PN and LN |
INa
|
M = 3; N = 1; |
|
|
α1 = 0.32 × (− 37 − V)/(exp((13 − (V + 50))/4) − 1); |
|
|
β1 = 0.28 × (V + 10)/(exp(((V + 50) − 40)/5) − 1); |
|
|
m∞ = α1/(α1 + β1); |
|
|
τm = 1/(α1 + β1); |
|
|
α2 = 0.128 × exp((17 − (V + 50))/18); |
|
|
β2 = 4/(exp((40 − (V + 50))/5) + 1); |
|
|
h∞ = α2/(α2 + β2); |
|
|
τh = (α2 + β2) |
PN and LN |
IK
|
M = 4; N = 0; |
|
|
α1 = 0.032 × (− 35 − V)/(exp((− 35 − V)/5) − 1); |
|
|
β1 = 0.5 × exp((− 40 − V)/40); |
|
|
m∞ = α1/(α1 + β1); |
|
|
τm = 1/(α1 + β1) |
PN |
IT
|
M = 2; N = 1; |
|
|
m∞ = 1/(1 + exp(−(V + 59)/6.2)); |
|
|
τm = (1/(exp(−(V + 131.6)/16.7) + exp((V + 16.8)/18.2)) + 0.612)/4.5738; |
|
|
h∞ = 1/(1 + exp((V + 83)/4)); |
|
|
τh = (30.8 + (211.4 + exp((V + 115.2)/5))/(1 + exp((V + 86)/3.2)))/3.7372 |
PN |
IA
|
M = 4; N = 1; |
|
|
m∞ = 1.0/(1 + exp(−(V + 60)/8.5)); |
|
|
τm = (1.0/( exp((V + 35.82)/19.69) + exp(−(V + 79.69)/12.7)) + 0.37)/3.9482; |
|
|
h∞= 1.0/(1 + exp((V + 78)/6)); |
|
|
If V < −63 |
|
|
τh = 1.0/((exp((V + 46.05)/5) + exp(−(V + 238.4)/37.45)))/3.9482; |
|
|
If V ≥ −63 |
|
|
τh = 19.0/3.9482 |
PN |
Ih
|
Voltage dependence (C indicates close state; O indicates open state): |
|
|
|
|
|
h∞= 1/(1 + exp((V + 75)/5.5)); |
|
|
τs = (20 + 1000/(exp((V + 71.5)/14.2) + exp(−(V + 89)/11.6))); |
|
|
α = h∞/τs
|
|
|
β = (1 − h∞)/τs
|
|
|
Calcium dependence (P0 indicates unbound form; P1 indicates bound form; OL implies locked state): |
|
|
P0 + 2Ca ; P1; O + P1
OL; |
|
|
k1 = 2.5 × 107 mm−4, k2 = 4 × 10−4 ms−1, k3 = 0.1 ms−1, and k4 = 0.001 ms−1
|
LN |
IT
|
M = 2; N = 1; |
|
|
m∞ = 1/(1 + exp(−(V + 52)/7.4)); |
|
|
τm = (3 + 1/(exp((V + 27)/10) + exp(−(V + 102)/15)))/6.8986; |
|
|
h∞ = 1/(1 + exp((V + 80)/5)); |
|
|
τh = (85 + 1/(exp((V + 48)/4) + exp(−(V + 407)/50)))/3.7372 |