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Learning Modifies Odor Mixture Processing to Improve
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Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory
circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system
in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use
calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with
appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol be-
comes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to
investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent
modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant

background odors.
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Introduction

Learning and memory are essential brain functions that enable
animals to survive in diverse and constantly changing environ-
ments. The insect olfactory system has been a canonical model for
understanding the fundamental mechanisms of learning and
memory due to its smaller size, easier access for different experi-
mental approaches, and several kinds of behavioral plasticity to-
ward odors. For instance, honey bees forage on different types of
flowers that rapidly come into and go out of bloom and whose
occurrence may vary drastically depending on geographical and
seasonal variables. In this context, honey bees have been shown to
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adapt, thanks to a keen ability to detect and discriminate a wide
range of olfactory stimuli and to a rich repertoire of olfactory
learning behaviors that include nonassociative learning as well as
classical and operant conditioning (Menzel, 1990; Farooqui et al.,
2003; Smith et al., 2006; Fernandez et al., 2009; Locatelli et al.,
2013).

In insects, the mushroom bodies are primary brain sites for
olfactory learning and memory formation (Cassenaer and Lau-
rent, 2007; Keene and Waddell, 2007; Okada et al., 2007; Busto et
al., 2010; Strube-Bloss et al., 2011). However, recent studies have
revealed systematic changes in the spatiotemporal patterns that
encode odors at the antennal lobe (AL) as a consequence of dif-
ferent olfactory learning tasks (Faber et al., 1999; Sandoz, 2003;
Sandoz et al., 2003; Yu et al., 2004; Fernandez et al., 2009; Rath et
al., 2011; Locatelli et al., 2013). Additional lines of evidence have
also pointed to the AL as an important site for olfactory learning
and memory. For example, biogenic amines, such as octopamine
and dopamine, are released in the AL by neurons that convey
information about appetitive and aversive reinforcements, where
they merge with sensory input that represent the conditioned
odor (Hammer, 1993; Schwaerzel et al., 2003; Yu et al., 2004;
Riemensperger et al., 2005; Farooqui, 2007; Aso et al., 2010; Si-
nakevitch et al., 2011, 2013). Recently, we have found that octo-
paminergic neurons have varicose-like fibers that invade the
glomeruli of the AL, where olfactory sensory neurons interact
with local neurons (LNs) and projection neurons (PNs) (I. Si-
nakevitch, J.-Y.C., M.B., B.H.S., unpublished observation). In
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addition, blockade of octopamine receptors (AmOAL) in the
honey bee AL prevents associative olfactory learning (Farooqui et
al., 2003).

The AL is also an important site for nonassociative olfactory
learning (Das et al., 2011; Locatelli et al., 2013). In Drosophila,
olfactory habituation, a reduction of the animal’s olfactory re-
sponse induced by repeated exposure to the same odor, was
found to be regulated by glomerulus-specific synaptic plasticity at
local inhibitory synapses (i.e., connections from LNs to PNs)
(Das et al., 2011). It was shown that activity occurring at
glomerulus-specific PNs is necessary and sufficient to launch ol-
factory habituation and that a subset of local inhibitory synapses
(i.e., LN-PN) is strengthened during prolonged postsynaptic PN
activity (Sudhakaran et al., 2012).

In the current study, we combine optical recordings from PNs
with behavioral and computational analyses to characterize how
synaptic plasticity can alter odor representations in the AL after
associative olfactory learning in the honey bee. We found that the
spatiotemporal responses to binary mixtures across PNs in the
AL became more similar to a learned component and less similar
to anonlearned component after associative learning with appetitive
reward. A conductance-based computational model of the honey-
bee AL revealed that the plasticity at inhibitory synapses connecting
LNs and PNs is essential and might be sufficient for olfactory learn-
ing. We conclude that plasticity on synaptic inhibition into the PNs
enhances salient features of complex odor mixtures while it simul-
taneously depresses less informative components.

Materials and Methods

Experiments

Animals. Honey bee (Apis mellifera) pollen foragers (all females) were
collected at the entrance of two regular hives located at the Campus of the
University of Buenos Aires (34° 32" S; 58° 6" W). The bees were briefly
cooled and restrained in individual stages (Galizia and Vetter, 2004).
After recovery from cooling, bees were fed 5 ul of a 1.0 M sucrose solution
and remained undisturbed until feeding ad libitum in the evening. At the
laboratory, the bees were kept in a humid box at room temperature
(20°C-24°C) on a 12:12 h light:dark cycle. Training and testing sessions
were performed between 10:00 A.M. and 4:00 P.M. All experiments
started 1 d after capture.

Odor stimulation. Odors used were 1-hexanol and acetophenone (both
TCI America). A total of 100 ul of pure odor was loaded into 5 ml glass
vials before the experiments. The saturated headspace inside the vials was
used as the odor sample for stimulation. To generate samples, a defined
volume of the headspace was transferred into the syringe. When pure
odors were used, a 1 ml syringe was loaded first with 0.5 ml of the
headspace from the odor vial and that sample was combined with 0.5 ml
of clean air inside the syringe. To obtain the mixture, 0.5 ml of headspace
from the 1-hexanol vial and 0.5 ml from the acetophenone vial were
sequentially loaded into the syringe; thus, both headspaces were mixed
inside the syringe before using it for stimulation. Different syringes were
used for 1-hexanol, acetophenone, and the mixture to avoid contamina-
tion. To apply the odor to the honey bee, the syringe was inserted into a
computer-controlled device, the odorgun, which pushed the plunger of
the syringe at a constant speed of 1 ml/s. The content of the syringe was
injected into a charcoal-filtered air stream with a flow rate of 9 ml/s.
Thus, the final odor concentration delivered to the bee resulted in 1/20 of
the saturated headspace sample originally taken from the vials. The onset
and offset of the odor were synchronized with imaging from the imaging
acquisition software (TillVision, Till Photonics). During periods without
odor stimulation, the charcoal-filtered air stream ventilated continu-
ously the antennae. An exhaust 10 cm behind the bee removed the odors
from the experimental area. The same procedure for odor delivery was
used in training, testing, and imaging sessions.

Olfactory conditioning. Bees were subjected to appetitive olfactory con-
ditioning using the Proboscis Extension Response conditioning proce-
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dure (Bitterman et al., 1983). All training sessions consisted of 10
conditioning trials (see Fig. 2). During each trial, a honey bee was posi-
tioned facing toward the odorgun. Twenty seconds later, the odor started
and lasted 1 s. The reward was applied coincident with the odor offset,
which was indicated to the experimenter by an LED that was not visible to
the honey bee. In this moment, the antennae were touched with 2.0 m
sucrose solution, which elicits the proboscis extension. The sucrose so-
lution was rapidly moved to the proboscis, and the bee was allowed to
ingest 0.4 ul delivered with a Gilmont micrometer syringe. Twenty sec-
onds after the reward was consumed, the honey bee was returned to a
resting container until the next trial. The intertrial interval was 10 min.
During training trials, the response of each subject was recorded as pos-
itive if the subject extended its proboscis during the stimulation with the
odor and before stimulation with sucrose. The 1 s delay between odor
onset and reward allowed determination of learning performance during
the training session. No reward was presented during the test session or
during calcium imaging.

Projection neuron staining. The head of the bee was fixed to the stage
with soft dental wax (Kerr Sybron Dental Specialties). A window was cut
in the head capsule dorsal to the joints of the antennae and ventral to the
medial ocellus. The glands were carefully moved aside until the a-lobes
were visible, which serve as spatial reference for staining. PNs were
stained by backfilling with the calcium sensor dye Fura-dextran (potas-
sium salt, 10,000 MW; Invitrogen). To do that instead of it, the tip of a
glass microelectrode coated with dye was inserted into both sides of the
protocerebrum, dorsolateral of the a-lobes where the antenno-
protocerebral tracts enter the lateral calyces of the mushroom bodies (see
Fig. 2) (Kirschner et al., 2006). The dye bolus dissolved into the tissue in
3-5 s. The window was closed using the same piece of cuticle that had
been previously removed, and it was sealed with eicosane (Sigma-
Aldrich). Twenty minutes after staining, the bees were fed with 1.0 M
sucrose solution and left undisturbed until the next day. Before imaging,
the antennae were immobilized pointing forward using eicosane. The
head capsule was opened, and the brain was rinsed with Ringer’s solution
(in mm as follows): NaCl, 130; KCI, 6; MgCl,, 4; CaCl,, 5; sucrose, 160;
glucose, 25; and HEPES, 10; pH 6.7, 500 mOsmol (all chemicals from
Sigma-Aldrich). Glands and trachea covering the ALs were removed.
Only ALs that presented homogeneous staining of all visually accessible
glomeruli were used for imaging. Only one AL per animal was used for
imaging. Body movements were prevented by gently compressing the
abdomen and thorax with a piece of foam. A second hole in the head
capsule was cut between the antennae and the mandibles, and the com-
pact structure of muscles, esophagus, and supporting chitin was lifted
and put under slight tension (Mauelshagen, 1993). Finally, the brain was
covered with Kwik-sil (WPI). After preparation, bees were mounted in
the microscope and were allowed to recover for 20 min before starting
with imaging.

Imaging. Calcium imaging was done using an EMCCD iXon camera
(ANDOR) mounted on an upright fluorescence microscope (Olympus
BX-50WI) equipped with a 20X dip objective, NA 0.95 (Olympus).
Filter- and mirror-set: 505 DRLPXR dichroic mirror and 515 nm LP filter
(Till Photonics). Excitation light was provided by a Polychrome V (Till
Photonics), which alternated between 340 and 380 nm for excitation
light. Acquisition protocols were written using TillVision software (Till
Photonics). Sampling rate was 8 Hz. Spatial resolution was 125 X 125
pixels binned on a chip of 1000 X 1000 pixels. The intensity of the fluo-
rescence lamp was controlled from the imaging acquisition software to
get exposure times of 20 and 5 ms for 340 and 380 nm, respectively. Each
imaging session consisted of 9 measurements of odor-elicited activity in
the AL (3 measurements with 1-hexanol, 3 with acetophenone, and 3
with the mixture). The 3 odors were presented in random order and
separated by 1 min intervals. Each measurement lasted 10 s, and the odor
lasted from 4 to 5 s. The three measurements of each odor were averaged
for the analysis.

Imaging analysis. Imaging analysis was done using software written in
IDL (Research Systems) by Giovanni Galizia (Universtity Konstanz, Ger-
many) and in R by Emiliano Marachlian. Each measurement consisted of
two sequences of 80 fluorescence images each, obtained by alternating
340 and 380 nm excitation light (Fis,, Fisg, where i is the number of the
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image from 1 to 80). For each pair of images Fi, we calculated pixel-wise
the ratio Ri = (Fisyg nm/Fisgo nm) X 100 and subtracted the background
Rb, obtained by averaging the Ri values 1 s before odor onset [Rb = 1/8
(Ryg + ... + Ry3)]. The resulting values (AR in figures) represent the
change of fluorescence from the reference window and are proportional
to the changes in the intracellular calcium concentration. The analysis of
odor-induced activation patterns in the present study was based on sig-
nals from 20 glomeruli that were identified on the basis of their morphol-
ogy and position using a published atlas of the honey bee AL (Flanagan
and Mercer, 1989; Galizia et al., 1999). Glomeruli are visible in the raw
fluorescence images at 380 nm excitation light after backfilling the PNs
with FURA (see Fig. 1B). In addition, we used a tool written in IDL by
Mathias Ditzen (Freie Universitit Berlin, Germany) that segments the
image based on the degree of correlated activity between neighboring
pixels. Pixels stemming from the same glomerulus are highly correlated.
This provides images in which glomeruli are discrete units separated by
dark boundaries (see Fig. 1B). The glomerular activation was calculated
by averaging activity in a square area of 7 X 7 pixels that correspond to
23 X 23 wm and fit within the limits of the glomeruli. The temporal
detail of the activity was collapsed averaging the AR from 250 to 750 ms
after odor onset.

Response patterns analysis. It has been proven that odor coding in the
antennal lobe (input and output) (Sachse et al., 1999; Sachse and Galizia,
2002) relies on a population coding scheme rather than on activation of
odor-specific glomeruli or neurons. Therefore, the analysis performed
along this study was based on neuronal activation patterns as a whole.
The odor-elicited activation patterns used for analysis consisted of vec-
tors of 20 elements that represent the activity measured in 20 identified
glomeruli during a time window from 250 to 750 ms after odor onset.
The analysis was based on Pearson’s correlation coefficients between
pairs of patterns to describe and compare the degree of similarity be-
tween the neural representation of the same odor in different bees or
between the representation of different odors in the same bee. The cor-
relation between odor representations in different bees was used as a
measure of variability across bees. For this aim, the pattern obtained
from each bee was correlated against the patterns from all other bees
from the same treatment group. Thus, in case of the untrained group, we
calculated 55 correlation values that were obtained from pairing the
patterns from 11 untrained bees; and in case of the trained bees (aceto-
phenone and 1-hexanol), we calculated 28 correlation values in each
group that were obtained from pairing patterns from 8 bees in each
trained group. Figures 1F and 2D show the average and SEM of the
correlation values that characterize the variability within the group of
odor patterns indicated in the graphs. For statistical purposes, all Pear-
son’s correlation values were subjected to Fisher z-transformation and
the transformed data were analyzed using ANOVA.

The analysis of the effect of training was based on within animal com-
parisons, in which the pattern elicited by the mixture was compared with
a “predicted pattern” that was calculated for each individual animal and
represented the pattern expected for an untrained bee. The first step to
obtain the predicted pattern for the mixture was to calculate the response
of each glomerulus to the mixture. The algorithm used to predict the
response of each glomerulus to the mixture was made by fitting the data
from untrained bees to a linear equation of the form, aRg,.,. +BRg,.. +
Y = Rg,,...» where Rg represents the response measured in the g glomer-
ulus upon stimulation with 1-hexanol, acetophenone, and the mixture. A
set of parameters («, B, and ) was obtained for each glomerulus. The 20
fitted planes were in all cases highly significant (p < 0.001 in all cases).
Afterward, the linear fits were used to calculate the predicted response to
the mixture for each glomerulus in untrained and trained bees. Figure 2F
shows the average of the difference between the measured and the pre-
dicted response to the mixture in each glomerulus. The statistical analysis
was based on paired comparisons between the measured and the pre-
dicted response in each bee (paired t test for each column in the graphs;
Neonwol = 1130, = 80y = 8). Afterward, the predicted glomerular
responses were combined to generate a predicted pattern elicited by the
mixture. We calculated in each bee the Pearson’s correlation coefficient
between the patterns elicited by each one of the components and the
pattern elicited by the mixture and called it “real correlation.” In addi-
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Table 1. Types of connection and connecting probability in the antennal lobe
neural network model

Connecting
Source unit Target unit probability
LN—lateral inhibition LN-lateral inhibition (belong to the same GL) 0
LN—lateral inhibition (belong to different GL) 0.4
Any LN—global inhibition 0.3
PN-belong to the same GL 0
PN- belong to different GL 0.5
LN-global inhibition Any LN-lateral inhibition 0.4
Any LN—global inhibition 0.1
Any PN 0.3
PN Any LN-lateral inhibition 0.4
Any LN—global inhibition 0.4

tion, we calculated the correlations between the patterns elicited by each
one of the components and the “predicted pattern” to the mixture and
called it “predicted correlations.” Real and predicted correlations be-
tween the mixture and the components were compared to determine
whether the mixture was as similar to the components as it was expected
or whether the representations of the mixture were biased toward the
representation of one component. Figures 2H and 3C show the difference
between real and predicted correlations between the mixture and each
one of the components. For statistical purposes, the correlation values
were corrected using the Fisher’s z-transformation, and the analysis was
based on paired ¢ test of the z-transformed real and predicted correlation

values of each bee (n,,,,;,; = 1150y = 81, = 8).

Computational model

Network geometry. The honey bee antennal lobe model contains 20 glom-
eruli. Each glomerulus consists of 12 local neurons (lateral inhibition)
and 5 projection neurons. In addition, there are 40 local neurons con-
tributing to global inhibition. Overall, the neural network model of AL
consists of eight types of connection (see Fig. 4A; Table 1). Each connec-
tion is set up randomly based on the probability listed in Table 1. In this
AL model, totally, there are 28,719 synapses between LNs, 12,629 syn-
apses from LNs to PNs, and 11,245 synapses from PNs to LNs.

Model of individual neurons. Each PN and LN was modeled by a single
compartment that included voltage or Ca?*-dependent currents de-
scribed by Hodgkin—-Huxley kinetics (Hodgkin and Huxley, 1952). The
membrane potentials of PN and LN are governed by the following ordi-
nary differential equations:

Cm(dVPN/dt) = ljeak = Ing — Ix = Iy — Liach = Lyim

(1)

Ixe = Toapa—a —

Cm(dVI/N/dt) = Ileak - INa —Ix— Iy = I, — Ih -

IKL - IGABA—a
- InACh - Istim (2)

For PNs, C,, = 2.9 X 10 * uF, g¢; = 0.012 mS/cm?, and E, = —95
mV. For LNs, C,, = 1.43 X 10 * uF, g¢; = 0.018 mS/cm?, and Ey; =
—95 mV. For LNs, the nonspecific leakage current (mixed Na®, K¥,
Cl7) is Lpp = Siear (V = Ejour)> where g, = 0.05 mS/cm? and E,,,;, =
—70 mV. For PN, the g, = 0.01 mS/cm? and E,,,, = —70 mV.

The intrinsic currents, including a fast sodium current, I, a fast
potassium current, I, a low threshold transient Ca?" current, I patran-
sient potassium A-current, 1,, and a hyperpolarization-activated cation
current, [;,, are described by Equation 3 as follows:

I=gm"hN(V—E) (3)

where the maximal conductances for PNs are gy,, = 100 mS/cm?, g, = 10
mS/cm?, g = 2 mS/cm?, g, = 10 mS/cm?, and g, = 0.02 mS/cm?. For
LNs, gy, = 100 mS/cm?, g = 10 mS/cm?, and g = 1.75 mS/cm > Forall
cells, Ey, = 50 mV, Ex = —95mV, and E, = 140 mV. For PNs, E,, =
—40 mV. The gating variables 0 = m(t), h(t) = 1 satisfy the following:
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Table 2. Current dynamics | = g m"h"(V — E) used in antennal lobe neural
network model

Cell Currents  Current dynamics

PNandLN /[,

M=3N=1,

al =032 X (=37 — Wiexp(13 — (V + 50))/4) — 1);

B1=10.28 X (V + 10)/(exp(((V + 50) — 40)/5) — 1);

m,, = a1/(al + B1);

7, = (a1l + B1);

a2 = 0.128 X exp((17 — (V + 50))/18);

B2 = 4/(exp((40 — (V + 50))/5) + 1);

h,, = a2/(a2 + B2);

7, = (a2 + B2)

M=4N=0;

al =0.032 X (— 35— W/(exp((— 35— 1)/5) — 1);

B1=0.5 X exp((— 40 — 1)/40);

m,, = a1/(al + B1);

7, = (a1l + B1)

M=2%N=1,

m,, = 1/(1+ exp(—(V + 59)/6.2));

7, = (1/(exp(—(V + 131.6)/16.7) + exp((V + 16.8)/18.2)) +
0.612)/4.5738;

h,, = 1/(1 4 exp((V + 83)/4));

7, = (30.8 + (211.4 + exp((V + 115.2)/5)/(1 + exp((V + 86)/
3.2))/3.7372

M=4N=1;

m,, = 1.0/(1 + exp(—(V + 60)/8.5));

7, = (1.0/(exp((V + 35.82)/19.69) + exp(— (V + 79.69)/
12.7)) + 0.37)/3.9482;

h..=1.0/(1 + exp((V + 78)/6));

IfV < —63

7, = 1.0/((exp((V + 46.05)/5) + exp(— (V + 238.4)/37.45)))/
3.9482;

IfV=—63

7, = 19.0/3.9482

Voltage dependence (Cindicates close state; 0 indicates open state):
o

(=0
B
h.=1/(1 + exp((V + 75)/5.5));
7, = (20 + 1000/(exp((V + 71.5)/14.2) + exp(—(V + 89)/
11.6)));
a=h/T
B=0—h)r,
Calcium dependence (P, indicates unbound form; P, indicates
bound form; 0, implies locked state):
k1 k3
Py +2@<=;P;0+P1<=0,;
k2 k4

PNandLN

PN I

PN Iy

PN I,

K1=25X10"mu “k2=4X10"*ms ", k3=01ms ",
and k4 = 0.001ms "

M=2%4N=1,

m,, = 1/(1+ exp(—(V + 52)/7.4));

T, = (3 + 1/(exp((V + 27)/10) + exp(—(V + 102)/15)))/6.8986;

h,, = 1/(1 4 exp((V + 80)/5));

7, = (85 + 1/(exp((V + 48)/4) + exp(—(V + 407)/50)))/3.7372

IN I

dm/dt = (m..(V) — m)/7,,(V); dh/dt = (h.(V) — h)/7,(V)
(4)

where m_(V), 7,,(V), h,(V), and 7,(V) are nonlinear function of V'
derived from experimental recordings of ionic currents. Details of these
nonlinear functions are given in Table 2. For all cells, intracellular Ca**
dynamics were described by a simple first-order model as follows:

d[Ca]ldt = —A + It — ([Ca] — [Cal..)/T (5)

where [Ca] .. = 2.4 X 10 ~* mM is the equilibrium intracellular Ca?*
concentration, A = 0.518 X 10 * mm + cm?/(ms rA), and 7= 5 ms.
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Synaptic currents. Fast GABA and cholinergic synaptic currents are
given by the following equation:

Isyn = gsyn[o](v - Esyn) (6)

where the reversal potential is E, ,, = 0 mV for cholinergic receptors
and Egyy = —70 mV for fast GABA receptors. The fraction of open
channels [O] is calculated according to Equation 7 as follows:

d[O]/dt = a(1 = [O][T] = B[O] (7)
For cholinergic synapses:
[T]=A X H(ty + ty — 1) X H(t — 1) (8)
and for GABAergic synapses as follows:
[T]=1/(1 + exp(=V(t) — V,lo) (9)

In Equation 8, H(x) is the Heaviside (step-) function, ¢, is the instant of
receptor activation, A = 0.5,and t,,,. = 0.3 ms. In Equation 9, V,, = —20
mV and o = 1.5. The rate constants, @ and 3, are « = 10 ms ' and 8 =
0.2 ms ' for GABA synapses and @« = 1 ms ' and B = 0.2 ms ' for
cholinergic synapses. The peak synaptic conductance was g;apa (1n-18) =
0.02 1S5 geapa (n-py = 0.02 1S5 g4 cn (pnv-Lvy = 0-3 1S,

We have tested models with different baseline connectivity strength
between AL neurons and found the network dynamics to be qualita-
tively similar to the results reported in the paper. We have also tested
the model dynamics for different connectivity patterns (probability of
connections) to ensure that the results of our simulations are struc-
turally stable.

Olfactory stimulation. To mimic olfactory stimulation, stimulus-
specific patterns of current pulses were applied to the PNs and LNs based
on the same approach as in our previous studies (Bazhenov et al., 2001a,
b, 2005). The temporal profile of a full current pulse is illustrated in
Figure 4B. It starts with a rising exponential function at 500 ms with a
time constant = 100 ms, and followed by a decaying exponential func-
tion (starting at 1000 ms) with a time constant = 200 ms. Random
current fluctuation was varied between 5% and 10%. Each cycle of odor
stimulation is 2 s.

The spatial profile of an odor stimulus was characterized by a Gaussian
distribution (see Fig. 4C—E). In our study, different odors and their var-
ious binary mixtures were used. To maintain overall mixture concentra-
tion similar to individual components, the spatial patterns representing
individual components within a mixture were proportionally reduced
(see Fig. 4C,D) based on our previous results (Assisi et al., 2007; Ito et al.,
2009). Moreover, the spatial patterns of the stimulus across LNs provid-
ing global inhibition were tuned to randomly selected odor, and the ratio
was also proportionally reduced to maintain overall mixture concentra-
tion (see Fig. 4E).

Synaptic plasticity. A simple phenomenological model was used to
describe the facilitation of inhibitory connections (from LNs to PNs and
from LNs to LNs) during olfactory learning. Accordingly, the maximum
synaptic conductance was multiplied by a facilitation variable, F. Here,
F=1+ 1/2(F, + dF,,,— 1) X exp(— (t — 1,)/7,,) + 1/2(F; + dF,

post -
1) X exp(— (t = 1,)/7,,), where dF was the facilitating rate (dF,,,, = 0.15,
dF,,,,, = 0 for presynaptic facilitation; dF,,, = 0, dF,,,,, = 0.2 for postsyn-

aptic facilitation), 7,,, = 7,,, = 10 ms was the time constant of recovery,
F;was the value of Fimmediately before the i " spiking event (initial F; =
1), and (¢ — ;) was the time after i " spiking event. The initial value of the
GABA conductance was 0.02 uS. Presynaptic facilitation was based on
the spiking events occurring in presynaptic neurons. On the other hand,
the postsynaptic facilitation was based on the spiking events occurring in
postsynaptic neurons. The updated synaptic weights at the end of the last
learning cycle (at 6000 ms) were used as the new synaptic weights during
testing phase.

Principal component analysis (PCA). The response trajectory of the
entire PN population to a specific input was constructed by binning PN
spike trains in 20 ms bins and shifting the time bin with 5 ms steps. To
visualize PN responses, the 100 dimensional space of all PN activities was
then reduced to 3D olfactory space via PCA.
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Correlation coefficient between odor responses. Correlations between
odor responses were calculated based on spike count profile across all 100
PNis for a single trial (2 s). The correlation coefficients were calculated
before learning and compared with those after olfactory learning. The
changes of the correlation coefficients before/after learning were used to
compare simulation results with the experimental data.

Results
Variability in odor-elicited activation patterns in the AL
In the present work, we evaluated how associative learning mod-
ifies the way in which the antennal lobe network processes olfac-
tory information contained in odor mixtures. For this aim, we
performed calcium imaging of spatiotemporal activity patterns
elicited by two pure odors, 1-hexanol and acetophenone, and
their binary mixture across PN dendrites. The recorded patterns
correspond to the output of the AL and represent olfactory infor-
mation thatis conveyed to the mushroom bodies and lateral horn
through the lateral antenno-protocerebral tract (Galizia and
Rossler, 2010). The odors 1-hexanol and acetophenone were se-
lected for these experiments because they show minimal overlap
of the activity patterns elicited in the AL and because they are
comparable in terms of the amplitude and the number of glom-
eruli that are recruited. Figure 1A shows false-color pictures of
the activation patterns elicited by the pure odors and the mixture
in a representative honey bee. The figures correspond to the av-
erage of the activity between 250 and 750 ms after odor onset.
This time interval was selected for analysis because it includes the
time point at which odor patterns reach maximal separation after
odor onset and because it is the time interval during which
olfactory-based behavioral decisions occur in honey bees (Ditzen
etal., 2003; Fernandez et al., 2009). The analysis performed along
the imaging section is based on the responses measured from 20
specific glomeruli that could be identified across all honey bees
(Fig. 1B). Raw fluorescence and pixel-correlation images shown
in Figure 1B were used to aid in identification of glomeruli by
comparison with the honey bee AL atlas (Flanagan and Mercer,
1989; Galizia et al., 1999) (see Materials and Methods). Figure 1C
shows the average responses to acetophenone, 1-hexanol, and the
mixture in the 20 identified glomeruli across 11 control bees.
Pearson’s correlation coefficients between response patterns
were used to evaluate similarity between patterns elicited by the
pure odors and the mixture. Figure 1D shows no correlation
between the pure odors (ace-hex), as might be expected from the
low overlap between their respective patterns (Fig. 1 A,C). On the
other hand, the correlations between the pure odors and the mix-
ture (ace-mix; hex-mix) were significantly higher, consistent
with the fact that the pure odors and the mixture share many
active glomeruli. However, pooling the correlation coefficients
obtained from different bees, as in Figure 1D, occludes the high
variability that exists across animals. Figure 1E shows the corre-
lation values between each pure odor and the mixture for indi-
vidual honey bees. The correlation is highly variable from animal
to animal, ranging from 0.13 to 0.90 for acetophenone versus
mixture (abscissa), and from 0.08 to 0.89 for 1-hexanol versus
mixture (ordinate). This analysis indicates that the contribution
of the pure odors to the representation of the mixture is not
necessarily balanced. Indeed, the higher the correlation between
the mixture and one component, the lower the correlation be-
tween the mixture and the other component. Only two bees (Fig.
1E, two arrows) showed high and balanced correlation coeffi-
cients between the mixture and either pure odors, but it turned
out that these two bees had also the highest correlation values
between the two pure odors (0.28 and 0.71). In summary, we
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found pronounced variability across animals in regard to the
relative weight of the components in the representation of the
mixture. As a measure of the variability of the activation patterns
across honey bees, we determined the correlation coefficient
among response patterns evoked by the same odors across con-
trol honey bees that did not receive any olfactory training, with
the exception of the experience they acquired during foraging
before they were captured. Figure 1F shows the average and SEM
of correlation values between patterns elicited by the same three
odors across 11 control bees. The results show that the pattern
elicited by the mixture is more variable than the patterns elicited
by the pure odors (ANOVA, F, 14, = 6.76; p = 0.001; p < 0.01
post hoc contrasts). We hypothesized that part of this variability
might be caused by different olfactory experiences that had
shaped the AL network during foraging. Thus, in the next section,
we evaluate whether olfactory conditioning affects this variability
as well as the contribution of the components to the representa-
tion of the mixture.

Appetitive conditioning shifts the representation of the
mixture toward the rewarded component

Figure 2A shows the learning curves of bees that were trained
using 1-hexanol or acetophenone and were later used for imag-
ing. The conditioning protocol consisted of 10 reinforced trials
separated by 10 min intertrial intervals. Groups of honey bees
conditioned to odors reached peak (~90%) response levels by 5
or 6 conditioning trials. A group of untrained bees that served as
control was handled simultaneously and received the same ma-
nipulation and reward as trained groups but was not stimulated
with odors. After conditioning, honey bees from the two trained
groups and from the untrained group were further divided into
two subgroups (Fig. 2A—C). One subgroup was used for imaging
odor responses in the AL. For this aim, PNs were backfilled with
calcium sensor dye Fura-dextran 8 h after conditioning (Fig. 2B)
and odor responses were imaged between 12 and 16 h after stain-
ing (Fig. 2C, top). The other subgroup of bees was left intact and
was used to confirm olfactory memory retention at a time inter-
val consistent with the imaging experiment. As shown in Figure
2C (bottom), the conditioning protocol supports strong memory
retention after 24 h. The conditioned response was highly spe-
cific; no conditioned response was evoked by 1-hexanol in bees
conditioned to acetophenone, and almost no conditioned re-
sponse was elicited by acetophenone in bees conditioned to
1-hexanol.

Next, we tested whether conditioning with a component
changes the representation of the mixture in a way that facilitates
the perception of the component in the mixture. As shown in the
previous section, we found a high variability in the correlation
between the mixture and the pure components (Fig. 1E). We
hypothesized that this variability might be a consequence of dif-
ferent individual experiences that had shaped the AL network of
the foragers before they were captured. Because the conditioned
bees were obtained simultaneously from the same pool of ani-
mals as the control bees, similar variability should be expected
across the conditioned bees, unless the additional olfactory expe-
rience provided by the training induced changes in the AL that
shape the representation of the mixture. Thus, we compared the
variability of the activation patterns within each group of bees by
measuring the correlation among the patterns elicited by the
mixture across bees that had the same treatment. Figure 2D
shows the average and SEM of the correlation coefficients be-
tween pairs of patterns elicited by the mixture across control bees,
acetophenone-trained bees, and 1-hexanol-trained bees. The
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Figure 1. Imaging of odor elicited calcium signals in projection neurons. 4, Color-coded calcium images represent the average of odor responses from 250 to 750 ms after odor onset. From left

to right, Images are responses to acetophenone, 1-hexanol, and their mixture (10:10) in the same honey bee. The seven squares represent the same seven glomeruli in different odor responses to
aid visualization of the differences between patterns. B, Left, Basal fluorescence image observed with 380 nm excitation light and LP510 emission filter after staining the PNs with FURA-dextran. The
glomeruli were identified according to size, shape, and position by comparison with the honey bee AL atlas (Flanagan and Mercer, 1989; Galizia et al., 1999). Middle, Pixel-correlation image (see
Materials and Methods) used as an additional tool to aid glomeruli identification. Dark glomeruli do not mean lack of staining; these glomeruli were not activated by the odors and consequently
produce low correlation values between neighboring pixels. Right, Schema of the dorsal view of the AL showing the 20 glomeruli used in our analyses. AN, Antennal nerve. (, Quantitative evaluation
of the odor responses via change of fluorescence from the reference window (AR) from 250 to 750 ms after odor onset in 20 glomeruli. Average == SEM of odor responses from 11 control bees (top
to down: acetophenone, 1-hexanol, and mixture). Numbers in the abscissa correspond to the identity of the glomeruli. D, Pearson’s correlation coefficients between response patterns were used to
evaluate similarity between odor patterns. The correlation coefficients of three different pairs (ace-mix, hex-mix, ace-hex) were calculated in each control bee. Data are average == SEM of 11 control
bees. E, Scatter plot of the correlation coefficients between mixture and either pure components (hexanol or acetophenone). Each point represents one control bee. Two arrowheads indicate two
bees with the highest correlation coefficients between the pure components. F, Correlation coefficients between patterns elicited by the same odor in different bees. Vertical bars represent
average == SEM from a total 55 correlation values that result from arranging 11 controls bees in pairs. The representation of mixture was less conserved across animals than the representation of the
pure odors. *p < 0.01 contrasts after ANOVA (F, ;5 = 60.97; p = 0.001).

correlation (ANOVA: F, ;4g) = 11.52,p < 0.0001; p < 0.001, post  described in the previous section demanded an analysis that is

hoc contrasts) was higher between patterns elicited by the mixture
in animals that received olfactory conditioning with 1-hexanol or
acetophenone compared with the correlation value among pat-
terns measured from control bees, suggesting that olfactory con-
ditioning shaped the representation of the mixture.

We then evaluated the nature of the changes in the represen-
tation of the mixture caused by conditioning. The impossibility
of doing paired comparisons between patterns obtained from the
same animal before and after conditioning and the variability

sensitive to the effects caused by training on top of the interindi-
vidual differences. The rationale behind the analysis was based on
the observation that general aspects of the pattern elicited by the
mixture can be predicted based on the patterns elicited by the
pure components and that part of the variability in the represen-
tation of the mixture reflected the variability in the representa-
tion of the pure components. Thus, we analyzed whether
conditioning caused the mixture pattern to deviate from the pat-
tern that can be expected based on the representations of the
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components. For this analysis, we do not analyze whether the
patterns elicited by the pure odors were affected by training. We
focus instead on whether training modifies the way in which the
representations of the components are summed in the mixture.
The analysis first focused on data from the control bees and used
it to establish algorithms that allow accurate prediction of the
pattern elicited by the mixture in each animal based on the pat-
terns elicited by the pure components in the same animal. Sec-
ond, we applied the prediction algorithms derived from control
bees to the data from trained bees to evaluate whether olfactory
conditioning changes the way the representations of the compo-
nents are summed in the mixture. On a first approach, the data
from all bees were analyzed according to the identification of
the glomeruli. Considering that response versus concentration
curves (and thus the summation of the activities elicited by each
component) may follow different dynamics in each particular
glomerulus, the following calculation was made independently
for each of the 20 glomeruli. For each glomerulus in each honey

<«

Figure2. Changesin the responses to the mixture after appetitive olfactory conditioning. 4,
Three groups of bees were trained using appetitive conditioning. Each bee received 10 trials
with 2 m sucrose solution separated by 10 min intertrial intervals. Control bees received the
reward paired with clean air provided by the odorgun. The other two groups received 1-hexanol
oracetophenone as conditioned odor. Learning performance was recorded during conditioning
as percentage of animals that extended the proboscis upon stimulation with odor. B, Eight
hours after conditioning, projection neurons were stained bilaterally using fura-dextran tar-
geted to where the |-APT enters the lateral calyces of the mushroom bodies (yellow circles).
m-APT, Medial antenno-protocerebal tract; I-APT, lateral antenno-protocerebral tract; LH, lat-
eral horn; a-L, alpha lobe. C, On the next day, the bees were prepared for calcium imaging of
odor-induced signals on the dorsal side of the antennal lobe (top). Activity patterns were mea-
sured three times each to 1-hexanol, acetophenone, and the binary mixture, presented in
random order separated by 1 min intervals. A set of trained bees not stained for imaging was
used to determine the strength of olfactory memory and odor discrimination (bottom). All
honey bees underwent three test trials without reward using: (1) the conditioned odor (1-
hexanol or acetophenone), (2) a different odor that they have not experienced before (1-
hexanol or acetophenone), and (3) the binary mixture containing both odors in same
proportion. Bar colors represent the odor used for conditioning. The order of the three odors was
randomized across animals (1-hexanol-trained bees, n = 20; acetophenone-trained bees, n =
18). Control bees are not shown because they did not evoke any conditioned response. D,
Average == SEM of the correlation coefficients between mixture-elicited activation patterns
across bees. The correlation was calculated between bees from the same training group: control
(gray), ace ™ (blue), and hex ™ (red), ANOVA: F; 105, < 0.0001. *p < 0.001 (post hoc con-
trasts). E, A best fit linear equation was obtained for each glomerulus to estimate the response
of the mixture as a function of the responses to 1-hexanol and acetophenone. Graph represents
an example of the best-fit linear equation (plane) of glomerulus 47 derived from 11 data points
(11 control bees). F, Average = SEM of the difference between the measured and the predicted
response to the mixture for each glomerulus in the three different groups of bees. The numbers
in the abscissa indicate the identification of the glomeruli. The differences shown in the graph
were calculated as the measured response minus the predicted response. *p << 0.05, between
measured and predicted values (paired ¢ test). *p << 0.01, between measured and predicted
values (paired t test). From top down, control group (n = 11),ace * group (n = 8),and hex *
group (n = 8). G,, Glomeruli were ranked according to the difference of the average response
to 1-hexanol and acetophenone in control bees. The ranking was made by subtracting the
response to 1-hexanol (R,,,) from the response to acetophenone (R,,). G,, The pointsin these
plots correspond to the data (R,,,,: measured — predicted) shown in F, but reorganized along
the abscissa according to the ranking derived from G;. The red/blue color bar at the bottom of
each plot represents the ranking of glomeruli from hexanol responders to acetophenone re-
sponders. The results of a linear regression analysis are displayed in each plot. H, The predicted
responses to the mixture for each glomerulus were arranged to establish a predicted response
pattern to the mixture. The correlation between patterns elicited by the pure odors and the
predicted pattern to the mixture were designated predicted correlations. The figure shows the
average = SEM of the differences between the real and the predicted correlation between
responses to the mixture and responses to the pure odors (mix-ace, mix-hex) in the three groups
of bees (control, ace ™, hex ). *p < 0.001, between real and predicted correlation (paired t
test). p = 0.06, in the case of correlation mix-hex after conditioning with acetophenone.
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bee, we had values of calcium responses for 1-hexanol (R,,,),
acetophenone (R,..), and the binary mixture (R,,;,). Using the
data from the control bees, we fitted a linear equation of the form
of aR,,. +BR,. + ¥ = R,,;,» which provided a plane for each
glomerulus. Thus, we calculated a set of parameters (a, (3, ) that
makes the best fit of the data points representing different control
honey bees. An example of the plane fitted for glomerulus 47
based on the data points from the control honey bees is shown in
Figure 2E. We calculated 20 sets of parameters «, 3, and vy, and
each set represents one plane specific for one glomerulus. R*
values of the 20 planes ranged between 0.68 and 0.95 (average =
0.86), and p values of the fitted planes were in all cases <0.01
(average of p values = 0.001).

Afterward, the linear fits were used to predict for each glom-
erulus the response elicited by the mixture on the basis of the
responses elicited by the pure components. Then, we compared
the predicted and the measured response elicited by the mixture
in each glomerulus. Figure 2F shows the average of the difference
between the measured and the predicted responses to the mixture
for each glomerulus. The difference was calculated by subtracting
the predicted activity from the measured activity. Positive values
imply glomeruli in which the activity elicited by the mixture was
higher than expected, and negative values indicate glomeruli in
which the activity elicited by the mixture was lower than ex-
pected. Figure 2F (top) shows how accurate the predictions were
for the control bees. The relatively small differences between pre-
dicted and measured activity indicate that mixture response can
indeed be predicted accurately from the responses to the individ-
ual components using the calculated linear fits. Subsequently, the
linear fits calculated from the control bees were used to predict
glomerular responses to the mixture in conditioned bees. Figure
2F (middle) shows the results from honey bees conditioned with
acetophenone. Although there is no statistically significant differ-
ence between measured and predicted responses, the results show
more tendencies to underestimations and overestimations than
in the control group. Finally, Figure 2F (bottom) shows the re-
sults from the bees trained with 1-hexanol. Twelve of 20 glomer-
uli show significant differences between the predicted and the
measured responses (* and # for p < 0.05 and p < 0.01 respec-
tively, paired ¢ test). In summary, the linear model calculated for
control honey bees could not predict the mixture pattern in
trained honey bees, which suggests that the systematic deviations
can be explained by changes induced by training.

Next, to analyze whether the differences in the glomerular
activity represent a change in favor of one of the components, we
evaluated whether the changes differentially involve glomeruli
that are recruited by one or other component. For this aim, the 20
glomeruli were ranked according to their responses to 1-hexanol
and acetophenone. For each glomerulus, we subtracted the aver-
age response to 1-hexanol from the average response to acetophe-
none (R, — Ry.,) across control bees. Figure 2G; shows the
distribution of the 20 glomeruli along this ranking, including
control and trained honey bees. The left side of the distribution
corresponds to the glomeruli that show strong responses to
1-hexanol and weak or no response to acetophenone, whereas the
right side corresponds to glomeruli with strong responses to ace-
tophenone and weak or no responses to 1-hexanol. Glomeruli
that have similar responses to both odors fell in the middle region
as the glomeruli that are not activated by either of the two odors.
Subsequently, the ranking was used in Figure 2G, to reorganize
the data from Figure 2F, but this time in relation to the response
profile of the glomeruli. The trend line and the results of a linear
regression inserted in the figure were calculated to evaluate
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whether the difference between measured and predicted re-
sponses to the mixture depends on the response profile of the
glomeruli. The regression was significant for the honey bees
trained with 1-hexanol. Although there was a general decrease in
the response of almost all glomeruli, the decrease is pronounced
and significant in the glomeruli that encode acetophenone. Thus,
at least for bees trained with 1-hexanol, the glomeruli that show
more robust responses to acetophenone than 1-hexanol were
found to be less activated in the mixture than expected. The re-
gression was not significant in the other two groups of honey
bees, although an opposite tendency was observed for honey bees
trained with acetophenone (Fig. 2G,, middle).

Finally, to determine whether the changes constitute a net bias
in the representation of the mixture as a whole, we compared,
within each bee, the correlation between the patterns elicited by
the components and that elicited by the mixture with the corre-
lation between the patterns elicited by the components and the
pattern expected for the mixtures. We called the first one “real
correlation coefficient” and the second one “predicted correla-
tion coefficient.” Figure 2H shows the average of the difference
between the real and the predicted correlation coefficients. In
honey bees that were conditioned to 1-hexanol, the difference
between both types of correlations reveals that the mixture was
less similar to acetophenone (negative red column on the left)
and more similar to 1-hexanol (positive red column on the right)
than the predicted mixture. In control honey bees, there were no
differences between the predicted and real correlations. For
honey bees that were trained with acetophenone, there was only a
minor tendency for the mixture pattern to be less similar to
1-hexanol than expected (negative blue column on the right).

The analysis described so far was entirely based on the identity
of the glomeruli used as the criterion to pool the data from dif-
ferent honey bees and fit the linear equations used to predict the
responses to the mixture based on the responses to the pure
odors. We noticed, however, that the response profile of each
glomerulus to the pure components was not strictly conserved
across honey bees. For example, glomerulus 28 was the most
prominent activated glomerulus in the pattern elicited by
1-hexanolin 5 of 11 control bees, but it was the second one in 4 of
them, and it was in fourth or 17th positions in two bees. A similar
kind of divergence was observed for the remaining glomeruli
(Fig. 3, tables).

The origin of this variability could be due to differential for-
aging experiences that shaped the response profile of the glomer-
uli before the forager bees were captured for the experiment. This
argument supports the view that the behavior of each glomerulus
might be more accurately predicted on the basis of its response
profile rather than on the basis of the anatomical location. There-
fore, we repeated the same analysis as before, but instead of using
the anatomical identification of the glomeruli as the criterion for
pooling the data and fit the linear equations, we pooled them on
the basis of their functional profile. Thus, we ranked the 20 glom-
eruli within each honey bee from responders to 1-hexanol to
responders to acetophenone and created 20 categories (Fig. 3A,
tables). In each bee, category 1 was assigned to the glomerulus
with the highest negative value after the subtraction R, — R,
and category 20 was assigned to the glomerulus with the highest
positive value. The tables displayed in Figure 3A show the ranking
of the glomeruli for each individual bee and for the three groups
of bees. Then, we used the data from the glomeruli in the same
category of the control group to calculate the linear equation that
fits the response to 1-hexanol, acetophenone, and the mixture in
one plane as in the previous section. R* values ranged from 0.96
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to 0.54 (average = 0.84) and p values were in all cases <0.04
(average = 0.003). Based on the linear equations derived from the
control honey bees and on the response elicited by the pure odors
in each individual, we calculated the predicted response to the
mixture for each glomerulus in each individual bee in all groups.

Figure 3B summarizes the difference between the measured
and the predicted response for all glomeruli along the ranking. In
the control group (Figure 3, top), the predictions were accurate
and there was no dependence on the category of the glomeruli. In
the 1-hexanol trained group (Figure 3, bottom), there was a gen-
eral decrease in the response elicited by the mixture, and the
difference between measured and predicted mixture response
was related to the categories of the glomeruli. Glomeruli that
encode acetophenone were lower than expected. Associative
learning using acetophenone as the conditioned odor failed to
show any tendency in this analysis. As before, the predicted glo-
merular responses to the mixture were used to generate a pre-
dicted pattern to the mixture in each bee. The predicted pattern
was compared with the measured pattern on the basis of the
correlations that they have with the patterns elicited by the pure
components. Figure 3C shows the effect of conditioning in regard
to the real and predicted correlation values between the mixture
and the components. Similar to Figure 2H, the associative learn-
ing of 1-hexanol produced a bias in the representation of the
mixture that makes it more similar to the representation of
1-hexanol and less similar to the representation of acetophenone
than expected in controls. Finally, Figure 3D expresses the results
for each individual honey bee from the 1-hexanol conditioned
group, showing how the representation of the mixture shifted
from its predicted position to its measured position in regard to
the correlation coefficients between the mixture and the pure
components.

Unlike the honey bees trained with 1-hexanol, honey bees
trained with acetophenone did not show a clear shift in the rep-
resentation of the mixture (data not shown). We found differ-
ences between the predicted and the measured pattern to the
mixture, which suggests again that training modifies the way in
which the components are summed in the representation of the
mixture. However, the changes in the glomerular activity did not
make the pattern of the mixture more similar to acetophenone
than what was expected. Possible explanations are that only a
portion of the AL is sampled with the imaging technique that we
used (20 of 160 glomeruli in the present work), and we may have
missed the glomeruli that make the difference. It is also possible
that network interactions are not completely symmetrical be-
tween the elements that encode acetophenone and 1-hexanol.
Such asymmetry would be consistent with our results in which
conditioning with hexanol reduces the expression of acetophe-
none in the mixture, but conditioning with acetophenone does
not reduce the expression of hexanol in the mixture pattern.
Finally, conditioning with acetophenone might have modified
the representation of acetophenone itself, as it is expected on the
basis of previous studies that showed changes in coding of the
conditioned odor after training (Sandoz et al., 2003; Daly et al.,
2004; Yuetal., 2004; Rath et al., 2011). In this case, changes in the
representation of the pure odor produce changes in the represen-
tation of the mixture that are predicted by our model and thus are
not detected by the analysis. In summary, the results indicate that,
after appetitive conditioning with 1-hexanol, the response to the
mixture became more similar to 1-hexanol (the conditioned
odor) and less similar to the pattern for acetophenone (the back-
ground odor).
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Figure 3.  Changes of correlation between the responses to the mixture and the pure odors based on individual bee response profiles. 4, Glomeruli were ranked according to the
difference of response to acetophenone and 1-hexanol in each individual bee. Three groups of bees (from top down: 11 control bees; 8 ace ™ bees; 8 hex * bees) are shown. In the tables:
each row represents one bee, each column represents one category, and the numbers in the table indicate the identity of the glomeruli. The graphs (bars) show the average = SEM of
the difference between the responses to acetophenone and 1-hexanol in each group of bees along the ranking category (1-20). B, For each group of bees, the average of the difference
between measured and predicted response to the mixture was plotted along the ranked categories (1-20). C, The average = SEM of the differences between real and predicted
correlation coefficients between the mixture and either pure components were calculated in each group of bees. *p << 0.001 (paired t test). D, For hex ™ group, a scatter plot showing
the predicted and real correlation coefficient between the mixture and the pure components. The eight open circles represent predicted correlation coefficients of eight bees in the hex ™
group; the eight filled circles represent the real correlation coefficient in the same eight bees. The arrows indicate the shift from the predicted correlation to the real correlation of the

same bee.
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Odor stimulation triggers oscillatory and odor-specific
responses in the AL model

To explore potential mechanisms behind the experimental re-
sults, we designed a honey bee AL model, including populations
of conductance-based excitatory PNs and inhibitory local in-
terneurons (LNs) (detailed model and simulation settings are
illustrated in Materials and Methods; Fig. 4; Tables 1 and 2).
Before learning, the AL model response to odor A is displayed in
Figure 5A. Figure 5A (top) shows a trace of local field potential
(LFP), which is derived from the average of membrane potential

across all PNs in the network. Figure 5A (bottom) is a rastergram
representing the spiking activities across the entire population of
PNs during a stimulating cycle (2 s). The odor response lasted for
~1 s and then decayed to the baseline level of spontaneous activ-
ity. To characterize the entire network response, we calculated all
PN spikes in 20 ms bins and plotted it as a trajectory in 3D space
via principal component analysis (i.e., the first three principal
components). Figure 5B shows PN responses to two single dis-
tinct odors (A and B) and several binary mixtures that were made
by combining A and B in different proportions (A:B = 9:1, 7:3,
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Olfactory responses in AL before learning and after learning modified by presynaptic facilitation. 4, Before learning, the LFP in AL and the rastergram across whole population of PNs in

responding to odor A are displayed. B, Before learning, spatiotemporal patterns of two pure odor and five mixture odor responses across all PNs are displayed in a PCA space. A smooth transition of
trajectories along mixture ratios is observed. €, Before learning, the correlation coefficients between two pure odors and between pure odor and mixture odors are shown. D, During learning of odor
A, the synaptic strength of LN-PN and LN-LN was facilitated based on presynaptic spiking activities in LN. These two histogram plots show distribution of synaptic weights of 12,629 LN-PN synapses
(top) and 28,719 LN-LN synapses (bottom) during the first three learning cycles indicated by different colors. E, Total PNs’ spike count dropped mainly during the first few learning cycles.

5:5, 3.7, 1:9; Fig. 4C-E). In all cases, the olfactory trajectories
started from the same origin representing the baseline activity. It
then quickly projected out during the initial phase of the odor
response to reach a quasi-stationary state. After that, it returned
to the origin during the offset phase of the stimulation. Similar
dynamics have been reported previously in the locust (Stopfer et
al., 2003) and honey bee (Fdez Galan et al., 2004; Fernandez et al.,
2009). Consistent with previous experimental observation (Fer-
nandez et al., 2009), the trajectories were sequentially ordered
according to the mixture ratios from one extreme to the other.
Figure 5C shows the correlation coefficients between patterns
elicited by single odors and mixture odors based on the response
profiles across all PN (i.e., the spike count profile across all PNs
during one odor stimulating trial). These values (correlation co-
efficients) are consistent with the order of the different trajecto-
ries shown in Figure 5B. The response to a pure odor had higher
correlation with the response of the mixture odor that contains a
higher concentration of that pure odor (i.e., correlation coeffi-
cient between A and AB 9:1 = 0.767, and correlation coefficient
between B and AB 1:9 = 0.784). The correlation between re-
sponses to the pure odors A and B was the lowest (—0.0006) and
the correlation among pure odors and the balanced mixture 5:5

was ~0.6, which is similar to the value obtained from the exper-
iments for the pure odors acetophenone or 1-hexanol with the
mixture 10:10 (Fig. 1D).

Appetitive associative learning increases response similarity
between mixture odor and learned odor

Next, we investigated how plasticity in the AL may change the
odor responses and how these changes correspond to our exper-
imental observations. Because release of octopamine is needed
for appetitive olfactory learning (Hammer, 1993; Farooqui et al.,
2003), and a large fraction of the octopamine receptor AmOA1
was found to be expressed in inhibitory LNs in the honey bee AL
(Sinakevitch et al., 2011, 2013), we simulated the appetitive con-
ditioning by increasing the synaptic weights of LN-PN and
LN-LN synapses as the presynaptic LN was activated by the con-
ditioned odor. The synaptic facilitation based on activity of the
presynaptic inhibitory LNs represents the situation of coinciden-
tal activation by the conditioned and the unconditioned path-
ways. The activation of octopamine receptors in LNs together
with odor induced activity causes a rise in Ca** that primes ad-
enylyl cyclase to enhance cAMP and cAMP-dependent protein
kinase activation that further regulates synaptic plasticity (Ca-
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pogna et al., 1995; Han et al., 1998; Muller, 2002; Antonov et al.,
2003). Thus, during appetitive conditioning, the LNs are able to
merge the signals from the conditioned stimulus and the uncon-
ditioned stimulus pathways.

In Figure 5D, the distributions of synaptic weights during
different training cycles with conditioned odor A are plotted.
During this appetitive learning process, some LN-PN synapses
and some LN-LN synapses gradually increased their weights due
to the spiking activities occurring at their presynaptic LNs. Be-
cause learning causes an overall increase of inhibition in the AL
network, many PNs reduced their firing rate as a result of olfac-
tory learning, whereas some of them maintained their firing ac-
tivities. Overall, we found a decrease of activity in the AL network
along learning cycles (Fig. 5E) as observed in experiments (Fig.
2F,G,).

After training involving three cycles of conditioning to odor
A, pure odors (odor A and odor B) and their binary mixtures
were tested again to evaluate the impact of learning on the olfac-
tory responses in AL. In Figure 6A, we found a significant shift of
the mixture trajectories toward the trajectory of the pure odor
that was use as the conditioned stimulus. Thus, after training
based on presynaptic activity-dependent facilitation on both
LN-PN and LN-LN synapses, the spatiotemporal patterns for the
mixture became more similar to the pattern of the learned odor,
odor A. This observation was further confirmed by the correla-
tion coefficient analysis shown in Figure 6B. The value of the
correlation coefficients between odor A and all mixtures in-
creased after learning of odor A (i.e., Fig. 6B, positive black bars).
On the other hand, the correlation coefficients between odor B
and all mixtures reduced (i.e., Fig. 6B, negative white bars).

Next, to distinguish the contribution of different types of syn-
apses (LN-PN or LN-LN) to the observed change, we imple-
mented the presynaptic facilitation mechanism at only one type
of synapse (Fig. 6C-F). In Figure 6C, D, presynaptic facilitation
was implemented exclusively in LN-LN synapses, and the
strength of LN-PN synapses was kept unchanged. We found that
the trajectories representing responses to the mixture of odors
stayed at the middle of the pure odor trajectories (Fig. 6C). Con-
sistently, the changes of the correlation coefficient between odor

<«

Figure6.  Changes of odor responsesin AL after learning based on presynaptic facilitation. 4,
After learning of odor A manipulated by presynaptic facilitation in both LN-PN and LN-LN
synapses, the dynamic trajectories of odor responses based on activities across all PNs are
presented in 3D PCA space. The trajectories of mixtures were found to shift closer to the trajec-
tory of learned odor, odor A. B, Corresponding to 4, the change of correlation coefficient derived
before and after olfactory learning was also calculated. It was found that, after learning of odor
A, the correlation coefficient between odor A and mixture odors increased. On the other hand,
the correlation coefficient between odor B and mixture odors reduced. €, In the second setting,
the presynaptic facilitation mechanism was installed in LN-LN synapses only. In PCA space, the
trajectories of mixture odors stay at the middle between the trajectories of odor A and odor B
after learning without obvious shift toward either pure odor component. D, Corresponding to C,
the change of correlation coefficient between odor responses was quite small after learning. E,
In the third setting, the presynaptic facilitation mechanism was installed in LN-PN synapses
only. The trajectories of mixture odors in PCA space were found to move toward the learned
odor, odor A. F, Corresponding to , the correlation coefficients between odor A and mixture
odors were increased significantly after learning. On the other hand, the correlation coefficients
between odor B and mixture odors were decreased. G, The spatial patterns of alterative odor B
(including B,, B,, B;, and B,) were plotted. These alternative odors were also used to test the
impact of presynaptic facilitation on olfactory responses. H, Following G, the degree of similarity
between pure odor and mixture odor (5:5) responses was evaluated by correlation coefficients
across PNs. Top, The correlation between mixture odors and odor A increased after learning of
odor A, except one of the mixture odors, AB,. Bottom, The correlations between all mixture
odors and odor B reduced after learning of odor A.
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responses were close to 0 (Fig. 6D). In contrast, when presynaptic
facilitation was implemented only in LN-PN synapses and the
strength of LN-LN synapses was kept unchanged, the trajectories
of the mixtures moved toward the learned odor A (Fig. 6E). The
correlation coefficients between the response of odor A and the
mixtures were largely increased (Fig. 6F, positive black bars), and
the correlation coefficients between the response of odor B and
the mixture odors were mainly reduced (Fig. 6F, negative white
bars). These results are consistent with the results from the ap-
petitive conditioning experiments shown in previous sections
when bees showed conditioning to 1-hexanol (Fig. 3D). Our sim-
ulation results suggest that the effect of appetitive olfactory con-
ditioning may depend on the facilitation of the inhibitory
synapses from active LNs to PNs in the AL.

It has been shown that different odor stimuli could evoke
different spatial patterns of odor response across glomeruli with
different degrees of overlap (Sachse et al., 1999). To test whether
the observation of shift of mixture odor responses induced by the
mechanism of synaptic facilitation is widely held with a variety of
odor stimuli, next, we extended the previous computational ex-
periments to pairs of odors that have different degrees of overlap
in their representation in AL. In new simulation studies, odor B
was replaced by odors B, B,, B;, or B,, which have different
spatial response patterns across LNs and PNs and different de-
grees of overlap with odor A (Fig. 6G). By repeating the same
training procedures (i.e., setting up presynaptic facilitation on
both LN-PN and LN-LN), the similarity of odor response pat-
terns between the pure odor and the mixture (5:5) was evaluated
by calculating the change of correlation coefficient, and the re-
sults are plotted in Figure 6 H. We found that the response pattern
of mixture (5:5) became more similar to the learned odor, odor A,
except in the case of odor B,, whose input pattern and activity
pattern was very close to odor A (Fig. 6G,H ). On the other hand,
the correlation coefficients between mixture and components B;
(i = 1-4) were all reduced after learning of odor A (Fig. 6H,
bottom).

Nonassociative learning decreases response similarity
between mixture odor and exposed odor

Our previous experimental and modeling study of the nonasso-
ciative olfactory learning in the honey bee revealed that, after
multiple presentations of the same pure odor without any re-
ward, which decreases subsequent learning of that odor (Chan-
dra et al., 2010), the AL response pattern to the odor mixture
became less like the pure odor responses presented during train-
ing (Locatelli et al., 2013). A related cellular mechanism has been
reported in Drosophila during olfactory habituation (Das et al.,
2011; Sudhakaran et al., 2012). These studies revealed that
glomerulus-specific inhibitory facilitation of LN-PN synapses
occurred during odor habituation and that this facilitation could
be driven by the postsynaptic activities of LN-PN synapses (Das et
al., 2011; Sudhakaran et al., 2012). We then explored the hypoth-
esis that, in contrast to appetitive olfactory learning, nonassocia-
tive olfactory learning is manipulated by the synaptic facilitation
that depends on the postsynaptic activities of the AL neurons. In
our model, Figure 7A shows a representative example of the re-
sponse to odor A across PNs during early and late stage of learn-
ing. In this modeling experiment, synaptic plasticity was solely
dependent on the postsynaptic neuron activities; the strength of
inhibitory LN-PN and LN-LN synapses was facilitated when a
spiking event was detected in the postsynaptic neuron during
training phase. First, it was found that increase of inhibition led to
more synchronous PN responses that were reflected in the large
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Figure 7.  Results of olfactory learing manipulated by postsynaptic facilitation. 4, As the postsynaptic facilitation mechanism was effective in both LN-PN and LN-LN, the trace of LFP and the

rastergram of all PNs obtained from leaming cycle 2 (left panel) and cycle 8 (right panel) are exhibited. It was noticed that, after experiencing several learning cycles, the firing activities became more
synchronous across PNs (comparing cycle 8 with cycle 2 here). B, Corresponding to A, the level of synchronization across active PNs (PN 10-PN 28) was further evaluated by cross-covariance analysis.
After several cycles of learning, the PNs' firing patterns became more synchronous indicated by larger values of maximum cross-covariance (top, red distribution) and overall shorter time lag to the
main peak (bottom, red distribution). €, Changes of synaptic strength distribution during the first three cycles of learning of odor A in the model with postsynaptic facilitation in LN-PN and LN-LN.
D, The total spike number in PNs along learning cycles modified by postsynaptic facilitation in LN-PN and LN-LN. Decrease of total spike number (mostly the first 3 or 4 cycles) was observed.

amplitude LFP oscillations (Fig. 7A). In Figure 7B, the level of
synchronization across PNs was evaluated by cross-covariance
analysis across PN pairs. Along the training, the distribution of
the peak amplitudes of the cross-covariance function became
narrower (Fig. 7B, top) and the width of the distribution of the
time lags to the peak decreased (Fig. 7B, bottom), indicating an
increase in synchrony across PNs. In Figure 7C, the changes of
synaptic weight distribution (Fig. 7C, top, LN-PN; Fig. 7C, bot-
tom: LN-LN) during the first three learning cycles are shown.
Along the learning cycles, the total PN spike count dropped over
the first 4 or 5 cycles (Fig. 7D). These results are consistent with
our previous modeling results (Bazhenov et al., 2005) and asso-
ciated experimental studies (Stopfer and Laurent, 1999) of fast
odor learning in the locust AL.

We then tested and compared the effect of postsynaptic facil-
itation in the AL network using three different model settings,
including the following: (1) installing postsynaptic facilitation
mechanism in both LN-PN and LN-LN types of synapses, (2)
installing postsynaptic facilitation mechanism in LN-LN syn-
apses only, and (3) installing postsynaptic facilitation mechanism
in LN-PN synapses only. We found that, when postsynaptic fa-
cilitation involved both LN-PN and LN-LN synapses, response to

the odor mixture moved away from the exposed odor, odor A,
and toward the novel odor component in the mixture (i.e., odor
B here) (Fig. 8A). Moreover, postsynaptic facilitation imple-
mented in LN-PN synapses alone was sufficient to obtain this
network dynamics (Fig. 8E), whereas postsynaptic facilitation
implemented in LN-LN synapses alone produced no shift (Fig.
8C). These results were further confirmed by the correlation co-
efficient analysis (Fig. 8 B,D,F).

Our results are consistent with experimental data (Locatelli et
al., 2013). After repeated exposure of the same single odor
(hexanol or octanone) with no reward, the spatiotemporal pat-
tern of the mixture odor response in AL became more similar to
the odor component, which was not exposed previously. Thus,
our study suggests that nonassociative olfactory learning in the
AL could be regulated by facilitation of the inhibitory LN-PN
synapses dependent on the postsynaptic cell activity.

Discussion

The primary goal of our study was to understand the changes of
the odor representation in the AL after learning. Results from our
previous report (Fernandez et al., 2009) and other studies (Lin-
ster and Smith, 1997; Sandoz, 2003; Sandoz et al., 2003; Rath et
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Changes of odor responses after learning manipulated by postsynaptic facilitation. A, After learning of odor A via manipulation of postsynaptic facilitation in both LN-PN and LN-LN, the

trajectories of mixture odor responses moved toward the unlearned odor, odor B, in PCA space. B, Corresponding to 4, after learning of odor A, the correlation coefficient between odor A and mixture
odors reduced. On the other hand, the correlation coefficient between odor B and mixture odors increased. €, After learning of odor A manipulated by postsynaptic facilitation in LN-LN synapses only,
the mixture odors stayed at middle between odor A and odor B in PCA space. D, Corresponding to €, the changes of correlation coefficient among odor responses are small. E, When postsynaptic
facilitation was set up at LN-PN synapses only, the trajectories of mixture odors were found to move toward the unlearned odor, odor B. F, Corresponding to £, the correlation coefficients between
odor A and mixture odors reduced. At the same time, the correlation coefficients between odor B and mixture odors increased.
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al., 2011) agreed that the changes might serve in part to increase
the separation between the spatiotemporal patterns for rein-
forced versus unreinforced odors, thus making odors with differ-
ent outcomes perceptually more distinct. In the present study,
we have considered another ecologically relevant situation in
which experience-dependent modifications in odor percep-
tion could help odor-guided behaviors. Monomolecular pure
odors rarely occur as olfactory stimuli in nature. Instead, natural
odors with either learned or innate predictive value are blends of
several components that are presented with changing and differ-
ent background odors. Thus, one hypothesis for the role of plas-
ticity in odor coding is that it adjusts the sensitivity of the
olfactory system to detect meaningful stimuli and filter out back-
ground (Smith, 1996). Consistent with this idea, we have recently
reported that the representation of uninformative components is
reduced in a mixture thereby improving the perception of novel
components (Locatellietal., 2013). In the present work, we tested
the complementary idea: Do meaningful learned odors have a
clearer representation in the mixture in a way that improves its
perception against background odors? We set up an appetitive
conditioning experiment combined with optical recordings of
PN activity. We measured the activation patterns elicited by two
pure odors and the binary mixture in three groups of bees: a
control group (without olfactory conditioning) and two groups
that underwent appetitive conditioning using the pure odors.
The pattern of the mixture included glomeruli showing hypoad-
ditive effects, synergisms, and cases of suppressions (Deisig et al.,
2006, 20105 Silbering and Galizia, 2007). We found that control
bees showed a wide range of variability in the representation of
the mixture. Most of the variability in the mixture could be pre-
dicted based on the representation of the pure odors, suggesting
that a high proportion of the variability was not inherent to the
mixture but transferred from variability in the representation of
the pure odors. Indeed, the linear fit provided accurate prediction
of the representation of the mixture from the responses to the
components for the control group. Decomposition of mixture
responses into its component responses has been previously used
to study representation of mixtures in mitral cells of the rat olfac-
tory bulb (Giraudet et al., 2002) and in projection neurons of the
locust AL (Shen et al., 2013). We found that the algorithms based
on control bees were less accurate for predicting a glomerular
response to the mixture in trained bees. This indicates that the
way in which the patterns of the components are summed in the
mixture differs between control and trained bees, and it suggests
that conditioning modifies interactions between the components
in the mixture.

Further analysis showed that the pattern for the mixture fa-
vored the representation of the rewarded odor in 1-hexanol
trained bees and reduced the representation of acetophenone
when it was the background odor. The shift in the pattern was
caused by a reduction in the activity of glomeruli that encode the
background odor. There was no increase in the activity of glom-
eruli that encode the rewarded odor. These changes constitute a
decrease of the global activity elicited by the mixture in the
trained animals that is consistent with the prediction from our
computational model. In contrast to bees trained with hexanol,
training with acetophenone did not shift the representation of the
mixture in the direction of any of the pure odors. This raises the
question if the effect reported here after olfactory conditioning
solely occurs for hexanol. However, this is very unlikely because
several previous reports are consistent with ours in that olfactory
conditioning produces changes in the representation of odors in
the AL, and this has been proven for different odors (Faber et al.,
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1999; Sandoz et al., 2003; Yu et al., 2004; Rath et al., 2011). In this
context, training could have modified the representation of ace-
tophenone itself. If this change is in turn transferred to the rep-
resentation of the mixture, such change is predicted by our linear
algorithm and is not detected by the analysis. Thus, the results
presented here in regard to plasticity in mixture coding in PNs
may represent only part of the mechanisms through which plas-
ticity in the AL optimizes the perception of relevant cues.

A major question that remains to be answered is what cellular
mechanisms could be responsible for the changes of the spatio-
temporal pattern of the odor responses. Studies regarding asso-
ciative olfactory learning have revealed that biogenic amines play
an important role in transmitting appetitive or aversive rein-
forcement during olfactory learning and memory formation
(Hammer, 1993; Hammer and Menzel, 1998; Schwaerzel et al.,
2003; Riemensperger et al., 2005; Unoki et al., 2005; Aso et al.,
2010). In honey bees, the neuroanatomical pathway conveying
the appetitive reward consists of an octopaminergic neuron
called VUMmx1 (Hammer, 1993), which arborizes in multiple
neuropils of the olfactory pathway, including the AL, the lateral
protocerebrum, and the mushroom body calyces (Hammer,
1993; Schroter et al., 2007). Stimulation of VUMmx1, application
of sucrose solution to the antenna and proboscis, or injection of
octopamine into the mushroom bodies or AL coincident with
odor stimulation each results in appetitive learning (Hammer,
1993; Kreissl et al., 1994; Hammer and Menzel, 1998; Farooqui et
al., 2003; Schwaerzel et al., 2003; Schroll et al., 2006; Farooqui,
2007).

The octopamine receptor AmOAL is expressed in GABAergic
LNs in the honey bee AL (Sinakevitch et al., 2011, 2013), and
recent studies have shown that octopamine modulates odor rep-
resentation in PN by regulating inhibitory and disinhibitory ele-
ments in the AL network (Rein et al., 2013). In addition, it is
known that activation of AmOAL1 induces Ca®" release and in-
crease in cAMP levels (Grohmann et al., 2003). This evidence
supports a model in which the action of octopamine coincident
with odor stimulation may promote synaptic facilitation in active
LNs (Antonov et al., 2003; Farooqui, 2007; Shakiryanova et al.,
2011).

We tested this hypothesis using a conductance-based compu-
tational network model of the honey bee AL. We found that the
inhibitory synapses between LNs and PN play an essential role in
altering the dynamic pattern of odor responses across PNs. When
stimulus-dependent enhancement of LN-PN synapses was
driven by LN activity, the correlation coefficient between the
odor mixture and the rewarded odor increased after learning. At
the same time, the representation of the odor mixture in the
high-dimensional space of PN responses shifted toward repre-
sentation of the rewarded odor. This outcome is consistent with
results from our calcium imaging experiments. In addition, to
investigate impact of synaptic plasticity on appetitive olfactory
conditioning, we tested the effect of increase of local neuron ex-
citability to the network dynamics. We found that activity-
dependent increase of intrinsic LN excitability during training
does not lead to the shift of the mixture response as we observed
in the model with synaptic changes. Although intrinsic and syn-
aptic changes seem to be largely equivalent in our model, they
may affect network dynamics differently depending on specific
connectivity within local neuronal circuits.

Repeated or prolonged exposure to a stimulus without any
reinforcement reduces the behavioral response to that stimulus,
which is called habituation (Thompson and Spencer, 1966; Ba-
zhenov et al., 2013). When odors do not elicit innate responses,
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habituation becomes evident when the odor is subsequently used
as the conditioned stimulus in classical conditioning. Under
these conditions, animals require more conditioning trials to
learn and express the conditioned response. Latent inhibition to
odors has been characterized in honey bees (Chandra et al., 2001,
2010). Using Ca** imaging, we have compared spatiotemporal
patterns of PN activities before and after a training protocol that
induces latent inhibition, and we found that the representation of
mixtures moves away from the habituated components and to-
ward the novel components that were not exposed previously
(Locatelli et al., 2013).

Recent studies in the fruit fly AL using transgenic lines re-
vealed that habituation arose from glomerulus-specific (i.e.,
odorant-selective) facilitation of inhibitory synapses from LN to
PNs (Larkin et al., 2010; Das et al., 2011; Sudhakaran et al., 2012)
and that glomerulus-specific inhibitory facilitation can be driven
by postsynaptic activities in PNs (Sudhakaran et al., 2012). We
adopted the results from flies and honey bees into our computa-
tional network model to understand the mechanisms that change
the pattern of neural activities across PNs after nonassociative
learning. This time, synaptic facilitation was implemented to de-
pend on the postsynaptic activity of PNs and LNs during odor
responses. By comparing the odor responses before and after
training, we found that the inhibitory LN-PN synapses play a
major role in modulating the spatiotemporal patterns of AL ac-
tivity. After repeated exposure of single odor, the synaptic
strength was enhanced in an odor-specific manner, and response
to the odor mixture became less correlated to the response to
exposed odor in agreement with our experimental data (Locatelli
etal., 2013).

Our present experimental study of conditioned (supervised)
learning and our past results on nonassociative (unsupervised)
learning (Locatelli et al., 2013) in the honey bee AL revealed ways
that the AL circuitry can modify information flow from olfactory
receptors to the downstream brain areas. The model presented in
the current work consolidates experimental evidence from sev-
eral previous studies, as well as our new experimental results. The
model revealed that stimulus-specific changes in synaptic inhibi-
tion are sufficient to explain experimental results. It predicted
that facilitation of the different sets of inhibitory synapses, either
tagged by presynaptic or postsynaptic activation during odor
stimulation, can differentiate between associative and nonasso-
ciative learning. Our results led to important questions of how a
specific form of plasticity operating at the early olfactory circuits
(in the AL) interacts with plastic changes taking place at the
downstream levels of olfactory processing (mushroom bodies) to
provide optimal odor learning. These findings now provide hy-
potheses for further experimental and modeling efforts.
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