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Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social
and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previ-
ously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder
(ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the
play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corti-
costriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several
subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex,
basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a
noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same
regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral
orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of
methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions
implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this

developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD.
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Introduction

Social play behavior is a vigorous form of social interaction that is
abundantly expressed in the juvenile and adolescent of most
mammalian species, including humans. It is thought that social
play behavior has an important role in social, cognitive, and emo-
tional development (Fagen, 1981; Panksepp et al., 1984; Vander-
schuren et al., 1997; Spinka et al., 2001; Pellis and Pellis, 2009;
Graham and Burghardt, 2010; Baarendse et al., 2013; Vander-
schuren and Trezza, 2014). However, our knowledge of the neu-
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ral mechanisms underlying social play is limited (Vanderschuren
etal., 1997; Trezza et al., 2010; Siviy and Panksepp, 2011; Vander-
schuren and Trezza, 2014). Identifying the neural underpinnings
of social play will increase our understanding of adaptive beha-
vioral development and of the etiology of childhood and adoles-
cent psychiatric disorders characterized by social impairments,
such as autism and attention-deficit/hyperactivity disorder
(ADHD).

Pharmacological modulation of social play behavior has re-
vealed that psychomotor stimulants such as amphetamine and
methylphenidate profoundly inhibit social play (Beatty et al.,
1982, 1984; Thor and Holloway, 1983; Sutton and Raskin, 1986;
Vanderschuren et al., 2008; Achterberg et al., 2014). Importantly,
we have previously shown that methylphenidate and amphe-
tamine inhibit social play through a noradrenergic mechanism of
action. Their play-suppressant effect was mimicked by the nor-
adrenaline reuptake inhibitor atomoxetine, but not the dopa-
mine reuptake inhibitor GBR12909, and their effect on social
play was blocked by pretreatment with an «2-adrenoceptor
antagonist, but not a dopamine receptor antagonist (Vander-
schuren et al., 2008; Achterberg et al., 2014). Moreover, com-
bined administration of subeffective doses of methylphenidate
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and atomoxetine reduced social play behavior (Vanderschuren et
al., 2008), indicating that methylphenidate and atomoxetine in-
hibit social play behavior through a common, noradrenergic
mechanism of action. Interestingly, methylphenidate, amphe-
tamine, and atomoxetine are widely used to treat ADHD
(Kutcher et al., 2004; Kratochvil et al., 2006; Feldman and Reiff,
2014). Therefore, investigating their effects on social behavior in
young animals may help to understand their mechanism of ac-
tion and potential side effects in the treatment of ADHD.

We previously hypothesized that the effects of methylpheni-
date and atomoxetine on social play were related to enhanced
behavioral inhibition (Vanderschuren et al., 2008) because these
drugs facilitate several aspects of cognitive control (Chamberlain
and Sahakian, 2007; Eagle et al., 2008; Pattij and Vanderschuren,
2008) through prefrontal corticostriatal circuits (Arnsten, 2011;
Del Campo etal., 2011). In addition, these drugs could influence
social play behavior by altering its emotional properties (Ander-
sen, 2005; Trezza et al., 2010; Siviy and Panksepp, 2011). There-
fore, to identify the neural sites of action through which
methylphenidate reduces social play, we infused this drug into
several prefrontal and orbitofrontal regions, the nucleus accum-
bens shell, mediodorsal thalamus, basolateral amygdala (BLA),
and habenula. These regions have been implicated in cognitive
and emotional processes (McAlonan et al., 1993; Chudasama et
al., 2001; Miller and Cohen, 2001; Baxter and Murray, 2002; Car-
dinal et al., 2002; Phelps and LeDoux, 2005; Block et al., 2007;
Lecourtier and Kelly, 2007; Robbins and Arnsten, 2009; Schoen-
baum et al., 2009; Hikosaka, 2010; Morrison and Salzman, 2010;
Berridge and Kringelbach, 2013), including social play (Siviy and
Panksepp, 1985; Panksepp et al., 1994; Schneider and Koch, 2005;
Pellis et al., 2006; Bell et al., 2009; Trezza et al., 2011a, 2012; van
Kerkhof et al., 2013a, 2013b, 2014), and receive a well character-
ized noradrenergic innervation (Moore and Bloom, 1979; Got-
tesfeld, 1983; Unnerstall et al., 1984; Berridge et al., 1997; Delfs et
al., 1998; Lecourtier and Kelly, 2007). To test whether the effect
of methylphenidate on social play depended on noradrenergic
neurotransmission, we next infused atomoxetine into brain
regions in which methylphenidate was found to inhibit social
play behavior.

Materials and Methods

Animals. Male Wistar rats (Charles River) arrived in our animal facility
on postnatal day (P) 21. They were housed in groups of four in 40 X 26 X
20 (I X w X h) cm Macrolon cages under controlled conditions (i.e.,
temperature 20-21°C, 55—-65% relative humidity, and 12/12 h light cycle
with lights on at 7:00 A.M.). Food and water were available ad libitum.
During the first 6 d after arrival, the rats were handled at least twice. All
experiments were approved by the Animal Ethics Committee of Utrecht
University and were conducted in accordance with Dutch legislation
(Wet op de Dierproeven, 1996) and European regulations (Guideline
86/609/EEC).

Surgical procedures. The surgical procedures were based on previous
experiments (Trezza et al., 2011a; Trezza et al., 2012; van Kerkhof et al.,
2013a, 2013b). On P26 P27, the rats were anesthetized subcutaneously
with 0.08 ml/100 g Hypnorm (fentanylcitrate 0.315 mg/ml and fluanison
10 mg/ml; Janssen) and positioned into a stereotactic frame (David Kopf
Instruments). Guide cannulae (24 gauge microblasted thin-walled stain-
less steel; Cooper’s Needleworks) were implanted bilaterally. The cannu-
lae were aimed 0.5 mm above the anterior cingulate cortex [coordinates:
anterior—posterior (AP) +2.6 mm from bregma; medial-lateral (ML) *
0.8 mm from the midline; dorsal-ventral (DV) —2.4 mm from skull
surface], prelimbic cortex (coordinates: AP +2.6 mm; ML * 0.8 mm;
DV —3.2 mm), infralimbic cortex (coordinates: AP +2.6 mm; ML * 0.8
mm; DV —4.1 mm), medial/ventral orbitofrontal cortex (coordinates:
AP +3.3 mm; ML = 0.8 mm; DV —5.3 mm), ventrolateral orbitofrontal
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cortex (coordinates: AP +3.3 mm; ML = 1.9 mm; DV —4.2 mm), me-
diodorsal thalamus (coordinates: AP —2.4 mm; ML * 0.8 mm; DV —5.3
mm), habenula (coordinates: AP —3.0 mm; ML * 0.8 mm; DV —4.7
mm), 1.0 mm above the nucleus accumbens shell (coordinates: AP
+1.5mm; ML + 0.8 mm; DV —5.3 mm), or BLA (coordinates: AP —1.9
mm; ML * 4.4 mm; DV —7.8 mm). Coordinates were based on previous
experiments (Trezza etal., 2011a, 2012; van Kerkhof et al., 2013a, 2013b)
or determined by pilot placements in 28-d-old rats. Cannulae were se-
cured with stainless steel screws and dental acrylic. Stainless steel stylets
(29 gauge) were inserted into the guide cannulae to maintain patency.
After surgery, rats were individually housed for 4 d to recover, after which
they were housed with their original cage mates.

Drugs and infusion procedures. Methylphenidate-HCI (5.0 wg/0.3 ul;
Sigma) was dissolved in saline; vehicle infusions contained saline only.
Atomoxetine-HCI (10.0 ng/0.3 ul; Tocris Bioscience) was dissolved in
50% dimethylsulfoxide (DMSO)/50% saline; vehicle infusions consisted
of 50% DMSO/50% saline. The potential neurotoxicity of DMSO may be
a point of concern when using it as an injection vehicle. Neurotoxic
effects of DMSO have been reported after 10 systemic injections (Caval-
etti et al., 2000); however, this treatment schedule had only marginal
effects on behavior (Authier etal., 2002). In our studies, DMSO was given
for a maximum of three times in a small amount and volume. Further-
more, our histological analysis did not reveal any sign of tissue damage in
rats infused with DMSO. Because we found no major differences in
behavior between animals that received infusions with saline (the vehicle
for methylphenidate) or DMSO (the vehicle for atomoxetine), we con-
sider it unlikely that neurotoxic effects of DMSO have influenced the
data. Drug doses were based on previous studies (Zheng et al., 2008; Tye
et al., 2010) and pilot experiments. Infusion procedures were as de-
scribed previously (Trezza et al., 2011a, 2012; van Kerkhof et al., 2013a,
2013b). In short, bilateral infusions were administered using 30-gauge
injection needles (Bilaney) that were connected to 10 ul Hamilton mi-
crosyringes by polyethylene (PE-20) tubing. Over 60 s, 0.3 ul of drug or
vehicle solution was infused using a syringe pump (model 975A; Harvard
Apparatus) and the injectors were left in place for another 60 s to allow
for diffusion. After the procedure, stylets were replaced and animals were
left in a holding cage for 5 min before testing.

Behavioral testing. Experiments were performed as described previ-
ously (Trezza and Vanderschuren, 2008; Vanderschuren et al., 2008) in a
sound-attenuated chamber under red light conditions. The testing arena
was a Plexiglas cage (40 X 40 X 60 cm; 1 X w X h) with ~2 cm of wood
shavings covering the floor. Animals were paired with an unfamiliar
partner (i.e., not a cage mate). Animals in a test pair did not differ >10 g
in body weight. Animals arrived in the facility at P21 and underwent
surgery on P26 or P27. After surgery, the rats were habituated to the
experimental procedures on 2 consecutive days. On the first habituation
day (P32), rats were individually placed into the test cage for 10 min. On
the second habituation day (P33), the animals were socially isolated for
2.5 h. Pairs of rats were then infused with vehicle solutions and placed
into the test cage for 15 min to habituate them to the infusion and testing
procedures. On the third day (P34), which was the first test day, rats were
isolated for 2.5 h. Both rats in a pair were then simultaneously infused
with either drug (methylphenidate or atomoxetine) or vehicle before
testing. On the second test day (P36), the animals were also isolated for
2.5 h and treatments were reversed so that animals that received drug
(methylphenidate or atomoxetine) treatment on the first test day now
received vehicle and vice versa. The first and second test day were sepa-
rated by a wash-out day (P35) during which the animals received no
treatment and were not tested. Therefore, the effects of methylphenidate
and atomoxetine on social play behavior were investigated using a
within-subjects design except for the experiment in which methylpheni-
date was infused into the BLA. Because of technical issues, in this expe-
riment, two independent groups of animals received either vehicle or
methylphenidate and were tested once.

In the first set of experiments, we determined the brain regions in
which methylphenidate affected social play behavior by infusing it into
the anterior cingulate cortex, prelimbic cortex, infralimbic cortex, medi-
al/ventral orbitofrontal cortex, ventrolateral orbitofrontal cortex, medi-
odorsal thalamus, habenula, nucleus accumbens shell, or BLA. We have
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2007).

previously found that the effect of methylphenidate on social play beha-
vior relies on noradrenergic neurotransmission (Vanderschuren et al.,
2008). Therefore, in the second, independent set of experiments, we
tested the hypothesis that intracranial administration of methylpheni-
date inhibits social play behavior through a noradrenergic mechanism of
action by infusing atomoxetine into the brain regions in which we found
methylphenidate to reduce social play behavior.

Testing consisted of placing a pair of animals into the arena for 15 min.
Behavior of the animals was recorded using a camera with zoom lens,
video tape recorder, and television monitor. The behavior of the rats was
assessed using Observer 5.1 software (Noldus Information Technology).
The structure of social play behavior in rats has been described previously
in detail (Bolles and Woods, 1964; Baenninger, 1967; Poole and Fish,
1975; Panksepp and Beatty, 1980; Pellis and Pellis, 1987; Pellis et al., 1989,
for reviews see Panksepp et al., 1984; Vanderschuren et al., 1997; Pellis
and Pellis, 1998; Trezza et al., 2010). In rats, a bout of social play behavior
starts with one rat soliciting (“pouncing”) another animal by attempting
to nose or rub the nape of its neck. The animal that is pounced upon can
respond in different ways. If the animal that is pounced upon responds by
evading, the soliciting rat may start to chase it, thus making another
attempt to launch a play bout. The solicited animal may also rear toward
the soliciting animal and the two animals may rapidly push, paw, and
grab each other (“boxing”). If the animal that is pounced upon fully
rotates to its dorsal surface, “pinning” is the result, meaning one animal
lying with its dorsal surface on the floor with the other animal standing
over it. From this position, the supine animal can initiate another play
bout by trying to gain access to the other animal’s neck. Therefore, during
social play, pouncing is considered an index of play solicitation and

Schematic representation of brain sections with microinjection placements in the anterior cingulate cortex (ACC),
prelimbic cortex (PrL), infralimbic cortex (IL), medial/ventral orbitofrontal cortex (MO/V0), and ventrolateral orbitofrontal cortex

MD Thalamus

Schematic representation of brain sections with microinjection placements in the nucleus accumbens (NAc) shell,
basolateral amygdala (BLA), habenula, and mediodorsal (MD) thalamus. (Adapted with permission from Paxinos and Watson,
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pinning can be regarded as the terminal com-
ponent of a single play bout as well as a releaser
ofa prolonged play bout (Poole and Fish, 1975;
Panksepp and Beatty, 1980; Pellis and Pellis,
1987; Pellis et al., 1989). Pinning and pouncing
frequencies can be easily quantified and are
considered the most characteristic parameters
of social play behavior in rats (Panksepp and
Beatty, 1980). Pinning and pouncing usually
occur very rapidly and are of short duration.
Therefore, scoring their frequency is more in-
formative than scoring their duration. We have
also found that pinning and pouncing are very
reliable play parameters that occur consistently
and with considerable frequency during play-
ful encounters (see also Panksepp and Beatty,
1980; Vanderschuren et al., 1995), whereas the
occurrence of chasing and boxing is quite vari-
able between pairs of animals and experiments.
During the tests for social play, the rats also
display social behaviors not directly associated
with play, such as sniffing or grooming the
partner’s body (Panksepp and Beatty, 1980;
Vanderschuren et al., 1995). Because social
play behavior in a rat strongly depends on the
playfulness of its partner (Pellis and McKenna,
1992; Trezza and Vanderschuren, 2008), in the
present study, both animals in a play pair re-
ceived the same treatment and a pair of animals
was considered as one experimental unit. The
following parameters were therefore scored per
pair of animals: (1) social behaviors related to
play: frequency of pinning and frequency of
pouncing; and (2) social behaviors unrelated to
play: duration of social exploration: the
amount of time spent in nonplayful social in-
teraction (i.e., sniffing or grooming).

To assess whether their effects on social play
were related to changes in general activity, the
effects of methylphenidate and atomoxetine on
horizontal locomotor activity were tested on
P37 as described previously (Trezza et al.,
2009a; Veeneman et al., 2011). In these experiments, a between-subjects
design was used, so that the animals received infusions with methyl-
phenidate, atomoxetine, or vehicle. The infusion protocol was similar to
the one described above. After the infusion procedure, rats were trans-
ferred to a plastic cage (50 X 33 X 40 cm, 1 X w X h) and their position
was tracked 5 times per second for 30 min using a video-tracking system
(EthoVision, Noldus Information Technology).

Histological confirmation of injection sites. Immediately after the loco-
motor activity test, the animals were killed using carbon dioxide inhala-
tion and microinjected with 0.3 ul of black ink over 1 min through the
guide cannulae, comparable to the drug infusion procedure. After the
infusion, animals were immediately decapitated and their brains re-
moved and immediately frozen. Cryostat sections (20 wm) were col-
lected and stained with cresyl violet. Placement of the microinjection
sides was determined using a light microscope according to the atlas
of Paxinos and Watson (2007). Only pairs in which both animals had
bilateral needle tracks terminating into the target area were included
in the final analysis of social play behavior (Figs. 1, 2). As mentioned
above, the effects of methylphenidate and atomoxetine on horizontal
locomotor activity was assessed per individual animal using a
between-subjects design. Therefore, each animal with correct cannula
placements was included in the analysis of locomotor activity even if
it was not used for the analysis of social play behavior because its
partner had incorrect placements (and the pair was therefore
excluded).

Statistical analysis. Pinning and pouncing frequencies and time spent
on social exploration (in seconds) were scored per pair of animals and

AP +4.20

AP +3.70

AP +3.20

AP +2.70
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expressed as mean + SEM. To assess the effect
of methylphenidate and atomoxetine adminis-
tration on social play behavior, data were ana-
lyzed using a paired-samples Student’s t test. In
the experiment in which methylphenidate was
administered into the BLA, data were analyzed
using an independent Student’s ¢ test. Hori-
zontal locomotor activity was assessed per
individual animal and expressed as mean *
SEM traveled distance (in centimeters) in 5
min bins. The effects of methylphenidate and
atomoxetine on locomotor activity were an-
alyzed using a one-way repeated-measures
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observed after administration of methylphenidate into the habe-
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Figure 4.

The effect of methylphenidate (mph; 5.0 g/0.3 wl, gray bar; social play behavior, n = 12; locomotor activity:
vehicle,n = 7; methylphenidate, n = 9) or atomoxetine (ato; 10.0 £g/0.3 wul, black bar; social play behavior, n = 10; locomotor
activity: vehicle, n = 12; atomoxetine, n = 9) administration into the infralimbic cortex on social play behavior. Data are presented
asmean + SEM. Both methylphenidate and atomoxetine infusion into the infralimbic cortex decreased pinning (4) and pouncing
(B). Methylphenidate did not affect and atomoxetine increase social exploration (C). Neither methylphenidate nor atomoxetine
infusion into the infralimbic cortex affected locomotor activity (D, E). *p < 0.05, **p = 0.01, paired ¢ test.

Administration of methylphenidate into the nucleus accum-
bens shell or the mediodorsal thalamus did not affect social play
behavior or social exploration (Table 1).

Atomoxetine infusion into the anterior cingulate cortex,
infralimbic cortex, BLA, and habenula decreases social play
Infusion of atomoxetine into the anterior cingulate cortex (social
play behavior: n = 8; locomotor activity: vehicle n = 8, atomo-
xetine n = 11) reduced pinning (¢, = 7.68, p < 0.001) and
pouncing (t,y = 7.74, p < 0.001) and increased the time spent on
social exploration (t,,=—3.84, p = 0.01) (Fig. 3A—C). However,
no effect on locomotor activity was found (Fy catment(1,17) =
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Table 1. Methylphenidate infusion into the prelimbic cortex, medial/ventral orbitofrontal cortex, ventrolateral orbitofrontal cortex, nucleus accumbens shell, and

mediodorsal thalamus did not affect social play or social exploration

Brain region Behavior Vehicle Methylphenidate Statistics

Prelimbic cortex (n = 9) Pinning 27.8 =52 319+ 2.9 tg = —0.80,p = 045
Pouncing 51183 528 =38 lgy= —019,p =079
Social exploration 270.7 =25 263.0 = 29.8 tg) = 0.28,p =079

Medial/ventral orbitofrontal cortex (n = 7) Pinning 280 =47 257 *+38 ty = 0.45,p = 0.67
Pouncing 410+ 6.0 340*+39 le) = 0.78,p = 0.47
Social exploration 489.8 = 8.6 5434 *= 23.6 e = —153,p =018

Ventrolateral orbitofrontal cortex (n = 7) Pinning 33.0 =34 286 = 5.2 tey = 0.74,p = 049
Pouncing 473 £ 42 476 £52 t = 0.06,p = 0.96
Social exploration 2169 = 6.4 218.0 = 20.8 te) = 049, p = 0.65

Nucleus accumbens shell (n = 10) Pinning 38354 344 +32 tgy = 051,p =062
Pouncing 644 =76 62.7 =54 ly = 0.15,p = 0.89
Social exploration 249.8 =99 293.1 =294 toy = —0.24,p = 0.25

Mediodorsal thalamus (n = 5) Pinning 336176 308 =39 tiqy = 0.47,p = 0.66
Pouncing 50.8 = 6.7 428=*+39 liyy = 0.97,p =039
Social exploration 198.0 = 4.8 1948 = 124 tyy = 0.17,p = 0.88

Data are expressed as mean = SEM.

Basolateral amygdala

p = 0.05) and pouncing (¢, = 3.53,p =

A Pinning B Pouncing C Sacial exploration 0-02) (Fig~ 6A>B) were reduced, whereas
1001 = veree 100 : : social exploration (¢ = —1.42, p = 0.20;
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s e PRTENN AP locomotor activity. Moreover, these ef-
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infusion of methylphenidate into the
Figure5. Theeffect of methylphenidate (mph; 5.0 1.g/0.3 il gray bar; social play behavior, n = 6; locomotor activity: n = 6) prelimbic, medial/ventral orbitofrontal

or atomoxetine (ato; 10.0 1g/0.3 wul, black bar; social play behavior, n = 6; locomotor activity: vehicle, n = 9; atomoxetine, n = 7)
administration into the BLA on social play behavior. Data are presented as mean + SEM. Both methylphenidate and atomoxetine
reduced pinning (A) and pouncing (B), but did not affect social exploration (C) or locomotor activity (D,E). *p << 0.05, independent

(mph) or paired (ato) t test.

0.16,p =0.70; F (585 = 31.69, p <0.001; Fine x treatment(s,85)
= 0.34, p = 0.89) (Fig. 3E).

Treatment with atomoxetine in the infralimbic cortex (social
play behavior: n = 10; locomotor activity: vehicle n = 12, ato-
moxetine n = 9) reduced pinning (¢, = 2.91, p = 0.02) and
pouncing (¢, = 3.55, p = 0.01) and increased social exploration
(toy=—2.27,p = 0.05) (Fig. 4A-C). Intra-infralimbic cortex ato-
moxetine did not alter locomotor activity (F caument(1,10) = 0-14,
p = 071’ Ftime(5,95) = 2678’ p < 00017 Ftime X treatment(5,95) =
0.4, p = 0.82; Fig. 4F).

After infusion of atomoxetine into the BLA (social play behavior:
n = 6; locomotor activity: vehicle n = 9, atomoxetine n = 7), a
reduction in pinning (¢, = 3.34, p = 0.02) and pouncing (¢, =
3.38, p = 0.02) (Fig. 5A, B) was found. Intra-BLA atomoxetine did
not affect social exploration (t5, = —1.78, p = 0.14; Fig. 5C) or
locomotor activity (Fyeatment(1,14y = 0-89 p = 0.36; Fyjpes.70) =
19.64, p < 0.001; Fyine x wreatment(s.70) = 1.95, p = 0.10; Fig, 5E).

When atomoxetine was infused into the habenula (social play
behavior: n = 7; locomotor activity: n = 8), pinning (., = 2.39,

and ventrolateral orbitofrontal cortex,
nucleus accumbens shell, and mediodor-
sal thalamus did not alter social play
behavior.

Prefrontal mechanisms underlying the inhibition of social
play behavior by methylphenidate

Methylphenidate and atomoxetine reduced social play behavior
after administration into the anterior cingulate and infralimbic
cortex. The prefrontal cortex is thought to mediate higher cogni-
tive functions such as attention, planning, cognitive flexibility,
and decision making (Miller and Cohen, 2001; Dalley et al., 2004;
Robbins and Arnsten, 2009; Schoenbaum et al., 2009). Because
social interactions are inherently complex and unpredictable, it is
likely that frontal cortical regions subserve executive functions in
social situations (Adolphs, 2003; Blakemore, 2008; Rilling et al.,
2008), including social play behavior (Siviy and Panksepp, 2011;
Vanderschuren and Trezza, 2014).

We have previously hypothesized that methylphenidate re-
duces social play by improving behavioral inhibition, that is, by
suppressing a vigorous form of social behavior that is associated
with diminished attention for the environment (Vanderschuren
etal., 2008). Indeed, systemic methylphenidate and atomoxetine
are known to improve behavioral inhibition in rats and humans,
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in paradigms such as the stop signal task Habenula

(SST) and the 5-choice serial reaction Pinning
time task (5-CSRTT) (Chamberlain and 80 D e
Sahakian, 2007; Eagle et al., 2008; Pattij 601 mm 105310

and Vanderschuren, 2008). However, it
has been reported recently that atomox-
etine increases SST performance via the
dorsal prelimbic and (ventrolateral) or-
bitofrontal, but not anterior cingulate or
infralimbic cortex (Bari et al., 2011).
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Moreover, infusion of atomoxetine into P
the infralimbic cortex did not affect pre- s
mature responding in the 5-CSRTT g0
(Economidou et al., 2012). Therefore, if §100
methylphenidate and atomoxetine reduce £ 50
social play through enhanced or exagger- 2

ated inhibition of behavior, then this as-
pect of inhibition is probably distinct
from the constructs analyzed in the SST
and 5-CSRTT. Alternatively, the prefron-
tally mediated inhibition of social play by
methylphenidate and atomoxetine may
be related to impaired behavioral flexibil-
ity. Thus, depletion of noradrenaline
from the ventromedial prefrontal cortex, including the infralim-
bic cortex (McGaughy et al., 2008) or the medial prefrontal cor-
tex, including both the anterior cingulate and prelimbic cortex
(Tait et al., 2007), disrupted extradimensional shifting in an at-
tentional set-shifting task. Remarkably, although atomoxetine
reversed the set-shifting deficit produced by noradrenergic de-
pletion, it disrupted performance in sham-lesioned rats (New-
man et al., 2008). In the context of social play, this suggests that
noradrenergic mechanisms in the prefrontal cortex subserve the
cognitive flexibility necessary to be able to respond to the change-
able, often unpredictable behavior of a conspecific.

The finding that atomoxetine infusion into the anterior cin-
gulate and infralimbic cortex mimicked the effect of methyl-
phenidate on social play is consistent with a noradrenergic
mechanism of action of methylphenidate. Methylphenidate
blocks the reuptake of both dopamine and noradrenaline (Ferris
and Tang, 1979; Ritz et al., 1987) and reuptake of dopamine in the
prefrontal cortex mainly occurs through the noradrenaline trans-
porter (Tanda et al.,, 1997; Yamamoto and Novotney, 1998;
Morén et al., 2002). Therefore, intra-prefrontal blockade of the
noradrenaline transporter also increases prefrontal dopamine
neurotransmission. However, our previous findings that the ef-
fects of methylphenidate and amphetamine on social play beha-
vior were not influenced by pretreatment with a dopamine
receptor antagonist (Vanderschuren et al., 2008; Achterberg et
al., 2014) indicate that enhanced prefrontal dopamine neu-
rotransmission does not underlie the play-suppressant effects of
methylphenidate and atomoxetine.

We have reported previously that functional inactivation of
medial prefrontal subregions, i.e., the prelimbic, infralimbic, and
medial/ventral orbitofrontal cortex, inhibits social play (van
Kerkhof et al., 2013a). Interestingly, of these regions, only the
infralimbic cortex was involved in the play-reducing effects of
methylphenidate and atomoxetine. Together, these findings pro-
vide a view into the heterogeneity of the prefrontal functions
involved in social play (Pellis et al., 2006; Bell et al., 2009). There-
fore, in keeping with the functional heterogeneity of the prefron-
tal cortex (Chudasama et al., 2003; Killcross and Coutureau,
2003; Peters et al., 2009; Gourley et al., 2010), noradrenergic

Figure 6.

0.001, paired ¢ test.

N © 1o 9
g methylphenidate/atomoxetine

Achterberg, van Kerkhof et al. ® Methylphenidate and Social Play

(@)

Pouncing

Social exploration

-3
E=]
N
o
o

Frequency
» o

o o
Duration (s)
N w

o o

o o

»N
(=]
-
=)
1=

0 0

N

Q ) ) °
ug methylphenidate/atomoxetine

Q ) o
pg methylphenidate/atomoxetine

Locomotor activity mph E Locomotor activity ato
0 E 2500
© 0ug mph E © 0pgato
o - 5pug mph - 2000 - 10 pg ato
o
3 1500
0 £
© 1000
£
0 § so0
0 o o+
N S e e D P S
Time (min) Time (min)

The effect of methylphenidate (mph; 5.0 1.g/0.3 wl, gray bar; social play behavior, n = 9; locomotor activity:n = 9)
or atomoxetine (ato; 10.0 ug/0.3 wul, black bar; social play behavior, n = 7; locomotor activity: n = 8) administration into the
habenula on social play behavior. Data are presented as mean + SEM. Both methylphenidate and atomoxetine infusion into the
habenula decreased pinning (4) and pouncing (B), but not social exploration (C) or locomotor activity (D, E). *p =< 0.05, ***p <

mechanisms may underlie the functional involvement of the in-
fralimbic and anterior cingulate, but not prelimbic and orbito-
frontal cortex, suggesting that these prefrontal subregions are
involved in distinct executive aspects of social play behavior.

Limbic subcortical mechanisms underlying the inhibition of
social play behavior by methylphenidate

Methylphenidate and atomoxetine infusion into the BLA and the
habenula, but not the nucleus accumbens shell or mediodorsal
thalamus, suppressed social play behavior. Noradrenaline has
been shown to reduce neuronal activity in the BLA via a2-
adrenoceptors (Ferry et al., 1997; Buffalari and Grace, 2007;
Johnson et al., 2011). Because stimulation of a2-adrenoceptors
underlies the play-suppressant effect of methylphenidate
(Vanderschuren et al., 2008), the inhibition of social play by
methylphenidate and atomoxetine may be the result of reduced
BLA output. This is consistent with previous findings that
amygdala lesions reduce social play in male rats (Meaney et al.,
1981; Daenen et al., 2002). In addition, systemic treatment with
low doses of methylphenidate has been reported to decrease
glucose metabolism in the habenula (Porrino and Lucignani,
1987), suggesting that enhancement of noradrenergic neu-
rotransmission by methylphenidate and atomoxetine results
in decreased habenula activity. Indeed, we have shown re-
cently that functional inactivation of the habenula decreased
social play behavior (van Kerkhof et al., 2013b).

Social play is a highly rewarding activity (Vanderschuren,
2010; Trezza et al., 2011b) and both the BLA and habenula are
involved in reward processes (Baxter and Murray, 2002; Cardinal
etal., 2002; Lecourtier and Kelly, 2007; Hikosaka, 2010; Morrison
and Salzman, 2010). Indeed, we have found recently that
endocannabinoid-mediated facilitation of social play, which
may be related to increased reward value, occurs within the
BLA (Trezza et al., 2012). Therefore, functional inhibition of the
BLA and habenula by methylphenidate and atomoxetine may
have reduced the positive emotional properties of social play.
Alternatively, methylphenidate and atomoxetine in the BLA and
habenula may have influenced cognitive aspects of social play,
perhaps in concert with prefrontal regions (Pitkdnen, 2000; Sah
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et al., 2003; Lecourtier and Kelly, 2007). For example, habenula
lesions have been shown to disrupt attention (Lecourtier and
Kelly, 2005) and the BLA has been implicated in behavioral fle-
xibility (Schoenbaum et al., 2003; Churchwell et al., 2009). Last,
both the habenula and BLA are involved in stress- and anxiety-
related behaviors (Phelps and LeDoux, 2005; Roozendaal et al.,
2009; Hikosaka, 2010; Shin and Liberzon, 2010), but we consider
it unlikely that changes in these latter processes explain the effects
of methylphenidate and atomoxetine on social play behavior.
Thus, intra-BLA and intra-habenula methylphenidate and atom-
oxetine did not affect social exploratory behavior, which is the
standard parameter used in the social interaction test of anxiety
(File and Seth, 2003). Moreover, pharmacological analysis of so-
cial play behavior has shown that anxiolytic or anxiogenic drugs
do not invariably increase or reduce social play, respectively
(Vanderschuren et al., 1997; Trezza et al., 2009a).

Neurocircuitry of social play behavior

Importantly, our present data show that the suppression of social
play behavior by methylphenidate and atomoxetine is not ex-
erted through a single brain region. Rather, methylphenidate and
atomoxetine act in a distributed network of brain regions, likely
affecting different emotional and cognitive aspects of social play
behavior at the same time, which results in a profound inhibition
of this behavior (Vanderschuren et al., 2008). The infralimbic
cortex, anterior cingulate cortex, BLA, and habenula may there-
fore be part of an interconnected functional network involved in
the modulation of social play behavior. Indeed, these four regions
have reciprocal connections with the locus ceruleus (Moore and
Bloom, 1979; Gottesfeld, 1983; Unnerstall et al., 1984; Jodo et al.,
1998; Pitkinen, 2000; Vertes, 2004; Hoover and Vertes, 2007;
Lecourtier and Kelly, 2007; Radley et al., 2008). Furthermore, the
intralimbic cortex has reciprocal connections with the anterior
cingulate cortex and both have reciprocal connections with the
BLA (Pitkdnen, 2000; Vertes, 2004; Hoover and Vertes, 2007).
The infralimbic cortex also sends a moderate innervation to the
habenula. Last, both the BLA and habenula send distributed out-
puts to the thalamus, which in turn innervates the prefrontal
cortex (Groenewegen, 1988; De Olmos et al., 2004; Lecourtier
and Kelly, 2007). Therefore, the four structures implicated in the
effects of methylphenidate and atomoxetine on social play are
intricately linked.

The social play parameters analyzed in the present study, pin-
ning and pouncing, are the most characteristic behaviors ob-
served during social play behavior in rats (Panksepp and Beatty,
1980). The present study suggests that these behaviors can be
modulated by altering the underlying cognitive and emotional
processes in social play, resulting in what may appear to be uniform
reductions in social play. Clearly, even though manipulating norad-
renergic transmission in prefrontal and subcortical limbic structures
can have similar consequences for pinning and pouncing, the under-
lying cognitive and emotional processes are likely to be different.
Therefore, future studies using place conditioning and operant con-
ditioning can reveal whether these reductions in play behavior are
the result of changes in the rewarding (Trezza et al., 2009b), cognitive
(Achterberg et al., 2012), or motivational properties (van Kerkhof et
al., 2012) of social play.

Conclusion

This study provides new insights into the neural underpinnings
of a developmentally important social activity, as well as the be-
havioral mechanism of action of two drugs widely used for the
treatment of ADHD. Our findings suggest that an interplay be-
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tween limbic cortical and subcortical structures underlies the in-
tegration of cognitive and emotional information during the
proper execution of a playful social encounter.
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