference about the coefficients uniformly across a large
class of models (Leeb and Potscher 2008, Belloni et al. 2013)°. Therefore, the “post-double-
selection” method with imperfect model selection recently proposed by Belloni et al. (2013)
is important for making uniform inference. Research along that line under high-dimensional
endogeneity is important and we shall leave it for the future agenda.

Finally, as discussed in Bickel et al. (2009) and van de Geer (2008), high-dimensional
regression problems can be thought of as an approximation to a nonparametric regression
problem with a “dictionary” of functions or growing number of sieves. Then in the presence
of endogenous regressors, model (3.1) is closely related to the non-parametric conditional
moment restricted model considered by, e.g., Newey and Powell (2003), Ai and Chen
(2003), and Chen and Pouzo (2008). While the penalization in the latter literature is similar
to ours, it plays a different role and is introduced for different purposes. It will be interesting
to find the underlying relationships between the two models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Proofs for Section 2

Throughout the Appendix, C will denote a generic positive constant that may be different in
different uses. Let sgn(:) denote the sign function.

A.l. Proof of Theorem 2.1

Proof. When ﬂiAs a local minimizer of Qn(f), by the Karush-Kuhn-Tucker (KKT) condition,
vl<p,

9L, (B)
9B

+v;=0,

where o,=P. (|3,))sgn(B,) if A #0; v, € [~ P.(07), P.(0")]if 4 = 0, and we denote

P, (0")=lim,_+ P, (t). By the monotonicity of P, (¢), we have |9L,,(3)/83| < P, (0"). By
Taylor expansion and the Cauchy—Schwarz inequality, there is Son the segment joining #
and /& so that, on the eventﬁ\, 0, (5~ foj=0forallj&S)

OLn(B) _ 9Lu(Bo) | x~"Lu(B) 9 L.(B)
By N e ’_’Z 8666 (/Bj_ﬁOJ)‘_’j%;g 8,885 (/8 /BOJ)

The Cauchy-Schwarz inequality then implies that max)<p |6Ln(,b)7aﬁ| = dLp(B&)/oA| is
bounded by

%L,(B)
03,08;

118, = Bysll, <

i T V1B, = B,

lJ<P

By our assumption, w/s||ﬂ3A— Bosll = 0p(1). Because P(ﬂNAz 0)—1,

OLn(B)  9Ln(By)
o3 0B

max

PQ.
nes — (A1)

This yields that OLn(5p)/0/4 = 0p(1).

A.2. Proof of Theorem 2.2

Proof. Let { X}, be the i.i.d. data of X; where X is an endogenous regressor. For the

1 n
penalized LS, Ln(B)=EZi:1(Yi - XiTﬁ)2. Under the theorem assumptions, by the strong
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2 n
law of large number 95, Ly,(By)= — ;Zileu (Y; — XTBy) — —2E(X;e) almost surely,

which does not satisfy (2.1) of Theorem 2.1.

Appendix B: General Penalized Regressions

We present some general results for the oracle properties of penalized regressions. These
results will be employed to prove the oracle properties for the proposed FGMM. Consider a
penalized regression of the form:

P

%%)Ln(ﬁ)+;Pn(|IBJ |)7

Lemma B.1
Under Assumption 4.1, if (8= (f,..., )T is such that MaXiss |/ = fos,jl < dn, then

S

> Pa(18i]) = Pul(Bos, DI < 118 = Byg | V5P (dn).

=1

Proof. By Taylor's expansion, there exists #* ( 3; # 0 for each j) lying on the line segment
joining Band fs, such that

S (Pall5)=Pul18ss, N=(Pa(5i)sn(57). ... Po(18: )sen(5) (B=B,,) < |18, | vomax P, (155

j=1

Then min{|8|:j < s} > min{|Bys, |:j < s} —max;j<s|8] — B, ;| = 2dn — dn=dp.

Since P/ is non-increasing (as Py, is concave), P, (|3;]) < P, (dy) for all j < s. Therefore

> (PallBi]) = PallBos ) < 118 = Byl V5P(dn),

In the theorems below, with S = {j : /& # 0}, define a so-called “oracle space” #'= {f <

RP: f=0if] ¢ S} Write Ln(fs, 0) = Ly() for Bz(BZ,O)T e A. Let f5=(bs1,---, is5) and

OLn(B4,0)  9Ln(B,,0) ) !

VSLn(ﬁS’ 0):< 8/851 Y 8555
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Theorem B.1 (Oracle Consistency)

Suppose Assumption 4.1 holds. In addition, suppose Ln(fs, 0) is twice differentiable with
respect to S5 in a neighborhood of fyg restricted on the subspace %, and there exists a
positive sequence a, = o(d,) such that:

i
IV s Ln (B, 0)[[=Op(an).

ii. Forany &> 0, there is C.> 0 so that for all large n,
P(Amin(VZLn(B,,,0))>Co)>1 —e. (B1)

iii. Forany >0, §> 0, and any nonnegative sequence ay, = 0(dy), there is N > 0 such
that when n > N,

P ( sup  [|V2La(B,,0) = V2La(B,5,0)[| . < 5) >l—e (B2
Hﬁsfﬂos‘lfan

. L. A o7 T
Then there exists a local minimizer 3=(3,,0) of

Qn(ﬁsaO)ZLR(BSWO)—’_ZP"(‘/BJD

jes

such that |8, — B, | =0y (an+ /5P, (dy,)). In addition, for an arbitrarily small &> 0, the
local minimizer gis strict with probability at least 1 — ¢, for all large n.

Proof. The proof is a generalization of the proof of Theorem 3 in Fan and Lv (2011). Let

kn=an+ /3P, (d,). It is our assumption that kn = 0(1). Write Q1(5%) = Qn(5s, 0), and L (/%)
= Lnh(fs, 0). In addition, write

8L,

:W(ﬁs,o)

VLl(ﬁs):%(ﬁs, 0), and V*Ly1(8,)

Define v ;= {B€ RS : || B Bosll <k, 7} for some 7> 0. Let  ~ , denote the boundary of v,
Now define an event

H,(r)={Qi(8,,)<, min_Q1(8,)}

coNG
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On the event Hy(7), by the continuity of Q4, there exists a local minimizer of Q4 inside ~ ,.

N T
Equivalently, there exists a local minimizer (BZ, 0) of Qp restricted on %:{Bz(ﬁz, O)T}

inside {ﬁ:(ﬁz, O)Tzﬁs € A;}. Therefore, it suffices to show that Ve > 0, there exists 7> 0
so that P(Hp(7)) > 1 — e for all large n, and that the local minimizer is strict with probability
arbitrarily close to one.

For any s € 0 v, which is || — fosll = ka7, there is #* lying on the segment joining fs and
Sos such that by the Taylor's expansion on Ly (&):

S

Jj=1

By Condition (i) [[VL1(fos)ll = Op(an), for any &> 0, there exists C1 > 0, so that the event Hy
satisfies P(H1) > 1 — &/4 for all large n, where

H={(B, — B,,)"VL1(B,5) = —C1[B, — B,,llan}. (83

In addition, Condition (ii) yields that there exists C.> 0 such that the following event H,
satisfies P(Hy) = 1 — &/4 for all large n, where

Hy={(B, = B,e) V' L1(B,) (B, = B, )>C:|B, = B} B4)
Define another event Hz = {|[V2L1(fos) — V2L1(8*)lIg < C./4}. Since ||fs — fosll = kn7, by

Condition (B.2) for any 7> 0, P(Hs) > 1 — &/4 for all large n. On the event H, N H3, the
following event Hy holds:

3C;
Hi={(B; = B,5) V?L1(B) (B = Bys)> =118, — BysI”}
By Lemma B.1, Zjil[Pn(Ws]» ) = Pa(1Bos, D] = = V5P, (dn)[1B, — By |l Hence for any
Ps €0 v, 0nHy N Hy,

3k, T7C,
8

Q1(8,) — Q1(B,.) > kn ( — Cian - ﬁp,xdn)) |

FOr kp=a,+ v/sP, (dy,) We have Cya,+ /5P, (d,) < (Cy+1)k,. Therefore, we can choose
7>8(Cq + 1)/(3C,) so that Q1(fs)—Q1(fys) = 0 uniformly for < 0 ~ . Thus for all large n,
when 7> 8(Cq + 1)/(3C)),
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P(H, (7)) > P(HiNHy) >1—e.

It remains to show that the local minimizer in ~ . (denoted by ﬂsj is strict with a probability
arbitrarily close to one. For each h € R/{0}, define

Pl (ty) — Pyt
Y (h)=lim sup sup - M
e—0t t1<ts o —1
(t1:t2)€(|h|—&;|h|+e)

By the concavity of Pn(-), #(-) = 0. We know that L; is twice differentiable on RS. For & €

v Let A(B) = V201 (&) - diag{u(fs1), ..., {fss)}. It suffices to show that A(,BSS is positive
definite with probability arbitrarily close to one. On the event Hs = {7(/s) < SUPseB(ss,cdn)
(A} (where cd, is as defined in Assumption 4.1(iv)),

Y<n(B,) <  sup n(B)}

js<s 7 BEB(Byg-cdn)

Also define events Hg = {[|V2L1(5) — V2L1(fs)llr < C/4} and Hy = {Amin(V2L1(Ks)) >
C, Then on HsNHgNH7, for any a € RS satisfying ||al| = 1, by Assumption 4.1(iv),

aTA(BS)OL > aTV2L1(,305)a—|aT(V2L1(BS)—Vle([305))(1\—1?3;(1#(351]_) >3C./4— sup n(B)>C./4

BEB(Byg »dn)

for all large n. This then implies lmin(A(&S) > CJ4 for all large n.

We know that P(Amin[V2L1(fs)] > C,) > 1 — & It remains to show that P(Hs N Hg) > 1 — &
for arbitrarily small . Because k, = o(dp), for an arbitrarily small £> 0, P(Hs) > P(& <
B(fs, cdp)) = 1 — &2 for all large n. Finally,

P(H§) < P(H§, |18,
= Bys [l < k) +P(11B,

—B,sl>kn) <P < sup  [|[V2L1(B,) — v2L1(305)||F > CE/4> +&/4=¢/2.
1B —ByslI<kn

The previous theorem assumes that the true support S is known, which is not practical. We
therefore need to derive the conditions under which S can be recovered from the data with
probability approaching one. This can be done by demonstrating that the local minimizer of
Qn, restricted on Zis also a local minimizer on RP. The following theorem establishes the
variable selection consistency of the estimator, defined as a local solution to a penalized
regression problem on RP.
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For any £ € RP, define the projection function

TR=(5,,fp,-...5,) €, g;:{ 0 ies

Theorem B.2(Variable selection)

Suppose Ly, : RP — R satisfies the conditions in Theorem B.1, and Assumption 4.1 holds.
Assume the following Condition A holds:

Condition A: With probability approaching one, forﬂSAin Theorem B.1, there exists a
A T
neighborhood .#C RP of (BZ, 0) , such that for all 8=(87, Bi)T e A but By 20,

Ln(Tﬁ) - Ln(B)<ZP"(|ﬂY|) (B.G)

jes

~ N T
Then (i) with probability approaching one, B:(ﬁz, 0) is a local minimizer in RP of
p
Qn(B)=Ln(B)+_Pu(|B:])
=1

(ii) For an arbitrarily small > 0, the local minimizerﬂiAs strict with probability at least 1 -
&, for all large n.

N N T ~
Proof. Let B:(B:, 0) with £ being the local minimizer of Q1(fs) as in Theorem B.1. We
now show: with probability approaching one, there is a random neighborhood of g, denoted
by .7 so that VB = (fs, Bn) € #With By # 0, we have Qp(h) < Qn(f). The last inequality is
strict.

To show this, first note that we can take .#Sufficiently small so that Ql(/))As Q1(fs) because
fs is a local minimizer of Q1(fs) from Theorem B.1. Recall the projection defined to be

TA=(87,0)", and Qu( 78) = Q1(A) by the definition of Qy. We have Qy(8) = Q1(f) <
Q1(fs) = Qn( Th). Therefore, it suffices to show that with probability approaching one, there

is a sufficiently small neighborhood of .70of g, so that for any B:(ﬁz, ﬁz)T € A with
A7 0,Qn(7h) < Qn(h).

In fact, this is implied by Condition (B.6):

Qn(T/B) - Qn(ﬁ):Ln(TB) - Ln(ﬁ) - (an(ﬂj) - an(|(T6)]D)<O (B.7)
j=1 j=1
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The above inequality, together with the last statement of Theorem B.1 implies part (ii) of the
theorem.

Appendix C: Proofs for Section 4

. T
Throughout the proof, we write Fis = Fi(fs), His = Hi(&s) and V,,=(F_ ,H)".

LemmacC.1

n

1 — .2
mangplgzid@j — Fj)" = var(Fj)|=op(1).

n

1 = \2
maxi<p|~ . (Hij = Hj)" = var(Hj)|=op(1).

iii. supgerp Amax(J(A) = Op(1), and Amin(I(f)) is bounded away from zero with
probability approaching one.

Proof. Parts (i)(ii) follow from an application of the standard large deviation theory by using
Bernstein inequality and Bonferroni's method. Part (iii) follows from the assumption that
var(F;) and var(H;) are bounded uniformly in j < p.

C.1. Verifying conditions in Theorems B.1, B.2

C.1.1. Verifying conditions in Theorem B.1

For any S €RP, we can write Tﬁ:(ﬁf, O)T. Define
1 T
FGMM(B )= Z (YuXTﬁ )st:| J(Bo) |: Zg(K,XT :| .
i:l
Then Legmm (Bs) = Lramm(s. 0).
- 1n
condition (i)— VLraum (B,5)=2An(8,4)3(Bo) [;Zizlg(i’i,xﬂﬁmwisl where

1 n
A.(B,) = me(}Q,XiTS,BS)XiSVg. (€.1)
=1

By Assumption 4.5, [|An(f)ll = Op(1). In addition, the elements in J(f) are uniformly
bounded in probability due to Lemma C.1. Hence

- 1 .
IV L (Bos)I| < Op(l)HEZi:lg(Yh X7.B,,)V 5. Due to Eg(Y,XT B, )V =0, using
the exponential-tail Bernstein inequality with Assumption 4.3 plus Bonferroni inequality, it
can be shown that there is C > 0 such that for any t > 0,
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1 n
P(nl1<a;(|52g(Yi,XT )Fll|>t)<P(n1axP \—Zg Y;,X B ) Fuil>t) < exp(logp—Ct?/n),
= i=1

1 T logp
which implies maXlSp‘gZizlg(Y%Xisﬁos)Fl”:OP( V" ). Similarly,

1 T logp
mangplgzizlg(YiaXisﬁos)HM:Op( —. ). Hence

IV Licrans (B, )I=05( 4/ (slogp) /m).

Condition (ii)—Straightforward but tedious calculation yields
VZIN’FGMM (ﬁos )= Z(IBOSH’M(BOS)a

where Z(fs) = 2An(5os)I(Bo)An(fos) T, and M(fs) = 2Z(fs)B(fs), With (suppose Xis =
Kty -0 Xitg))

Z(BOS qu(yrlvxﬁsﬁos)( 211 "7Xilin) (505) Jﬁo) Zg(}/lvxq; )Vz'S'

It is not hard to obtain [ B(8,,)[l =0y (/slogp/n), and |Z(fos)llr = Op(s), and hence

IM(By)Il,=Op(s \/ slogp/n)=0p(1).

Moreover, there is a constant C > 0, P(min vér(Xj)*1>C)>1 —eand

JjES
P(minjgpvér(X_?)_1>0)>1 — e for all large n and any > 0. This then implies
P(Amin[3(Bo)] > C) > 1 — & Recall Assumption 4.5 that Amin(EAN(Bos)EAN(fos)T) > Co for
some C, > 0. Define events

G1={Auin[I(Bo)]>C}, G2={|IM(B,)[|<C2C/5} Gs={[|An(Bys)An(B,s) ~EA(B,) EAL(B,)")[<C2/5}.

Then on the event 2, &,

)‘min[v2l~’FGMM (505)] > 2/\min( (,30)) mm( (/605)An(ﬁog)T)_HM(IBOS)||F > 2C[Amin(EAn<ﬁos)EAn(ﬁOS)T)

— Cy /5]
— CyC /5 > TCCy /5.
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p 3
Note that P(N7_1G;) > 1 =)~ P(Gf) > 1 — 3¢, Hence Condition (B.1) is then satisfied.

Condition (iii)—It can be shown that for any nonnegative sequence a, = o(d,) where d,, =
minges |fokl/2, we have

P sup  [M(B,) - M(B,,)]_ < 8)>1-«.

Hﬁs _ﬁos Hian (CZ)

holds for any eand &> 0. As for 2(f), note that for all s such that || — fosll < dn/2, we
have Sk # 0 for all k <'s. Thus J(6s) = I(fos). Then P(supjiss-sogli<anllZ(Bs) = Z(Bos)lIF < 9)
> 1 - gholds since P(supjiss-sli<anlAn(Bs) = An(bs)llF < &) > 1 - &

C.1.2. Verifying conditions in Theorem B.2
Proof. We verify Condition A of Theorem B.2, that is, with probability approaching one,

N N T
there is a random neighborhood .706f B:(,BZ, 0) , such that for any B:(ﬂg, Bi)T e H
with £y # 0, condition (B.6) holds.

Let F(tA ={F:1€S,Az0}and H( 78 = {H;: | €S, /4 % 0} for any fixed B=( §,5§)T.
Define

n n

T
=3 g XT ﬁ)Hi(Tﬁ)} J2(TB) [%Zg(n, X7 B)

=1 i=1

n n

T
(B)= %ZQ(YiaxiTﬁ)Fi(Tﬁ)] JA(TB) HZQ%’X%)E(T@ +

=1 1=1

where J1( T8 and J,( Tf) are the upper-|S|o and lower-|S|o sub matrices of J( T4). Hence
Lramm( 7(8) = E( 7H). Then Legmm(B) — E(B) equals

n 2 n 2
> [wu(%zg(%xz‘Tﬁ)Fﬂ) +wl2(%zg(yiaX?ﬁ)Hﬂ) ] :
=1

1¢5,6,20 i=1

where wj; = 1/var(F; and wy, = Livar(H;. So Legmm(B) = =(B). This then implies Legpm( T
P - Lramm(P) < Z( 18 — Z(H). By the mean value theorem, there exists A € (0,1), for

h=(87,-A87)",

=(TB) - =(8)

+ ). 6 [%ZXZ‘IWZ(Yia X7 h)H;(Tf

i=1 i=1 1¢5,5,#0 i=1

n T n
= > 5 %ZXum(Yi,XiTh)Fi(Tﬁ)] J1(TB) [%Zg(YnXiTh)Fi(Tﬁ)
125,5#0
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N N T
Let .#be a neighborhood of Bz(ﬁz, 0) (to be determined later). We have shown that = ( T
B — =B = Zigs g=o A@(B) + b(B), forany g€ 7

n T n
a(B)=| > Kam(V;, X h)Fimrﬁ)} Jl(ﬂw)Hng,X? bF.(TB)|

i=1

and by(p) is defined similarly based on H. Note that h lies in the segment joining fand 71,
and is determined by g, hence should be understood as a function of . By our assumption,
there is a constant M, such that |m(ty, to) | and |q(ty, tp)], the first and second partial

derivatives of g, and £x?F? are all bounded by M uniformly in t1, t; and I, k < p. Therefore
the Cauchy-Schwarz and triangular inequalities imply

n 2
1
[ EZXilm(l/i, XTh)Fi(T8)|

=1

1 n
< M? SN XGF. P —E| X F ||+ M2maxE|| X;F .||
< r}lgglngll aF [XiF 7|+ max [ X F

Hence there is a constant M, such that if we define the event (again, keep in mind that h is
determined by )

1 n
B,={sup|— E Xym(Y;, X;Th)Fi(T,@)H< \/sMj, sup (IJ1(TB)|| <M},
pex i pew

then P(By) — 1. In addition with probability one,

1 )
< sup | =Y [9(¥;, X] B)—g(Y:, X B)|F |
pest "D

12 12
1= "g(¥:, XTh)Fy(TB)| < sup |=> g(Vi, X7 B)F
n pesxt i

i=1 A

18 ~
+||Ezg(naxfﬁ)Fzs ‘ = Zi+2s,
=1

~ N T
where, 6:(BZ, 0) . For some deterministic sequence ry, (to be determined later), we can
define the above .#to be dddd

A={B:|8 — B|<ra/p}

then supse B - ﬁfl < rp. By the mean value theorem and Cauchy Schwarz inequality, there

is S
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Zy=sup |-y m(V;, XIB)F, X (3
ﬂg\ln; X5 (

<p ’I’l

N 1& -
Bl < VEsup |2 v XIBE XTI r < MV ma |—Z<Fkxz P,
gex i3

[ee)

Hence there is a constant M, such that P(Z; < MyVsr,) — 1.

Let e;=¢(V;, X7 3,). By the triangular inequality and mean value theorem, there are h and h
lying in the segment between Fand f such that

1 n
Zy < || EZEiFiS ||

+|| —Zm @) XTh)Fiinj; (BS
=1

1 n
~B,1 < Vomae| S ek

+II—Zm (Y, X7 Bo)F, XL, (B,
=1

= By,

1 n ~ ~ 2
+|| EZq(YZ, )(Th)}(lqjg (,@05 - hs)FisXZ@ (ﬁs
=1

= Bys)ll < Op(y/slogp/n)
+(0p(1)
+||ET77,(Y, XTBO)FSXZH)”BS

o 1/2 1 n 1/2

B O IRPIELR 18, - Byl
=1

—Bos I ZH‘J(Yz,XTh)X

1 1

where we used the assumption that | Em (Y, X" 3,) X F||=O(1). We showed that
IV Lyeonmns (B,s)[=0,( 1/ (slogp)/n) in the proof of verifying conditions in Theorem B.1.
Hence by Theorem B.1, |8, — B, .[|=0,(/slogp/n+ v/sP,(dy)). Thus

slo, / s? \/slogs /
Zy=0, (4 ngp+ \/EPn(dn)Jr%qu? V5P, (dn)?) = Op(&n).-
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By the assumption \/s¢, =o(P, (0")), hence P(Z,< P, (0")/(8 v/sM?)) — 1, where My is
defined in the event B,,. Consequently, if we define an event

Dp={Z1<Mx /57, Zo<P,(0") /(8 /sM?)}, then P(B, N D — 1, and on the event B, N
Dn,

sup la)(B)] < ME/5(My \/sr,+P,(07))/(8v/sMZ)=M2Mysr,+F,(0%)/8.
e

We can r, < P, (01) /(8M2M,s), and thus supge - |a(8)| < P, (07)/4.

On the other hand, Because ( 7f); = 4, for either j € S or £ = 0, there exists 1, € (0,1),

N (Ba(18i]) = Pa(I(TB);D=D_"Pa(18,)= 3" |8 P,(Xa|B).-

=1 jgs 1¢S,61#0

Foralll ¢S, |4| < ||8- fll1 < rn- Due to the non-increasingness of P;L(t),

ZZQSPH(WID z Zlewliowlwn(“). We can make ry, further smaller so that

P, (rn) > P,(0%")/2Which is satisfied for example, when r,, < A, if SCAD(Ay) is used as the
penalty. Hence

> Ba(B) < Z|ﬂl|%0+) < Z|ﬂl|w < %an(WlD'

gs lgs ¢S ¢S

Using the same argument we can show Zlesﬁlbl (B) < %lePn(\ﬂzl). Hence Lrgmm( 7A)
= Leamm(B) < Zigs =0 A (@A +01(B) < Zigs Pn(4il) for all B {B: |8~ Bl1 < ra} under
the event By, N Dy,. Here ry is such that r,, < P (0™) /(8M? Mys) and P (r,,) > P,(01)/2.
This proves Condition A of Theorem B.2 due to P(B, N D) — 1.

C.2. Proof of Theorem 4.1: parts (ii) (iii)

P T
We apply Theorem B.2 to infer that with probability approaching one, ,62(62, 0) isalocal
R T
minimizer of Qrgmm(f). Note that under the event that (ﬁ:, 0) isalocal minimizer of
AT 7. T -
Qrcmm (B), we then infer that Qp, (f) has a local minimizer (B:,ﬁi) such that gy = 0. This

reaches the conclusion of part (ii). This also implies P(SC S) — 1.

By Theorem B.1, and ||V Ly (8,5 ) [ =Op( 1/ (slogp) /n) as proved in verifying conditions
in Theorem B.1, we have ||fs — Al = op(dn). So
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P(S ¢ 8)=P(3j € $,5;=0) < P(3j € 5,160;= 5| = |60;]) < P(max|fo;—5;| 2 dn) < P(|B,5 =B, = dn)=0(1)

This implies P(S € S) — 1. Hence P(S=S) — 1.
C.3. Proof of Theorem 4.1: part (i)

A VAPRPN T

Let P, (18, )=(Pn(18, s Bu(1B,D)

LemmacC.2

Under Assumption 4.1,
12218 1) o sgn(B)I=0p( , max  ~ n(B)/slogp/n+ V5P, (dn),
s os I="m

where - denotes the element-wise product.

Proof. Write P, (|3.]) o sgn(B,)=(v1,...,v,)", where v;=P, (|3, |)sgn(8,, ). By the
triangular inequality and Taylor expansion,

il < [Po(184,) = Pl1Bos, DIHPu (1805 1) < 0(B)By, = Bosi|+Puldn)
where £* lies on the segment joining ﬂSAand fos. For any >0 and all large n,

Pmn(B7) n(8)) < P(|B, — Byl >dn/4)<e.

> max
185 —By gl <dn/4

This implies 7(8*) = Op(max||gs-ggli<dn/a 7AB)- Therefore,
AR ~ 2 s
1Pa(184 ) o sen(B,)["=>_._,v7 is upper-bounded by

N 5 ) ,
2 max n(B 213 2P (a,),
”ﬁs_ﬁ()S”Sdn/él ( ) ” s ‘Eos” ( )

which implies the result since |8, — B, | =0y ( 1/ slogp/n+ /5P, (dy)).

Lemma C.3

Let Q, = VnI'"Y2. Then for any unit vector a €RS,
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aTQnV[N’FGMM (505 ) _’dN(07 1).

- 1
Proof. We have VLramm(fs) = 2An(6os)I(fo)Bn, where Bn=—3 (¥, X7 B,V

We write A=Em(Y, X! 8, )X, VL, T=var(/nB,)=var(g(Y,X. 8, )V )and T =
AAI(Bo)YI(B) TAT.

By the weak law of large number and central limit theorem for iid data,
|AL(B,,) — Al|=0,(1), Vr&lY /B, —N(0,1).

for any unit vector acR?. Hence by the Slutsky's theorem,

\/ﬁaTril/QVf’FGMM (,BOS)—>dN(0, 1).

Proof of Theorem 4.1: part (i)

Proof. The KKT condition of /J’SAgives

_PT,L(|BS D © Sgn(Bs):vi’FGMM (Bs)a (C3)
By the mean value theorem, there exists g* lying on the segment joining fs and ﬂsAsuch that

Vicyu (BS)ZVf’FGMM (605)+v2i’FcMM (5*)(55 - /605 )-

Let D = (V2Lramm(BY) = V2Leamm(Bs)) (B — Ros). It then follows from (C.3) that for

Q,,= /nT; /2 and any unit vector q,
aTan2I~/FGMM (6()5)(!35 _IBOS ):_aTQn[P’;(‘BS ‘)Osgn(BS )+V£FCMM (1803)+D] ‘

In the proof of Theorem 4.1, condition (ii), we showed that VZLFE;MM(ﬂOS) =%+ Op(1).
Hence by Lemma C.3, it suffices to show a”Q,,[ P, (|8,]) o sgn(B,)+D]=0,(1).

By Assumptions 4.5 and 4.6(i), Amin(I'n)"1/2 = Op(1).Thus || a'Q,[| = Op(vn). Lemma C.2
then implies Awax (@,)[| 2, (18,]) © sgn(B,, )| is bounded by

Op( \/ﬁ) (ma‘XHﬁS _ﬁosugdnmn(ﬁ) \/ 510gp/7’L—|— \/gp;z(dn))zop(l)
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It remains to prove ||D|| = op(n‘llz), and it suffices to show that

192 s (B%) = V2L (B0 =05 (slogp) /%) ca)

due to[|B, — B, ||=0,(y/slogp/n+ v/sP,(dy)), and Assumption 4.6 that
VnsP, (d,)=o(1). Showing (C.4) is straightforward given the continuity of VzLFE;MM.

Appendix D: Proofs for Sections 5 and 6

N A N T ~
The local minimizer in Theorem 4.1 is denoted by ﬁ:(ﬁz,ﬁz) and P(4y) — 1. Let
N AT T
ﬁG:(ﬁS 5 0) .
D.1. Proof of Theorem 5.1

LemmaD.1

L pomm (Bc ):OP(SIng/TH'SPv; (dn)z)

A 1 n
Proof. We have, Lycyn (B.) < ||gzi:19(YuXT5 )VZSH O,(1). By Taylor expansion,
with some g in the segment joining fs and S,

1 n
HEZQ Yz,XT Zg Yz,XT B,s) V.

+H—Zm K,XTﬁ )X, s 17;||HBS

=1

_605H < Op(4/slogp/n)

+H—Zm Vi, XL B,)X,s VE 18,

T >
6os‘|+g;|m(Yi>XisﬁS)

= m(Y;, X[ B, )X, VB, = Byl

Note that|| Em(Y, Xfﬁ()S)XSVS || is bounded due to Assumption 4.5. Apply Taylor
expansion again, with some £*, the above term is bounded by

X 1>
Op(\/slogp/n)+0p(1)l\5s—ﬁosH+5Z|q(Y;,XT MIX s 118, =B X s VENIB,—Bys -
=1
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Note that supy, t,| q(ty, to)| < oo by Assumption 4.4. The second term in the above is

T 14 2 ..
VB4 — B,slI". Combining these terms,

1
bounded by C=> " [ X,
||—Zi 9(vi, XL B,)V |lis bounded by

Op(/ slogp/n+ /5P, () +0p(s V3) 1B, — B | =0y (1 slogp/n+ /5P, (d)).

LemmaD.2

Under the theorem's assumptions

P slogp , logs
QFGMM(IBG):OP( 2P 5P (dn)2+3f§1€3§(Pn(|ﬁOj|)+Pn(dn)3VTg> .

Proof. By the foregoing lemma, we have

n

A slogp u
Qs (Bo) =0y (ZEL 4P, (0,)2) +3P(55,).
j=1
Now, for some ,b’s} in the segment joining ﬂs} and f;,

ZP”GﬁS?D < ZPH(|ﬁDS,j|)
Jj=1 j=1

+3.R08., D18,

1< smaXP (15oj])

05‘

i=1
/Bos,j| < smaXPn(wOjD
JES

+PT/l(er)H/éS - ﬂos” \/g

The result then follows.

Note that V6> 0,

2

T
8¢6 U{O}QFGMM(B) ,6¢O {0} Leoun (B) > ﬁg(gn&o}ﬂgzg Y, Xi B)Vi(B)|l mln {Var(X) Var(X )}

Hence by Assumption 5.1, there exists y> 0,
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P(ﬂé@ U{O}QFGMM (B)>27y) — 1.

On the other hand, by Lemma D.2, Qramm(Bc) = 0p(1). Therefore,

P(QFGMM (B)

+> ,BQO {O}QFCMM(IB))P(QFCMM(IB )

ﬁe@ U{O}

+0(1) = (QFGMM (BG )
+7>27)

P inf 2
+P( e {O}QFGMM (B)<2v)

+0(1) < P(QFGMM (BG)>7)
+o(1)=o(1).

Q.E.D.

D.2. Proof of Theorem 6.1

Lemma D.3

Define p(B,)=FE[g(Y, Xzﬁs)a(W)*QD(W)]. Under the theorem assumptions, supg < o
llo(B5) = p(Bs)l = 0p(1).

Proof. We first show three convergence results:

SUP ZHQ Vi, XL B,)(D(W;) — D(W,))8(W,) ?|=0,(1), (D)
sup 5oV XD B)DW (0(Wo) = o (W) ) =01, 02

;up@nlzg (¥, X B)D(W:)o(W2) "~ Eg(Y, XT8,)D(W)o (W) 2| =0,(1), (':j)-
56 =1

Because both sup,, [[D (w) — D(w)|| and sup, [o(w)? — o(w)?] are op(1), proving (D.1) and
(D.2) is straightforward. In addition, given the assumption that

4
E(sup ,, __,,9(Y,XIB,)")<oe, (D.3) follows from the uniform law of large number.
Hence we have,
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1< A . _ _
ﬁsuepell gzgm X7 B,)D(W)5(W;) 2=Eg(Y, XL B,)D(W)o (W) ?||=0,(1).
s =1

In addition, the event Xg = Xg occurs with probability approaching one, given the selection
consistency P(S=S) — 1 achieved in Theorem 4.1.

n AT N _9A
i:lg(Y;’ X,Sﬁs)a(wl) 2D(W1)

1
The result then follows because Pn(ﬁs):gz

Given Lemma D.3, Theorem 6.1 follows from a standard argument for the asymptotic
normality of GMM estimators as in Hansen (1982) and Newey and McFadden (1994,
Theorem 3.4). The asymptotic variance achieves the semi-parametric efficiency bound
derived by Chamberlain (1987) and Severini and Tripathi (2001). Therefore, ,B;is semi-
parametric efficient.

Appendix E: Proofs for Section 7

The proof of Theorem 7.1 is very similar to that of Theorem 4.1, which we leave to the
online supplementary material, downloadable from http://terpconnect.umd.edu/~yuanliao/
high/supp.pdf

Proof of Theorem 7.2
l 1 l -1
Proof. Define @i,t=Lx (BE,),C), ;(C))+Zj§k,Pn(|ﬁ§- ) |)+Zy>kpn(|/3§ )D We first show

Q|’k < Ql,k—l forl<k<pand Q|+1,1 < QLP' Forl<k<p, Q|’k - Q|’k_1 equals

Lo (B B +P(8Y ) — (L (BY 1) B ) +P(18L ).

Note that the difference between (5§l_)k), 8 and ([3El_)<k_1)), 8 ) only lies on the kth

position. The kth position of (5Elzk)> B is 3" while that of (ﬁgl,)(k,l)), Y s B,
Hence by the updating criterion, Q x < Q-1 for k< p.

Because (ﬁélff)), ﬁ§l+1) ) is the first update in the | + 1th iteration,

(ﬁgljll)), ﬂYH)):(ﬁElzl), 5{"), Hence

QH—I,IZLK (ﬁglzl)>/8§I+1))+Pn(|/8§l+1)‘)+2Pn<|/3](l) D
j>1

On the other hand, for 5(1)2([3&)), B,
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Qup=Ly (ﬁ(l))“FZPn(W;l) D+Pn(|,8¥) ).

j>1

Hence Qi+1,1 — Ql,p:LK(ﬁElzl)a BTN (18] — (L, (BD)+Pa(18Y])]. Note that

(651,)1), BV differs AY only on the first position. By the updating criterion, Q41,1 = Qyp <
0.

Therefore, if we define {Lm}m>1 = {Q1,1, ---,Q1,p, Q2,15 ---,Q2,p, ---}, then we have shown
that {Lm}m=1 IS @ non-increasing sequence. In addition, L, = 0 for all m = 1. Hence L, is a
bounded convergent sequence, which also implies that it is Cauchy. By the definition of
Qu(AY), we have Q(A)) = Qip, and thus £Ok(BM) =1 is a sub-sequence of {L,}. Hence it
is also bounded Cauchy. Therefore, for any € > 0, there is N > 0, when Iy, I, > N, | Qu (&)
- Qx(A12)| < &, which implies that the iterations will stop after finite steps.

The rest of the proof is similar to that of the Lyapunov's theorem of Lange (1995, Prop. 4).
Consider a limit point #* of {f)} 11 such that there is a subsequence limy_, ., & = .
Because both Qk(-) and M() are continuous, and QK(ﬁ(l)) is a Cauchy sequence, taking
limits yields

Qu(M(B")= lim Q, (M(8")))= lim Q, (8")=Q,(8").

Hence f* is a stationary point of Qk(f).

References

Ai C, Chen X. Efficient estimation of models with conditional moment restrictions containing
unknown functions. Econometrica. 2003; 71:1795-1843.

Andrews D. Consistent moment selection procedures for generalized method of moments estimation.
Econometrica. 1999; 67:543-564.

Andrews D, Lu B. Consistent model and moment selection procedures for GMM estimation with
application to dynamic panel data models. J Econometrics. 2001; 101:123-164.

Antoniadis A. Smoothing noisy data with tapered coiflets series. Scand J Stat. 1996; 23:313-330.

Belloni A, Chen D, Chernozhukov V, Hansen C. Sparse models and methods for optimal instruments
with an application to eminent domain. Econometrica. 2012; 80:2369-2429.

Belloni A, Chernozhukov V. Least squares after model selection in high-dimensional sparse models.
Bernoulli. 2013; 19:521-547.

Belloni A, Chernozhukov V, Hansen C. Inference on treatment effects after selection amongst high-
dimensional controls. Review of Economic Studies. 2013 Forthcoming.

Bickel, P.; Klaassen, C.; Ritov, Y.; Wellner, J. Efficient and adaptive estimation for semiparametric
models. Springer; New York: 1998.

Bickel P, Ritov Y, Tsybakov R. Simultaneous analysis of Lasso and Dantzig selector. Ann Statist.
2009; 37:1705-1732.

Bondell H, Reich B. Consistent high-dimensional Bayesian variable selection via penalized credible
regions. J Amer Statist Assoc. 2012; 107:1610-1624.

Ann Stat. Author manuscript; available in PMC 2015 January 08.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Fan and Liao

Page 46

Bradic J, Fan J, Wang W. Penalized composite quasi-likelihood for ultrahigh-dimensional variable
selection. J R Stat Soc Ser B. 2011; 73:325-349.

Breheny P, Huang J. Coordinate descent algorithms for non convex penalized regression, with
applications to biological feature selection. Ann Appl Statist. 2011; 5:232-253.

Buhlmann P, Kalisch M, Maathuis M. Variable selection in high-dimensional models: partially faithful
distributions and the PC-simple algorithm. Biometrika. 2010; 97:261-278.

Buhlmann, P.; van de Geer, S. Statistics for High-Dimensional Data: Methods, Theory and
Applications. Springer; New York: 2011.

Canay I, Santos A, Shaikh A. On the testability of identification in some nonparametric odes with
endogeneity. Econometrica. 2013; 81:2535-2559.

Caner M. Lasso-type GMM estimator. Econometric Theory. 2009; 25:270-290.

Caner M, Fan Q. Hybrid generalized empirical likelihood estimators: instrument selection with
adaptive lasso. Manuscript. 2012

Caner M, Zhang H. Adaptive elastic net GMM with diverging number of moments. Journal of
Business and Economic Statistics. 2013 forthcoming.

Candes E, Tao T. The Dantzig selector: statistical estimation when p is much larger than n. Ann
Statist. 2007; 35:2313-2404.

Chamberlain G. Asymptotic efficiency in estimation with conditional moment restrictions. J
Econometrics. 1987; 34:305-334.

Chen, X. Large sample sieve estimation of semi-nonparametric models. In: Heckman, JJ.; Leamer,
EE., editors. Handbook of Econometrics. Vol. VI ch 76. 2007.

Chen X, Pouzo D. Estimation of nonparametric conditional moment models with possibly nonsmooth
generalized residuals. Econometrica. 2012; 80:277-321.

Chernozhukov V, Hong H. An MCMC approach to classical estimation. J Econometrics. 2003;
115:293-346.

Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems
with a sparsity constraint. Comm Pure Appl Math. 2004; 57:1413-1457.

Dominguez M, Lobato I. Consistent estimation of models defined by conditional moment restrictions.
Econometrica. 2004; 72:1601-1615.

Donald S, Imbens G, Newey W. Choosing instrumental variables in conditional moment restriction
models. J Econometrics. 2009; 153:28-36.

Engle R, Hendry D, Richard J. Exogeneity. Econometrica. 1983; 51:277-304.

Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Amer
Statist Assoc. 2001; 96:1348-1360.

Fan J, Liao Y. Endogeity in ultra high dimensions. Manuscript. 2012

Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc Ser B.
2008; 70:849-911.

Fan J, Lv J. Non-concave penalized likelihood with NP-dimensionality. IEEE Trans Inform Theory.
2011; 57:5467-5484.

Fan J, Yao Q. Efficient estimation of conditional variance functions in stochastic regression.
Biometrika. 1998; 85:645-660.

Fu W. Penalized regression: The bridge versus the LASSO. J Comput Graph Statist. 1998; 7:397-416.

Garcia E. Linear regression with a large number of weak instruments using a post-I1-penalized
estimator. Manuscript. 2011

Gautier E, Tsybakov A. High dimensional instrumental variables regression and confidence sets.
Manuscript. 2011

van de Geer S. High-dimensional generalized linear models and the lasso. Annals of Statistics. 2008;
36:614-645.

Hall P, Horowitz J. Nonparametric methods for inference in the presence of instrumental variables.
Ann Statist. 2005; 33:2904-2929.

Hansen L. Large sample properties of generalized method of moments estimators. Econometrica.
1982; 50:1029-1054.

Ann Stat. Author manuscript; available in PMC 2015 January 08.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Fan and Liao

Page 47

Horowitz J. A smoothed maximum score estimator for the binary response model. Econometrica.
1992; 60:505-531.

Huang J, Horowitz J, Ma S. Asymptotic properties of bridge estimators in sparse high-dimensional
regression models. Ann Statist. 2008; 36:587-613.

Huang J, Ma S, Zhang C. Adaptive lasso for sparse high-dimensional regression models. Statistica
Sinica. 2008; 18:1603-1618.

Hunter D, Li R. Variable selection using MM algorithms. Ann Statist. 2005; 33:1617-1642.

Kim Y, Choi H, Oh H. Smoothly Clipped Absolute Deviation on High Dimensions. J Amer Statist
Assoc. 2008; 103:1665-1673.

Lange K. A gradient algorithm locally equivalent to the EM algorithm. J Roy Statist Soc Ser B. 1995;
57:425-437.

Kitamura Y, Tripathi G, Ahn H. Empirical likelihood-based inference in conditional moment
restriction models. Econometrica. 2004; 72:1667-1714.

Leeb H, Pétscher B. Sparse estimators and the oracle property, or the return of Hodges' estimator. J
Econometrics. 2008; 142:201-211.

Liao Z. Adaptive GMM shrinkage estimation with consistent moment selection. Econometric Theory.
2013; 29:857-904.

Loh P, Wainwright M. Regularized M-estimators with nonconvexity: Statistical and algorithmic theory
for local optima. Manuscript. 2013

Lv J, Fan Y. A unified approach to model selection and sparse recovery using regularized least
squares. Ann Statist. 2009; 37:3498-3528.

Newey W. Semiparametric efficiency bound. J Appl Econometrics. 1990; 5:99-125.

Newey, W. Efficient estimation of models with conditional moment restrictions. In: Maddala, GS.;
Rao, CR.; Vinod, HD., editors. Handbook of Statistics, Volume 11: Econometrics. Amsterdam;
North-Holland: 1993.

Newey, W.; McFadden, D. Large sample estimation and hypothesis testing. In: Engle, R.; McFadden,
D., editors. Handbook of Econometrics. VVol. Chapter 36. 1994.

Newey W, Powell J. Instrumental variable estimation of nonpara-metric models. Econometrica. 2003;
71:1565-1578.

Stéadler N, Buhlmann P, van de Geer S. 11-penalization for mixture regression models with discussion.
Test. 2010; 19:209-256.

Severini T, Tripathi G. A simplified approach to computing efficiency bounds in semiparametric
models. J Econometrics. 2001; 102:23-66.

Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996; 58:267-288.
Wasserman L, Roeder K. High-dimensional variable selection. Ann Statist. 2009; 37:2178-2201.

Zhang C. Nearly unbiased variable selection under minimax concave penalty. Ann Statist. 2010;
38:894-942.

Zhang C, Huang J. The sparsity and bias of the Lasso selection in high-dimensional linear models.
Ann Statist. 2008; 36:1567-1594.

Zhang C, Zhang T. A general theory of concave regularization for high dimensional sparse estimation
problems. Statistical Science. 2012; 27:576-593.

Zhao P, Yu B. On model selection consistency of Lasso. J Mach Learn Res. 2006; 7:2541-2563.
Zou H. The adaptive Lasso and its oracle properties. J Amer Statist Assoc. 2006; 101:1418-1429.

Zou H, Li R. One-step sparse estimates in nonconcave penalized likelihood models. Ann Statist. 2008;
36:1509-1533.

Zou H, Zhang H. On the adaptive elastic-net with a diverging number of parameters. Ann Statist.
2009; 37:1733-1751.

Ann Stat. Author manuscript; available in PMC 2015 January 08.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

wdudsnuel Joyny vd-HIN

Fan and Liao

2
K(t?/h )

Fig 1.

Page 48

—h =0.01
n
aw=ah =0.1
n
wnn h =0.5
n
1
0.5 o
0 | |
-2 -1 1

% (ﬁ) _exp(t?/hy) — 1

hy ] exp(t2/h,)+1 asan approximation to | (t20)

Ann Stat. Author manuscript; available in PMC 2015 January 08.



Page 49

Fan and Liao

"paniodal OS|e SI INSeall YIBa JO OIS PABPURIS BY | "SO|gRLIeA Palid)|as

A11981102U1 JO JBQUINU BY) SI do PUe ‘S8|qelieA paldalas A1981102 JO Jsquuinu 8yl Si d 1 "Siuaidiaod 018z 4oy [NQg — Ng|| Jo abeiane ayy st NISIA Sus1o144809 osazuou Joy ||SOY — S| Jo abesane auyy st SIS

(Ty7°0) 200 (0o (2ec0)800  (266T)85C  (veee)¥88  (Gvoe) 9e'Ge  (c06'2)89'LE oA
(OF (05 (0 s (7050 €9¢  (38€°0) 28'% (0)g (0)g dlL
(600°0) T00°0 o (010'0) T00'0  (6T0°0) G60°0  (9T0°0) 220°0  (9T0°0) 8900  (G€0°0) 92T°0  NISW
(9200) ¥6T0  (690°0) ¥8T'0  (¥60°0) T92'0 (62€0) LT¥'T  (T0€0) 6290 (€v0°0) €€TO  (€50°0) S¥T'0  SASW
z0=Y T0=Y S00=Y =Y go=v T0=Y S00=Y
! S1d

NIH-PA Author Manuscript

002 = U ‘0G = d "suonealjdal 00T 43A0 ININDH puR S1d JO doueWIOLIad
Talqel

NIH-PA Author Manuscript NIH-PA Author Manuscript

Ann Stat. Author manuscript; available in PMC 2015 January 08.



Page 50

Fan and Liao

"paniodal OS|e SI 8INSeaw Yaea Jo J0.ia pJepue)s ay | "siossaifial snousabopua Jo Jaquinu [e103 8y} SI W pue ‘sa|geLIeA pajaa|as AJ1981109Ul JO Jaquinu ayi SI d ‘Sajgelien
pa198]8s AJ398.4109 JO Jaquunu 3y} SI 41 “S1us1o1y4a09 049z 1oy |[NOg — N¢|| Jo abesane ayr st NISIA "s1ua101)4802 olazuou Joy [|SQg — S¢|| Jo abeiane ayi sI STSIA "s10ssalbas snouabopus 40 Jaquinu ayy i w

NIH-PA Author Manuscript

(€602) 2682 (15¢T)9/Zv (8S€T)92Lv (¥8'€T) 0L0°GE  (80°ST) OFvey (T¥'22) 09298  dd
(9vz'0) v6'7 (0)s (0)s (89%°0) €LY (eee0) 67 0)s dl
(52000 €500 (120°0) €900 (8T0°0) 2900  (959°0) 8280  (662°0)9¢6'0  (£€€T) 982 T  NISW

(2€0'0) 2600  (TEV0) T€Z0  (Tv00) YOT'O  (8v0'0) TTTO  (829°0) LOTT  (565°0)996'0  (£82°0) TE8'0  SASW
0s=wooz=d

(00m)€9T  (e6TT)GE  (e60T)OLE  (BESP) L€0T  (1G2°9) €94T  (092°9) 69°22 dd
(OF (OF (s (TL1°0) L6'F (g (0)s dlL
(re0'0) 8700 (S£0°0) S80°0  (0£0°0) 0600  (6vT°0)€8T0  (6¥T°0)0vZ'0  (650°0) TLT'0  NAS
(920008800  (2€0°0) 20T'0  (€v0°0) 600  (1S0°0) 90T'0  (82€0) T6¥'0  (€82°0) 52§50  (20T°0) 06T°'0  S3ASW
0T=wos=d

INNDH-1s0d €0=Y To=Y 800=Y r=Y e=v =Y
WNINOH S1d

00T = U ‘s10ssa46a. Jueriodwiun pue jueldoduwi ylog ul Allvusbopul
¢39l|qel

NIH-PA Author Manuscript NIH-PA Author Manuscript

Ann Stat. Author manuscript; available in PMC 2015 January 08.



Page 51

Fan and Liao

NIH-PA Author Manuscript

(oT0) 100 (0o (Le0) TT°0 (seoq)v6'2  (e2T1)8L2y  (8€TT)LvOTZ oA
(001°0) 667 (OF; (g (L870)29c  (v8€°0) 28 (s dL
(500°0),-0T x § @o (9000),-0T xS (2200)980°0  (€20'0) T200  (6T0°0) L0T0  NasW
(czr0) €610 (c0T0) 28T0  (980°0) v220  (0T€0) 0EX'T  (OE0) 0G9°0  (¥50°0) 6ST0 SIS

oog =d
(Tv1°0) 200 (o (Le£°0) 800 (LesT)85C  (veee) ¥8'8  (SVO'E) 9g°'GE dd
(OF (g (g (v050) €9 (S8€°0) 28'Y (0)s dL
(600°0) T00°0 (o (0T0'0) T00'0  (670°0) G600 (970°0) 2200 (9T0°0) 8900  MNISW
(92000 ¥6T0  (690°0) ¥8T0  (¥60°0) 1920  (62€0) LT¥'T  (TOE0) 6290  (€70°0) EET'0  SASW
05=d
zo=vY T0=Y S00=Y =Y §o=v T0=Y
W94 Sd

002 = u ‘s10ssaibaa yueriodwiun ul Ajuo Allsusbopul

€9l|qel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Ann Stat. Author manuscript; available in PMC 2015 January 08.



Page 52

Fan and Liao

NIH-PA Author Manuscript

(tse1)s6T  (Bye0) ey (86TT) 2Ly (L9€70)80C (K¢ (8.5°T) €6 dd
(cov0)ge  (tv1°0)86€  (182°0) YOV v v (Lzeo)ery  dL
(z900) ¥80°0  (ev0'0) 80T'0  (250°0) ¥€T'0  (€€0°0) T20'0  (000°0) £60°0  (¥S50°0) GST'0 NASW
(¥S1°0) 8620 (v20°0) GeT'0  (190°0) 8€T'0  (950°0) 8TT'0  (000°0) L0T'0  (020°0) 8270 SIS

§0=Y T0=Y S00=Y S0=v T0=Y S00=Y
0§ =w ooz =d oT=w os=d

70 =9 'S0~ = g [eubis fewiuiw seam 1oy ININOH
¥ alqel

NIH-PA Author Manuscript NIH-PA Author Manuscript

Ann Stat. Author manuscript; available in PMC 2015 January 08.



