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Stress Induces the Danger-Associated Molecular Pattern
HMGB-1 in the Hippocampus of Male Sprague Dawley Rats:
A Priming Stimulus of Microglia and the NLRP3
Inflammasome
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Exposure to acute and chronic stressors sensitizes the proinflammatory response of microglia to a subsequent immune challenge.
However, the proximal signal by which stressors prime microglia remains unclear. Here, high mobility group box-1 (HMGB-1) protein
was explored as a potential mediator of stress-induced microglial priming and whether HMGB-1 does so via the nucleotide-binding
domain, leucine-rich repeat, pyrin domain containing protein 3 (NLRP3) inflammasome. Exposure to 100 inescapable tail shocks (ISs)
increased HMGB-1 and NLRP3 protein in the hippocampus and led isolated microglia to release HMGB-1 ex vivo. To determine whether
HMGB-1 signaling is necessary for stress-induced sensitization of microglia, the HMGB-1 antagonist BoxA was injected into the cisterna
magna before IS. Hippocampal microglia were isolated 24 h later and stimulated with LPS ex vivo to probe for stress-induced sensitization
of proinflammatory responses. Previous IS potentiated gene expression of NLRP3 and proinflammatory cytokines to LPS, that is,
microglia were sensitized. Treatment with BoxA abolished this effect. To determine whether HMGB-1 is sufficient to prime microglia, IS
was replaced with intracerebral administration of disulfide or fully reduced HMGB-1. Intracerebral disulfide HMGB-1 mimicked the
effect of the stressor, because microglia isolated from HMGB-1-treated rats expressed exaggerated NLRP3 and proinflammatory cytokine
expression after LPS treatment, whereas fully reduced HMGB-1 had no effect. The present results suggest that the CNS innate immune system
can respond to an acute stressor as if it were cellular damage, thereby releasing the danger signal HMGB-1 in the brain to prime microglia by
acting on the NLRP3 inflammasome, in preparation for a later immune challenge.
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Introduction
Exposure to stressors can lead to a proinflammatory environ-
ment within the brain, an outcome thought to be critical to the
potential psychopathological effect of stressors (Gadek-
Michalska et al., 2013, Fillman et al., 2014). Both acute and
chronic stressors prime microglia (Frank et al., 2007) and amplify
the neuroinflammatory response to a subsequent peripheral
(Johnson et al., 2002, Wohleb et al., 2012) or central (de Pablos et
al., 2006; Espinosa-Oliva et al., 2011) inflammatory challenge.
The mechanism(s) by which stressors have neuroinflammatory
effects is essentially unknown. However, blockade of the pattern

recognition receptors Toll-like receptor (TLR) 2 and TLR4 in the
CNS during exposure to an acute stressor prevents the development
of stress-induced exaggerated neuroinflammatory responses to later
lipopolysaccharide (LPS; Weber et al., 2013). Thus, stressors must
induce the release of an endogenous ligand within the CNS that
signals via TLR2 and TLR4 to mediate neuroinflammatory sensiti-
zation produced by stressors. However, there are currently no
known transmitters or modulators released in the brain by stressors
that act at TLRs.

Although TLRs on peripheral immune cells were first thought
to recognize only pathogen-associated molecular patterns, more
recent findings suggest that a variety of conditions can lead to the
release of endogenous molecules called alarmins or danger-
associated molecular patterns (DAMPs; Bianchi, 2007) that can
also signal at TLRs (Park et al., 2004). The concept has developed
that innate immune receptors discriminate between danger and
non-danger rather than self and non-self (Matzinger, 2002).

High mobility group box-1 protein (HMGB-1) is perhaps the
most studied alarmin. When released in the periphery, HMGB-1
interacts with TLR2, TLR4, and the receptor for advanced glyca-
tion end products (RAGE) in which it acts as both a chemotactic
and proinflammatory mediator (van Zoelen et al., 2009).
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HMGB-1 plays a proinflammatory role in sterile injury and cel-
lular stress in the periphery (Venereau et al., 2013) and is involved
in a number of diseases (Kang et al., 2014).

Importantly, HMGB-1 has been reported to be present in the
CNS and to mediate neuroinflammatory responses to ischemia
and other injuries (Yang and Tracey, 2009). Here, we tested the
novel idea that the CNS innate immune system responds to stress
as “danger,” thus releasing HMGB-1 in brain, and that HMGB-1
primes neuroinflammatory processes in the event of a later im-
mune challenge. If so, this would provide a new perspective on
the role of HMGB-1 and suggest that the meaning of danger as it
applies to innate immunity needs to be expanded. In addition, a
new mechanism by which stress acts on the brain would be indi-
cated. We also explored the mechanism by which stress-induced
HMGB-1 primes proinflammatory immune responses. HMGB-1
in the periphery has been demonstrated to induce the expression
of the nucleotide-binding domain, leucine-rich repeat, pyrin do-
main containing protein 3 (NLRP3) inflammasome (Xiang et al.,
2011). The NLRP3 inflammasome mediates maturation and se-
cretion of IL-1� and is the only known inflammasome that re-
quires a priming stimulus before it becomes active. Therefore, we
also explored whether stress increases NLRP3 and whether stress-
induced HMGB-1 modulates NLRP3 expression.

Materials and Methods
Animals
Male Sprague Dawley rats (60 –90 d-old; Harlan Sprague Dawley) were
pair housed with food and water available ad libitum. The colony was
maintained at 25°C on a 12 h light/dark cycle (lights on at 7:00 A.M.). All
rats were allowed 1 week of acclimatization to the colony rooms before
experimentation. All experimental procedures were conducted in accor-
dance with the University of Colorado Institutional Animal Care and Use
Committee.

Experimental design
Experiment 1: effect of inescapable tail shock on hippocampal HMGB-1 and
NLRP3. Rats were killed immediately (0 h) or 24 h after inescapable tail
shock (IS) exposure or served as home cage controls (HCCs). Hippocam-
pal HMGB-1, NLRP3, and nuclear factor-�B (NF-�B) protein levels
were measured.

Experiment 2: effect of IS on hippocampal microglial release of HMGB-1.
An increased level of HMGB-1 protein in hippocampal tissue does not
necessarily indicate that HMGB-1 was secreted because it could have
remained intracellular. Therefore, HMGB-1 release was measured from
microglial cells of rats that had been exposed to IS or served as HCCs.
Immediately after IS exposure (0 h), IS and HCC rats were killed, and
hippocampal microglia were isolated. Equal numbers of microglia
(5 � 10 4/100 �l) from each subject were incubated for 24 h, HMGB-1
protein was measured in supernatants, and microglial cell viability
was determined.

Experiment 3: effect of the HMGB-1 antagonist BoxA on IS-induced
priming of microglia. Previous work has shown that exposure to IS primes
microglia as assessed ex vivo in the sense that these microglia produce
exaggerated inflammatory mediators in response to LPS (Frank et al.,
2007). Rats were anesthetized with isoflurane (�3 min). The dorsal as-
pect of the skull was shaved and swabbed with 70% EtOH, and a 27 gauge
needle, attached via polyethylene-50 tubing to a 25 �l Hamilton syringe,
was inserted into the cisterna magna [intracisterna magna (ICM)]. To
verify entry into the cisterna magna, �2 �l of clear CSF was drawn and
gently pushed back. Ten micrograms of BoxA (HMGBiotech; certified
LPS free) were administered, suspended in 5 �l of pyrogen-free, sterile
H2O. An equal volume of sterile H2O was injected ICM for vehicle con-
trol rats. ICM administration was used to avoid implanting cannulae,
which itself produces enduring neuroinflammation (Holguin et al.,
2007). Rats were exposed to IS or served as HCCs immediately after full
recovery from the brief anesthesia. Hippocampal microglia were isolated
from IS and HCC rats 24 h after stressor termination. Microglia were

suspended in media, and microglia concentration was determined by
trypan blue exclusion. Microglia concentration was adjusted for each rat
to yield an equal number of microglia (1 � 10 4/100 �l) for each in vitro
condition across all rats. One hundred microliters were added to indi-
vidual wells of a 96-well V-bottom plate. Cells were incubated with LPS
(0, 0.1, 1, 10, or 100 ng/ml) for 4 h because we have determined previ-
ously that this concentration range and time of LPS exposure is optimal
for microglial production of proinflammatory cytokines (Frank et al.,
2006). Cells were washed in 1� PBS. Cells were lysed/homogenized and
cDNA synthesis was performed according to the protocol of the manu-
facturer using SuperScript III CellsDirect cDNA Synthesis System (Invit-
rogen). Gene expression of proinflammatory cytokines was measured
using real-time RT-PCR. Data from three cohorts were collected.

Experiment 4: effect of disulfide and fully reduced HMGB-1 on microglial
proinflammatory response to LPS. Recent studies demonstrate that the
redox state of HMGB-1 is a key determinant in the receptor interaction
and immunological activity of HMGB-1. When cysteines in position
C23, C45, and C106 are fully reduced (fully reduced HMGB-1),
HMGB-1 functions as a chemotactic signaling protein but does not stim-
ulate proinflammatory cytokines (Venereau et al., 2012). However,
HMGB-1 functions as a proinflammatory mediator if a disulfide bond is
formed between C23 and C45 under oxidizing conditions, whereas C106
remains in a reduced state (disulfide HMGB-1; Yang et al., 2012). Oxi-
dation at all three cysteines abrogates both the chemotactic and proin-
flammatory properties of HMGB-1 (oxidized HMGB-1; Venereau et al.,
2012). Thus, HMGB-1 orchestrates both chemotaxis and induction of
inflammatory cytokines depending on the redox state of the protein.
Therefore, both disulfide and fully reduced HMGB-1 were investigated.
Oxidized HMGB-1 was omitted because it has not been associated with
any in vivo function.

One microgram of disulfide or fully reduced HMGB-1 (HMGBiotech)
was suspended in 10 �l of sterile water and administered ICM. Twenty-
four hours later, equal numbers of hippocampal microglia (1 � 10 4

cells/LPS condition) were incubated with LPS (0, 0.1, 1, 10, or 100 ng/ml)
for 4 h. The plate was washed in 1� PBS, cDNA synthesis performed, and
gene expression of proinflammatory cytokines was measured using real-
time RT-PCR.

General procedures
IS. Rats were placed in Plexiglas tubes (23.4 cm length � 7 cm diameter)
and exposed to 100 1.6 mA, 5 s tail shocks with a variable intertrial
interval (ITI) ranging from 30 to 90 s (average ITI, 60 s). All IS treatments
occurred between 9:00 A.M. and 11:00 A.M. IS rats were returned to their
home cages immediately after termination of shock. HCC rats remained
undisturbed in their home cages.

Tissue collection. Rats were injected with a lethal dose of sodium pen-
tobarbital. During deep anesthesia, rats were transcardially perfused with
ice-cold saline (0.9%) for 3 min to remove peripheral immune cells from
the CNS vasculature. Brains were rapidly extracted, placed on ice, and
hippocampus dissected. For in vivo experiments, hippocampus was flash
frozen in liquid nitrogen and stored at �80°C. For ex vivo experiments,
microglia were isolated immediately (see below for procedure).

Western blot. Hippocampus was sonicated in a mixture containing
extraction buffer (Invitrogen) and protease inhibitors (Sigma). Ice-cold
tissue samples were centrifuged at 14,000 rpm for 10 min at 4°C. The
supernatant was removed, and the protein concentration for each sample
was quantified using the Bradford method. Samples were heated to 75°C
for 10 min and loaded into a standard polyacrylamide Bis-Tris
gel (Invitrogen). SDS-PAGE was performed in 3-(N-morpholino)-
propanesulfonic acid running buffer (Invitrogen) at 175 V for 1.25 h.
Protein was transferred onto a nitrocellulose membrane using the iblot
dry transfer system (Invitrogen). The membrane was blocked with Od-
yssey blocking buffer (LI-COR Biosciences) for 1 h and incubated with a
primary antibody in blocking buffer overnight at 4°C. The following day,
the membrane was washed in 1� PBS containing Tween 20 (0.1%) and
then incubated in blocking buffer containing either goat anti-rabbit or
goat anti-mouse (LI-COR) IRDye 800CW secondary antibody at a con-
centration of 1:10,000 (LI-COR) for 1 h at room temperature. Protein
expression was quantified using an Odyssey Infrared Imager (LI-COR)
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and expressed as a ratio to their housekeeping protein. HMGB-1 protein
was measured in cell culture supernatants using identical Western con-
ditions except that measurement of GAPDH was excluded. Primary an-
tibodies included rabbit anti-rat HMGB-1 monoclonal antibody (1:
4000; Abcam), rabbit anti-rat NLRP3 monoclonal antibody (1:1000;
Abcam), mouse anti-rat active NF-�B monoclonal antibody (1:1000;
Millipore), rabbit anti-rat GAPDH monoclonal antibody (1:200,000 Ab-
cam), and mouse anti-rat �-actin (1:200,000; Sigma-Aldrich).

Microglia isolation and culture conditions. Hippocampal microglia
were isolated using a Percoll density gradient as described previously
(Frank et al., 2006). We have shown previously (Frank et al., 2006) that
this microglia isolation procedure yields highly pure (�95%) microglia
[ionized calcium-binding adapter molecule 1-positive/major histocom-
patibility complex II (MHCII)-positive/cluster of differentiation 163
(CD163)-negative/glial fibrillary acidic protein (GFAP)-negative]. Im-
munophenotype and purity of microglia was assessed and verified using
real-time RT-PCR of MHCII, CD163, and GFAP. Microglia were rou-
tinely found to be MHCII-positive/CD163-negative/GFAP-negative
(data not shown). Microglia were cultured in 100 �l of DMEM plus 10%
FBS, and microglia concentration was determined by trypan blue exclu-
sion. Microglia were plated in individual wells of a 96-well V-bottom
plate and incubated at 37°C, 5% CO2 under the experimental conditions
described above.

MTT assay of cell viability. Microglia were incubated with 12 mM MTT
(Life Technologies) at 37°C for 4 h. Fifty microliters of DMSO were
added to each well and incubated at 37°C for 10 min. Absorbance was
measured at 540 nm, and cell viability was determined according to the
protocol of the manufacturer (Life Technologies).

Real-time RT-PCR measurement of gene expression. A detailed descrip-
tion of the PCR amplification protocol has been published previously
(Frank et al., 2006). cDNA sequences were obtained from GenBank at the
National Center for Biotechnology Information (NCBI; www.ncbi.nlm.
nih.gov). Primer sequences were designed using the Eurofins MWG
Operon Oligo Analysis and Plotting Tool (http://www.operon.com/
technical/toolkit.aspx) and tested for sequence specificity using the Basic
Local Alignment Search Tool at the NCBI (Altschul et al., 1997). Primers
were obtained from Invitrogen. Primer specificity was verified by melt
curve analysis. All primers were designed to span exon/exon boundaries
and thus exclude amplification of genomic DNA (for primer description
and sequences, see Table 1). PCR amplification of cDNA was performed
using the Quantitect SYBR Green PCR kit (Qiagen). Formation of PCR
product was monitored in real time using the MyiQ Single-Color Real-
Time PCR Detection System (Bio-Rad). Relative gene expression was
determined by taking the expression ratio of the gene of interest to
�-actin.

Statistical analysis and data presentation. All data are presented as
mean � standard error of the mean (SEM). Statistical analysis consisted
of Student’s t test or ANOVA using Prism 5 (GraphPad Software). Om-
nibus F values are reported for each ANOVA and serve as a criterion for
post hoc analysis (Newman–Keuls test). Threshold for statistical signifi-
cance was set at � � 0.05.

Results
Stress exposure induces hippocampal microglia to
release HMGB-1
The first goal was to determine whether HMGB-1 is increased in
the hippocampus after stress exposure. The hippocampus was
targeted because it is an area that shows robust IS-induced prim-
ing of neuroinflammatory processes in vivo (Johnson et al., 2002)
and ex vivo (Frank et al., 2007) and yields a sufficient number of
microglia to perform ex vivo experiments. There was a significant
interaction between IS vs HCC and 0 vs 24 h post-stress treatment
(F(1,23) � 11.97, p � 0.01). Post hoc analysis revealed that
HMGB-1 protein was significantly increased 0 h after IS com-
pared with HCC rats (p � 0.001) and remained significantly
elevated 24 h after IS compared with HCC rats (p � 0.01; Fig.
1A). This result provided initial evidence that HMGB-1 is mod-
ulated by stress. However, HMGB-1 is located primarily in the
nucleus and is not considered to be an alarmin unless released
into the extracellular space (Lotze and Tracey, 2005). Simply
measuring HMGB-1 protein or mRNA in brain tissue cannot
indicate whether the increased HMGB-1 was secreted. Microglia
were targeted for such an analysis because they are the predomi-
nant innate immune cell in the brain. To measure released
HMGB-1, rats were exposed to IS or served as HCCs, and hip-
pocampal microglia were isolated immediately after stress treat-
ment. HMGB-1 was measured in the supernatant after a 24 h
incubation period, which allowed sufficient time for detectable
levels of protein to accumulate. Previous exposure to IS led mi-
croglia to release an increased amount of HMGB-1 compared
with microglia isolated from HCC rats (t(13) � 5.429, p � 0.0001;
Fig. 1B). Although we have demonstrated previously that the
isolation procedure does not change the immunophenotype of
microglia (Frank et al., 2006), the presence of HMGB-1 in the
supernatant of HCC microglia suggests that the culture condi-
tions contribute to the release of HMBG-1 ex vivo, and this
should be noted. Nonetheless, HMGB-1 was significantly ele-
vated in the supernatant from microglia exposed to IS. Of course,
the IS-induced increase of HMGB-1 could be attributable to cell
death. Therefore, an MTT assay was performed to measure cell
viability of microglia after the supernatant was removed. We
found no difference in cell viability (t � 0.933, p � 0.93; Fig. 1C),
demonstrating that the elevated levels of HMGB-1 are likely not
attributable to microglia death, thus suggesting that IS-induced
active release of HMGB-1 from microglia into supernatant.

Stress induces NLRP3 and NF-�B protein in hippocampus
Next, we examined NLRP3 and upstream signaling markers in
hippocampal tissue after stress exposure. NLRP3 protein was sig-
nificantly increased 0 and 24 h (F(2,23) � 3.907, p � 0.05; Fig. 2B)
after stress treatment compared with HCC rats. However, NLRP3
mRNA was not significantly changed by stress exposure (Fig. 2A).
NLRP3 is induced by the transcription factor NF-�B, and so we
measured NF-�B as an upstream NLRP3 marker (Bauernfeind et
al., 2009). We used an antibody that binds to an epitope of the p65
subunit that is exposed after degradation of the inhibitory chain
nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha (I�B�), thus representing active NF-�B. Stress

Table 1. Primer description and sequences

Primer sequence 5	¡ 3	

Gene Forward Reverse Function

�-actin TTCCTTCCTGGGTATGGAAT GAGGAGCAATGATCTTGATC Cytoskeletal protein
(housekeeping
gene)

CD163 TCATTCAACCCTCACTGCAC CTTGAGGAAACTGTAAGCCG Macrophage antigen
not expressed by
microglia

GFAP AGATCCGAGAAACCAGCCTG CCTTAATGACCTCGCCATCC Astrocyte antigen
IL-1� CCTTGTGCAAGTGTCTGAAG GGGCTTGGAAGCAATCCTTA Proinflammatory

cytokine
IL-6 AGAAAAGAGTTGTGCAATGGCA GGCAAATTTCCTGGTTATATCC Proinflammatory

cytokine
MHCII AGCACTGGGAGTTTGAAGAG AAGCCATCACCTCCTGGTAT Microglia/macro-

phage antigen
I�B� CACCAACTACAACGGCCACA GCTCCTGAGCGTTGACATCA Induced by NF-�B to

inhibit NF-�B
function

TNF� CAAGGAGGAGAAGTTCCCA TTGGTGGTTTGCTACGACG Proinflammatory
cytokine
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Figure 2. Effect of IS on hippocampal NLRP3 and NF-�B. A, NLRP3 mRNA is not changed 0 and 24 h after IS compared with HCCs. B, I�B� is increased 0 h, but not 24 h, after IS. C, NLRP3 protein
is increased 0 and 24 h after IS compared with HCCs. D, Active NF-�B protein is increased 0 h, but not 24 h, after IS compared with HCCs. The graphs show mean and SEM. Representative Western
blots are shown below each graph. n � 8 per group. *p � 0.05, **p � 0.01, ***p � 0.001 versus the HCC group.

Figure 1. Effect of IS on HMGB-1. A, HMGB-1 is increased in the hippocampus 0 and 24 h after IS compared with HCCs. B, Hippocampal microglia were isolated 0 h after IS or from HCCs and
incubated for 24 h. HMGB-1 is increased in the supernatant of microglia isolated from rats exposed to IS. C, There was no difference in cell viability between microglia isolated from IS or HCC
treatment. The graphs show mean and SEM. Sample sizes are represented in the bar graph. Representative Western blots are shown above each graph when appropriate. **p � 0.01, ***p � 0.001
versus the HCC group.
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exposure increased activated NF-�B at 0 h (F(2,23) � 5.537, p �
0.01) but not 24 h after stress treatment (Fig. 2D). Similarly, I�B�
gene expression was increased 0 h (F(2,23) � 12.79, p � 0.001) but
not 24 h after stress exposure (Fig. 2B).

The HMGB-1 antagonist BoxA prevents stress-induced
sensitization of the microglial proinflammatory response to
LPS ex vivo
If HMGB-1 signaling is critical to the mediation of IS-induced
microglial priming, then blocking HMGB-1 signaling during
stress exposure should prevent subsequent stress-induced sensi-
tization of the microglial proinflammatory response. HMGB-1
has three major protein domains consisting of two tandem DNA
binding domains (BoxA and BoxB) and an acidic C terminus.
The BoxB domain is critical for the proinflammatory actions of
HMGB-1 (Li et al., 2003). The BoxA fragment will bind to recep-
tors but does not initiate proinflammatory actions. However,
BoxA occupancy of TLRs will keep HMGB-1 from binding and
acts as a competitive antagonist to HMGB-1, displacing radiola-
beled HMGB-1 from receptors on macrophages without any in-
trinsic inflammatory activity (Yang et al., 2004). It is highly
selective in that it is the binding fragment of HMGB-1 and so
binds only where HMGB-1 would bind. BoxA (10 �g) was in-
jected ICM before IS or control treatment. Hippocampal micro-
glia were isolated 24 h later and stimulated with LPS ex vivo. To
determine whether BoxA blocked stress-induced sensitization of
the microglia proinflammatory response, area under the curve
(AUC) for LPS concentration was computed for each subject to
reflect the cumulative proinflammatory response to LPS. IS sig-
nificantly potentiated interleukin-1� (IL-1�) gene expression to
LPS, which was blocked by BoxA (interaction between IS vs HCC
and vehicle vs BoxA, F(1,20) � 6.142, p � 0.05; Fig. 3A). A similar
interaction was observed with I�B� (F(1,20) � 4.839, p � 0.05;
Fig. 3B). In addition, IS significantly potentiated NLRP3 gene
expression to LPS, which was blocked by BoxA treatment (inter-
action between IS vs HCC and vehicle vs BoxA, F(1,20) � 4.094,
p � 0.05; Fig. 3C). To verify that BoxA is not a general TLR2/4
antagonist but acts selectively against HMGB-1, naive hippocam-
pal microglia were incubated with 2 �g/ml BoxA and 100 ng/ml
LPS (TLR4 agonist) or 100 ng/ml Pam3CysSerLys4 (TLR2 ago-
nist) for 4 h. IL-1� gene expression was measured as an indicator
of the microglial inflammatory response to each TLR agonist.
Both LPS and Pam3csk4 increased IL-1� expression, as would be
expected, and BoxA did not at all reduce this increase (Fig. 3D,E).

ICM administration of disulfide HMGB-1, but not fully
reduced HMGB-1, primes the proinflammatory response of
microglia to LPS ex vivo
To further examine whether HMGB-1 primes proinflammatory
neuroimmune responses and acts in the brain as it does in the
periphery, recombinant disulfide or fully reduced HMGB-1 was
injected ICM, and the proinflammatory response of hippocam-
pal microglia to LPS was assessed 24 h after injection. Disulfide
HMGB-1 significantly modulated the microglia proinflamma-
tory response to LPS ex vivo for IL-1� (interaction between vehi-
cle and disulfide HMGB-1 vs LPS dose, F(4,30) � 6.933, p �
0.001), IL-6 (F(4,30) � 4.984, p � 0.01), tumor necrosis factor-�
32 (TNF�; F(4,30) � 6.970, p � 0.001), I�B� (F(4,30) � 2.994, p �
0.05), and NLRP3 (F(4,30) � 7.461, p � 0.001) gene expression
(Fig. 4). Post hoc analysis showed that disulfide HMGB-1 poten-
tiated the proinflammatory response of IL-1� (10 ng/ml LPS, p �
0.01; 100 ng/ml, p � 0.0001), IL-6 (100 ng/ml LPS, p � 0.001),
TNF� (10 ng/ml LPS, p � 0.05; 100 ng/ml, p � 0.0001), I�B�

(100 ng/ml LPS, p � 0.01), and NLRP3 (100 ng/ml, p � 0.0001)
compared with vehicle-treated rats. The AUC was computed for
each subject to compare the cumulative LPS proinflammatory
response between HMGB-1- and vehicle-treated rats. Adminis-
tration of disulfide HMGB-1 resulted in a significant increase in
AUC for IL-1� (t(6) � 5.568, p � 0.01), IL-6 (t(6) � 2.618, p �
0.05), TNF� (t(6) � 3.032, p � 0.05), I�B� (t(6) � 2.734, p �
0.05), and NLRP3 (t(6) � 2.967, p � 0.05). In contrast, fully
reduced HMGB-1 failed to significantly affect the proinflamma-
tory response of microglia to LPS for IL-1� (p � 0.80), IL-6 (p �
0.75), TNF� (p � 0.87), I�B� (p � 0.77), or NLRP3 (p � 0.62)
compared with vehicle-treated rats (Fig. 5).

Discussion
The present experiments provide the first evidence that exposure
to a stressor modulates the alarmin/DAMP HMGB-1 in the CNS
and that HMGB-1 primes microglia and amplifies subsequent
neuroinflammatory responses. Here, an acute stressor increased
HMGB-1 in the hippocampus, an increase still present 24 h later.
HMGB-1 can be released via two distinct mechanisms. The first
can yield release from any cell type undergoing non-apoptotic
death. The second has been characterized primarily in innate im-
mune cells and involves secretory processes in the absence of cell
death (Lotze and Tracey, 2005; Klune et al., 2008). Because microglia
are the predominant innate immune cells in the CNS, we examined
whether stress induces microglia to actively secrete HMGB-1. Con-
sistent with the effects of stress on hippocampal HMGB-1 in vivo,
hippocampal microglia were found to release HMGB-1 ex vivo after
stress exposure. It is important that microglia cell viability did not
differ between stress and non-stress groups, suggesting that stress
induces microglia to actively secrete HMGB-1, a previously un-
known phenomenon. However, the present results do not exclude
the possibility that other CNS cells produce HMGB-1 in response to
stress (Qiu et al., 2008).

Extracellular HMGB-1 acts via RAGE to signal immune cell
migration and TLR2/TLR4 to induce proinflammatory media-
tors (Park et al., 2004). We demonstrated previously that CNS
blockade of TLR2 and TLR4 during IS prevents stress-induced
priming of the microglial proinflammatory response (Weber et
al., 2013). This finding suggested that stress induces the release of
an endogenous ligand in CNS, which primes microglia through
TLRs. Therefore, we sought to examine the role of HMGB-1
during and after stress. To do so, we used the HMGB-1 antagonist
BoxA. BoxA was administered ICM before stress exposure, and
hippocampal microglia were isolated 24 h later to characterize
their response to LPS ex vivo. Microglia incubated in media alone
expressed low levels of inflammatory genes, regardless of stress or
BoxA treatment. However, IS potentiated the proinflammatory
response to LPS, an effect that was blocked by BoxA. That is,
BoxA prevented microglia from becoming sensitized and sup-
ports the ex vivo finding that IS induces the release of HMGB-1
from microglia. The half-life of BoxA is unknown, so a potential
confounding factor is that BoxA could be present at microglia
and act as a general TLR2 and TLR4 antagonist, thereby blocking
the ability of LPS to stimulate proinflammatory cytokines. How-
ever, this possibility is unlikely because BoxA did not have any
tendency to reduce the inflammatory effect of the TLR2 agonist
Pam3csk4 or the TLR4 agonist LPS on microglia in vitro, sup-
porting the contention that BoxA is specifically an HMGB-1
antagonist.

As noted, HMGB-1 in the periphery can have different func-
tions depending on the redox states at three cysteine sites that
dictate receptor interaction and proinflammatory activity. Im-
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portantly, neither the HMGB-1 antibody used in the present
study, nor most others, distinguishes between these different
forms, and therefore it is unknown which form of HMGB-1 is
released in the CNS.

Whether these different HMGB-1 forms might have different
effects in the CNS has not been explored previously. To deter-

mine which form primes microglia, disulfide or fully reduced
HMGB-1 was administered ICM, and microglia proinflamma-
tory responses to LPS were measured ex vivo 24 h later. Similar to
the effects of stress exposure, microglia incubated in media alone
expressed the same level of inflammatory cytokines, regardless
of HMGB-1 treatment. Previous reports show that disulfide

Figure 3. Effect of the HMGB-1 antagonist BoxA on IS-induced priming of microglia to LPS ex vivo. A–C, BoxA (10 �g) or vehicle was injected ICM before IS or in HCCs. At 24 h after stress treatment,
microglia were isolated from the hippocampus and challenged with LPS (0, 0.1, 1, 10, and 100 ng/ml) for 4 h, and microglial proinflammatory gene expression was measured. To determine whether
BoxA blunted stress-induced sensitization of the microglial proinflammatory response, the AUC for LPS concentration was computed for each rat, and the means were compared. n � 6 per group.
BoxA treatment blocked the IS-induced sensitized microglial IL-1� (A), I�B� (B), and NLRP3 (C) response to LPS. The graphs show mean and SEM. *p � 0.05 versus non-asterisk groups. D, E, To
determine whether BoxA interferes with the ability of TLR2/4 to recognize other agonists, isolated microglia were treated with BoxA (2 �g/ml) or media, and the TLR4-specific antagonist LPS (100
ng/ml; D) or the TLR2-specific antagonist Pam3csk4 (100 ng/ml; E) for 4 h. IL-1� gene expression was measured as an indicator of the microglial proinflammatory response. n � 4 per group.
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Figure 5. Effect of fully reduced HMGB-1 on hippocampal microglia proinflammatory to LPS ex vivo. Fully reduced HMGB-1 (1 �g/10 �l) or vehicle was injected ICM. Hippocampal microglia were
isolated 24 h after treatment and stimulated with LPS (0, 0.1, 1, 10, and 100 ng/ml) for 4 h, and proinflammatory gene expression was measured. Relative mRNA expression to the vehicle/media
group is shown for IL-1� (A), IL-6 (B), TNF� (C), I�B� (D), and NLRP3 (E). Data are presented as mean and SEM, n � 4 per group. The AUC was also calculated and presented as mean and SEM.

Figure 4. Effect of disulfide HMGB-1 on hippocampal microglia proinflammatory to LPS ex vivo. Disulfide HMGB-1 (1 �g/10 �l) or vehicle was injected ICM. Hippocampal microglia were isolated
24 h after treatment and stimulated with LPS (0, 0.1, 1, 10, and 100 ng/ml) for 4 h, and proinflammatory gene expression was measured. Relative mRNA expression to the vehicle/media group is
shown for IL-1� (A), IL-6 (B), TNF� (C), I�B� (D), and NLRP3 (E). Data are presented as mean and SEM, n � 4 per group. *p � 0.05, **p � 0.01, ***p � 0.001, ****p � 0.0001 versus the vehicle
group with same LPS concentration; AUC was also calculated and presented as mean and SEM. *p � 0.05, **p � 0.01 versus the vehicle group.
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HMGB-1 is sufficient to stimulate proinflammatory cytokines
(Scaffidi et al., 2002; Park et al., 2004; Agalave et al., 2014). How-
ever, disulfide HMGB-1 failed to increase basal levels of proin-
flammatory cytokine expression here. One possibility is that the
proinflammatory cytokine effect of disulfide HMGB-1 had dissi-
pated by 24 h after treatment. However, other reports suggest that
HMGB-1 does not always induce proinflammatory cytokines
(Rouhiainen et al., 2007; Sha et al., 2008; Cassetta et al., 2009).
Additional studies are needed to measure the inflammatory
properties of each redox form closer to the time of injection.
Interestingly, microglia isolated from disulfide HMGB-1-treated,
but not fully reduced HMGB-1-treated, rats showed a potenti-
ated inflammatory response to LPS. That is, disulfide HMGB-1
was sufficient to prime hippocampal microglia, as does stress.
The effects of HMGB-1 on microglial priming are consistent with
previous work demonstrating that HMGB-1 is sufficient to prime
the inflammatory response of isolated splenocytes (Valdes-Ferrer
et al., 2013). It should be noted that stress exposure increases
macrophage and monocyte trafficking into the brain (Wohleb et
al., 2011, 2013) and microglia density in several stress-reactive
brain areas, including the hippocampus (Nair and Bonneau,
2006; Tynan et al., 2010). It is possible that fully reduced
HMGB-1 drives this type of trafficking, which could contribute
to stress-induced neuroinflammatory responses in vivo. How-
ever, the present experiments were designed to target microglial
priming specifically, and so the number of microglia were con-
trolled for in the ex vivo environment.

Although the present studies provide evidence that HMGB-1
mediates stress-induced microglial priming, they do not indicate
the cellular mechanism by which HMGB-1 does so. We have
shown previously that ICM administration of a TLR2/4 antago-
nist before the stressor blocks stress-induced microglia priming
(Weber et al., 2013). Of particular relevance, TLR2 and TLR4
activation can lead to the formation of the NLRP3 inflam-
masome, a complex that is key to generating IL-1� protein
(Hanamsagar et al., 2012). IL-1� is often referred to as the “mas-
ter regulator” of inflammation because it is a potent signal that
stimulates the production of other inflammatory molecules
(Basu et al., 2004). NLRP3 is unique among NLR inflammasomes
in that assembly and activation of the NLRP3 inflammasome
involves a two-step process. First, a priming signal is required
to increase NLRP3 protein levels to a critical threshold. A second
signal is then required that induces NLRP3 to form a complex
with Apoptosis-associated speck-like protein containing a CARD
(ASC) and pro-caspase-1. Formation of this complex results in
proteolytic cleavage of pro-caspase-1 to active caspase-1, which
cleaves pro-IL-1� into the bioactive mature IL-1� (Martinon et
al., 2009). Interestingly, HMGB-1 has been found to increase
NLRP3 mRNA and protein (Xiang et al., 2011). Indeed, it has
been argued that DAMPs, such as HMGB-1, prime the NLRP3
inflammasome and potentiate inflammation (Leemans et al.,
2011).

Given the above, it is important that stress exposure increased
NLRP3 protein in the hippocampus, an increase still present 24 h
after stressor termination. However, the present IS paradigm
does not alter IL-1� protein in the hippocampus 24 h after stres-
sor termination (Frank et al., 2007), suggesting that the NLRP3
inflammasome is primed but not active. This result is consistent
with other findings in which chronic stress increased NLRP3 in
the prefrontal cortex (Pan et al., 2014). Unexpectedly, NLRP3
mRNA was not changed here after the stressor. However, the
stress paradigm is �2 h. Therefore, it is possible that NLRP3
mRNA did increase but had returned to basal levels by the end of

the stressor. Activation of the transcription factor NF-�B drives
NLRP3 to prime inflammasome formation (Bauernfeind et al.,
2009). Importantly, active NF-�B protein and I�B� mRNA, an
inhibitor of NF-�B that is induced after NF-�B activation, were
increased 0 h, but not 24 h, after stress. The finding that micro-
glial NLRP3 mRNA was sensitized to LPS after stress exposure
further implicates this pathway in stress-induced neuroinflam-
matory priming. Interestingly, treatment with BoxA before stress
blocked NLRP3 sensitization, suggesting that stress-induced
HMGB-1 drives NLRP3 priming. In addition, administration of
disulfide HMGB-1, but not fully reduced HMGB-1, sensitized
microglia NLRP3 mRNA to LPS. As a body, these data provide
initial evidence that stress exposure may prime neuroinflamma-
tory processes via HMGB-1 activating NF-�B to prime the
NLRP3 inflammasome.

The present results encourage the expansion of the role of
HMGB-1 into other stress paradigms. Chronic unpredictable
stress (Munhoz et al., 2006) and repeated social defeat (Wohleb et
al., 2012), for example, increase inflammatory processes to a later
immune challenge. Thus, HMGB-1 may function broadly.

Of course, this leaves the question of what CNS signal leads to
HMGB-1 increases and release from microglia. Because blocking
TLR2 and TLR4 during IS prevented stress-induced microglial
priming (Weber et al., 2013), one possibility is that an unknown
ligand, signaling at TLR2 and/or TLR4, initiates HMGB-1 release
from microglia. Another possibility involves glucocorticoids as
critical mediators. Previous studies show that glucocorticoids,
and glucocorticoid receptor signaling in particular, are necessary
and sufficient to prime microglia (Frank et al., 2010). This is an
active topic of investigation.

Although the purpose of the present studies was to explore
mechanisms by which stressors sensitize neuroinflammatory re-
sponses to subsequent immune challenges, they also comment
more generally on the role of DAMPs, such as HMGB-1, at least
in the brain. When it was first argued that immune cells respond
to “danger signals,” the term danger was used quite loosely. How-
ever, as a recent review of this concept by Pradeu and Cooper
(2012) makes clear, by danger, immunologists meant damage to
cells or tissues. Although we cannot dissociate between the phys-
ical and psychological effect of the stressor, the present results
suggest consideration of the idea that, perhaps, DAMPs respond
to external threats as well as cellular damage.
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