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Gene Dosage in the Dysbindin Schizophrenia Susceptibility
Network Differentially Affect Synaptic Function and
Plasticity
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Neurodevelopmental disorders arise from single or multiple gene defects. However, the way multiple loci interact to modify phenotypic
outcomes remains poorly understood. Here, we studied phenotypes associated with mutations in the schizophrenia susceptibility gene
dysbindin (dysb), in isolation or in combination with null alleles in the dysb network component BlosI. In humans, the BlosI ortholog
BlocIsI encodes a polypeptide that assembles, with dysbindin, into the octameric BLOC-1 complex. We biochemically confirmed BLOC-1
presence in Drosophila neurons, and measured synaptic output and complex adaptive behavior in response to BLOC-1 perturbation.
Homozygous loss-of-function alleles of dysb, Blos1, or compound heterozygotes of these alleles impaired neurotransmitter release,
synapse morphology, and homeostatic plasticity at the larval neuromuscular junction, and impaired olfactory habituation. This mul-
tiparameter assessment indicated that phenotypes were differentially sensitive to genetic dosages of loss-of-function BLOC-1 alleles. Our
findings suggest that modification of a second genetic locus in a defined neurodevelopmental regulatory network does not follow a strict

additive genetic inheritance, but rather, precise stoichiometry within the network determines phenotypic outcomes.
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Introduction

Multiple gene products converge into molecular and functional
networks to influence neuronal traits, ranging from simple syn-
apse mechanisms to complex behaviors (Kendler and Greenspan,
2006). These networks have been studied through single gene
disruptions, which provide fundamental insight into the necessity
and sufficiency of a single gene product for a neuronal phenotype.
However, these studies assume that gene products organize into lin-
ear pathways that remain stable following disruption of a single gene,
rather than dynamic networks (Greenspan, 2009). This approach is
at odds with the genetics of neurodevelopmental disorders, where
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complex phenotypes emerge from the simultaneous modification of
several genes (Stefansson et al., 2009, 2014; Bassett et al., 2010; Mal-
hotra and Sebat, 2012; Rapoport et al., 2012; Moreno-De-Luca et al.,
2013). This raises the question of how two or more genes interact to
specify neuronal traits.

Here we model a two-loci genetic deficiency affecting a
schizophrenia susceptibility network centered on the human
gene DTNBPI and its Drosophila ortholog dysb, both of which
encode Dysbindin. We previously defined the human Dysbindin
interactome (Gokhale et al., 2012), the core of which is comprised
of Dysbindin and seven closely associated proteins that form an oc-
tameric complex known as the biogenesis of lysosome-related or-
ganelles complex 1 (BLOC-1; Ghiani and Dell’Aangelica, 2011;
Gokhale et al., 2012; Mullin et al., 2013). Polymorphisms in DT-
NBP] are risk factors for schizophrenia (Gornick et al., 2005; Talbot
etal., 2009; Fatj6-Vilas et al., 201 1; Mullin et al., 2011) and influence
cognitive and neuroanatomical traits (Mullin etal., 2011; Ghianiand
Dell’Angelica, 2011; Papaleo et al., 2014). Postmortem analysis re-
vealed that 80% of schizophrenia brains contain reduced dysbindin
(Talbot et al., 2004). The association of Dysbindin with schizophre-
nia and its inclusion into the biochemically defined BLOC-1 net-
work suggest that combined loss-of-function mutations affecting
dysbindin and the BLOC-1 network should generate predictable
synaptic and circuit phenotypes, reminiscent of those in copy num-
ber variations associated with neurodevelopmental disorders.
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We used Drosophila to understand the impact of fly loss-of-
function mutations affecting BLOC-1 orthologous subunits on
synaptic networks (Cheli et al., 2010). We predicted that pheno-
types associated with gene copy reductions affecting BLOC-1
subunits should follow a recessive inheritance pattern, as has
previously been described for BLOC-1 (Cheli et al., 2010), and
that this pattern should be congruent across synaptic mechanisms
that progressively scale up in complexity. We tested neurotransmit-
ter release, synapse morphology, homeostatic plasticity, and be-
havioral/olfactory habituation in four BLOC-1 loss-of-function
genotypes. Contrary to our prediction, homozygous loss-of-
function alleles of BLOC-1 subunit genes dysb or Blosl, or com-
pound heterozygotes in the two genes, affected synaptic functions
with divergent inheritance patterns rather than the predicted
simple recessive pattern. We conclude that single synapse and
circuit-based phenotypes associated with a single gene-dosage
imbalance are noncongruently modified by a second locus en-
coding an interactome component. We propose that genetic con-
trol of the stoichiometry of a neurodevelopmental regulatory
network diversifies phenotypic output in normal and disease
states.

Materials and Methods

Drosophila stocks, rearing, genetics, and electrophysiology. All fly stocks
were reared and maintained at 25°C on normal media. For crosses, stan-
dard second and third chromosome balancers were used. dysb', UAS-
Dysb, UAS-Venus-dysbindin, dysb™, and dysb™ were obtained from
Graeme Davis (University of California, San Francisco); blosI ex2
blos1°**® and UAS-blos1 were obtained from Esteban Dell’Angelica (Uni-
versity of California, Los Angeles; Cheli et al., 2010). w!8 Canton S,
Elav-GAL4 ©'*%, and other fly strains such as balancer chromosome-
containing and tissue-specific Elav-GAL4 driver stocks are part of the
Sanyal or Ramaswami laboratory collection. Blos1®* was obtained from
Bloomington Drosophila Stock Center and UAS-dysb RNAi was from
National Institute of Genetics.

For all physiological intracellular recordings, data were obtained from
muscle 6 of abdominal segment 2 or 3 of female, wandering third-instar
larvae. Recordings were only used if the resting membrane potential was
between —60 and —90 mV and the muscle input resistance was >5 M{).
For miniature excitatory junctional potential (mEJP) analysis and phil-
anthotoxin experiments, intracellular recordings were performed in
modified HL3 saline containing the following (in mm): 70 NaCl, 5 KCI,
0.3 CaCl,, 1.0 MgCl,, 10 NaHCOs, 115 sucrose, 5 trehalose, and 5 BES,
pH 7.2. Severed motor neurons were taken up into a stimulating elec-
trode and stimulated at 1 Hz for 50 s. For acute pharmacological homeo-
static challenge, experiments were conducted as previously described
(Dickman and Davis, 2009; Dickman et al., 2012). Briefly, semi-intact
preparations were maintained with the CNS, fat, and gut intact and
perfused with phillanthatoxin-433 (PhTx; Sigma). A stock solution of
PhTx was prepared (4 mm in DMSO) and diluted for use to 4 um in
modified HL3. Preparations were incubated for 10 min in PhTx, rinsed in
modified HL3, and dissections were then completed. Recordings were only
used if the mEJP amplitude following toxin incubation was =60% of base-
line mEJP amplitude, indicative of the toxin gaining access to the muscle.

For vesicle pool separation experiments, physiological recordings were
performed in normal HL3 containing the following (in mm): 70 NaCl, 5
KCI, 1.0 CaCl,, 2.0 MgCl,, 10 NaHCO,, 115 sucrose, 5 trehalose, and 5
BES, pH 7.2. Before stimulation, animals were dissected in Ca’"-free
HL3 and incubated in 1 uMm bafilomycin A1 for 15 min. After incubation,
severed motor neurons were taken up into a stimulating electrode and
stimulated for 30 min at either 3 Hz (low frequency) or 10 Hz (high
frequency) in the presence of 1 um bafilomycin A1 (Sigma-Aldrich, cat-
alog #B1793). Bafilomycin A1 was prepared as a 1 mum stock solution in
DMSO and diluted for us at I uMm in normal HL3. Semi-intact prepara-
tions were prepared as described previously (Kim et al., 2009).

For all electrophysiological experiments, a magnetic glass micro-
electrode horizontal puller (PN-30; Narishige) was used to prepare

Mullin et al. e Dyshindin Network Synaptic Phenotypes

microelectrodes (30 -70 M{) resistance, backfilled with 3M KCl). Am-
plification of signals was achieved using Axoclamp 900A. Signals were
digitized using Digidata 1440A and recorded using Clampfit 10.1. Anal-
ysis was done in Mini Analysis (Synaptosoft) and Microsoft Excel. For
baseline-evoked responses and homeostasis assays, the average EJP was
divided by the average mEJP to determine quantal content. For low- and
high-frequency stimulation protocols, quantal content for each stimu-
lated response was calculated, and then normalized as a percentage of the
first recorded response. Tau was calculated for the stimulation to 50%
decay of initial response. Nonlinear summation correction was applied
across all quantal content calculations.

Immunohistochemistry, microscopy, and synaptic vesicle size determina-
tions. Larval dissections, immunohistochemistry, and confocal micros-
copy were conducted as previously described (Franciscovich et al., 2008).
Wandering third-instar female larvae were dissected in normal HL3,
fixed in 4% paraformaldehyde for 1 h, and stained with HRP-FITC for 2 h at
room temperature (1:500). An inverted 510 Zeiss LSM microscope was used
for confocal imaging. At least 15 animals were counted per genotype.

Quantitative electron microscopy of presynaptic terminals was per-
formed as previously reported (Pielage et al., 2005). Briefly, pinned out
larvae were fixed with 2% glutaraldehyde in 0.12 M Na-cacodylate buffer,
pH 7.4, and postfixed with 1% osmium tetroxide in 0.12 M Na-
cacodylate. Larvae were en bloc stained with 1% aqueous uranyl acetate
for thin sectioning and imaging for synaptic vesicle morphometry as
described previously (Heerssen et al., 2008). Synaptic vesicle sizes were
assessed by glycerol velocity sedimentation of high-speed head extract
supernatants as described previously (van de Goor et al., 1995). Heads
were collected from adult males and females as described below. Vesicle-
containing fractions were detected with antibodies against csp ob-
tained from The Developmental Studies Hybridoma Bank at University
of Towa.

Immunoprecipitation and MS. To determine interactions between
Drosophila BLOC-1 subunits, fly heads from adult males and females
were prepared as previously described (Roos and Kelly, 1998). Briefly, for
each genotype, ~100 animals were flash frozen in liquid nitrogen and
heads were separated then collected by passing the frozen tissue through
a microsieve in liquid nitrogen. The frozen tissue was ground into a
powder using a mortar and pestle, and combined with 100 ul lysis (Buffer
A: 150 mm NaCl, 10 mm HEPES, 1 mM EGTA, and 0.1 mm MgCl,, pH 7.4
+ 0.5% Triton X-100) with Complete anti-protease (catalog #11245200;
Roche), and also frozen and ground into a powder and stored at —80°C.
Samples were thawed and sonicated, tissue debris was removed by cen-
trifugation, and protein concentration determined by Bradford assay
(Bio-Rad). Proteins were resolved by SDS-PAGE on a 4-20% gel (Invit-
rogen) and immunoblot analysis was performed as previously described
(Gokhale et al., 2012; Ryder et al., 2013). Dyna magnetic beads (catalog
#110.31; Invitrogen) were coated with anti-GFP monoclonal (Life-
sciences Molecular Probes, catolog #A11120) and incubated for 2 h at
4°C with 500 ug of protein extract. The beads were then washed four to
six times with Buffer A (0.1% Triton X-100). Proteins were eluted with
Laemmli sample buffer at 75°C. Samples were either resolved by SDS-
PAGE and contents analyzed by immunoblot, or processed for MS pro-
tein identification by MS Bioworks as described previously (Gokhale et
al., 2012; Ryder et al., 2013).

Short-term olfactory habituation. Short-term olfactory habituation was
tested using a Y-maze apparatus as previously described (Das et al., 2011;
Sadanandappa et al., 2013). Briefly, 4-d-old adult male and female flies
were starved overnight and the naive response to ethyl butyrate (EB;
10 2 dilution in water) was tested (pre-test response). To induce short-
term habituation (STH), flies were then transferred to a 125 ml glass
bottle containing a suspended, 1.5 mlEppendorf with 5% EB in paraffin
oil with the lid perforated for 30 min. Animals were then tested for
response following the 30 min period (post-test response). For condi-
tional dysbindin knockdown experiments parental flies were reared at
18°C till eclosion. Newly eclosed flies (0—12 h) were shifted to 29°C,
whereas the control flies were maintained at 18°C. After 4 d, flies were
subjected to STH protocol, as described above.

Statistical and cluster analysis. Experimental conditions were com-
pared using Synergy KaleidaGraph, version 4.1.3 or StatPlus Mac Built
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Figure 1.  BLOC-1 assembles into an octameric complex in Drosophila neurons. Previously identified mammalian (4) and Drosophila (B) BLOC-1 subunit interactions. Dotted lines represent

interactions identified by yeast two-hybrid (dotted lines), while shaded regions depict complex or subcomplex formation based on immunoprecipitation or cosedimentation studies. Identification
of Drosophila BLOC-1 subunits immunoprecipitating Venus-Dysbindin is consistent with octameric mammalian BLOC-1 architecture (). Immunoblot with GFP antibodies confirms expression of the
Venus-Dyshindin transgene from fly head lysates in animals expressing the transgene (lane 2) but not control animals (lane 1; D). Lysates as shown in D were immunoprecipitated using GFP
antibodies. Spectral counts of all eight BLOC-1 subunit orthologs were selectively enriched following immunoprecipitation with GFP antibodies from animals expressing the Venus-Dyshindin
transgene (, gray bars) compared with controls (E, blue bars). Proteins nonspecifically bound to the GFP beads such as B-tubulin and elongation factor Tcx (EF1cx) were represented with similar
spectral countsin both samples (E). MS/MS peptide sequencing of selectimmunoprecipitated Drosophila BLOC-1 subunit orthologs (F). Specific detection of BLOC-1 ortholog Pallidin by immunoblot
in Venus-Dysbindin-expressing fly head lysates immunoprecipitated with GFP antibodies (G, lane 5). Pallidin antibodies precipitate Venus-Dysbindin from Venus-Dyshindin-expressing fly head

lysates detected with GFP antibodies (H, lane 5).

5.6.0pre/Universal (AnalystSoft). Tests are indicated in each figure. Clus-
ter analysis was performed with Cluster 3.0 (http://rana.lbl.gov/ Eisen-
Software.htm; Eisen et al., 1998) and visualized using TreeView-1.1.6r4.
Random genotype-phenotype pairs were generated with the engine
www.random.org.

Results

BLOC-1 assembles into an octameric complex in

Drosophila neurons

Dysbindin exists as a member of the octameric BLOC-1 in mam-
malian cells (Fig. 1A). While all eight mammalian BLOC-1 sub-
units have Drosophila orthologs, the existence of this complex in

Drosophila has not yet been established, but has been predicted
from yeast two-hybrid and proteomic studies (Cheli et al., 2010;
Guruharsha et al., 2011). However, these studies only document a
subset of the predicted interactions among the eight Drosophila
BLOC-1 subunit orthologs (Fig. 1B). Thus, we first set out to deter-
mine whether an orthologous Dysbindin-containing BLOC-1
complex assembles in the Drosophila CNS neurons (Fig. 1C). We
focused on this cell type based on previous work documenting
the localization and requirement of Dysbindin to the presynaptic
compartment (Dickman and Davis, 2009). To do this, we used
Dysbindin as bait to immunoprecipitate Dysbindin and associ-
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ated proteins from fly head lysates. UAS-Venus-tagged Dysbin-
din transgene was expressed under the pan-neuronal C155-GAL4
driver to identify neuronal proteins coprecipitating with recom-
binant Dysbindin in Drosophila. We prepared detergent-soluble
tissue homogenates from fly heads carrying either the C155
driver alone as controls, or in combination with UAS-Venus-
Dysbindin transgene to express tagged dysbindin (Fig. 1D, com-
pare lanes 1 and 2). Venus-tagged Dysbindin from head extracts
was immunoprecipitated using a GFP antibody, and immune
complexes were profiled by quantitative mass spectrometry.
Immunoprecipitation of Venus-Dysbindin enriched all eight
BLOC-1 Drosophila orthologs compared with the C155 control,
determined by spectral count quantitation (Fig. 1E). The low
abundance of these proteins precluded an estimate of stoichiom-
etry based on spectral counts. Proteins nonselectively bound to
GFP beads, such as tubulin and elongation factor 1 «, were sim-
ilarly represented in spectral counts in both control and Venus-
Dysbindin precipitated samples (Fig. 1E). The identity of the
Drosophila BLOC-1 subunit orthologs was confirmed by MS/MS
peptide sequencing (Fig. 1F). Due to the limited availability
of Drosophila BLOC-1 antibodies, we verified the Pallidin-
Dysbindin interaction by immunoprecipitation of Venus-
Dysbindin and specific detection of coprecipitating Pallidin by
Western blot (Fig. 1G, compare lanes 4 and 5), or by specific
detection of Venus-Dysbindin in Pallidin precipitated immune
complexes from Drosophila head extracts (Fig. 1H, compare lanes
3 and 5). Our data demonstrate that Dysbindin pulls down all
BLOC-1 subunits in Drosophila neurons, and suggest that the
architecture of Drosophila BLOC-1 highly resembles that found
in the human BLOC-1 complex (Fig. 1C).

BLOC-1 acts presynaptically to regulate quantal content at
the neuromuscular junction

The close biochemical identity of the Drosophila and mammalian
BLOC-1 complexes suggests that mutations in Drosophila
BLOC-1 subunits should produce recessive, gene dosage-
dependent phenotypes consistent with the recessive nature of
individual BLOC-1 subunit mutations in mammalian cells
(Huang et al., 1999; Zhang et al., 2002; Ciciotte et al., 2003; Li et
al.,, 2003; Gwynn et al., 2004; Starcevic and Dell’Angelica, 2004).
We analyzed whether gene-dosage reductions in BLOC-1 sub-
units had the capacity to produce recessive synaptic phenotypes.
We used a multiparameter assessment of synaptic functions to
progressively test increasing levels of synapse organization, rang-
ing from spontaneous neurotransmitter release to circuit-based
learning behavior. We began by measuring the spontaneous and
evoked neurotransmitter release at the Drosophila third-instar
larval neuromuscular junction (NM]J) synapse in gene-dosage
imbalances affecting the BLOC-1 complex subunits Dysbindin
and Blosl. The NM]J synapse is sensitive to loss-of-function al-
leles affecting Drosophila BLOC-1 subunits orthologs (Dickman
and Davis, 2009; Dickman et al., 2012). We assessed animals for
baseline mEJP amplitude and frequency, evoked EJP amplitude,
and quantal content. There were no significant differences in the
EJP amplitude across diverse modifications in the gene dosage of
dysb, Blosl, or combinations thereof (Fig. 2F, representative
traces shown in A—E). Similarly, the different BLOC-1 loss-of-
function alleles had no effect on the frequency of mE]JPs (Fig. 2F).
Consistent with previous reports by Dickman and Davis (2009)
and Dickman et al. (2012), the amplitude of the mEJP was not
altered in dysb’ dysbindin mutant synapses compared with two
control strains, Canton-S or w1118 (Fig. 2G). In contrast, we
found that animals carrying any of three BlosI-null alleles—
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BlosI®Y (Fig 24, insert), Blos1?, and Blos1®**—had increased
mEJP amplitudes and correspondingly lower quantal content
compared with both wild-type strains (Fig. 2 H, L,P, respectively,
red traces). While this increase in mEJP amplitude is in agree-
ment with the initial characterization of Blos1“*, we observed
that this phenotype was consistent across all three null alleles
(Cheli et al., 2010). Additionally, we found this phenotype to be
dominant, as it also was present in single-copy loss of BlosI-null
alleles (Fig. 2 H,L,P, respectively, blue traces). Presynaptic ex-
pression of Blos (elav“'**-Gal4; UAS-Blos1) was sufficient to
rescue the observed changes in mEJP amplitude and quantal
content (Fig. 2C,K,0O). These data demonstrate that Blosl
presynaptically regulates mEJP amplitude and that this phe-
notype is a dominant rather than a recessive trait of BlosI-null
alleles.

The distinct effect of the Blos! alleles and lack of effect of the
dysbindin alleles on mini amplitude suggested the following two
possibilities. First, BlosI and dysb participate in different molec-
ular and genetic networks, a hypothesis seemingly at odds with
Blos1 and Dysbindin being subunits of the BLOC-1 complex.
Second, dysb alleles reduce BLOC-1 function to a different extent
compared withBlosI-null mutants, suggesting a BLOC-1 com-
plex loss-of-function threshold under which the mEJP pheno-
type is expressed. To discriminate between these possibilities, we
tested the ability of dysb hypomorphic mutants (dysb’) and the
deletion Df (BSC 416 ), which entirely deletes the dysb gene as well
as ~20 flanking genes (Dickman and Davis, 2009) to genetically
interact with BlosI-null alleles in regulating mEJP amplitude and
quantal content at the NMJ. Interestingly, we found that the dysb’
allele expressed in frans with a single-copy loss of BlosI rescued
the mEJP amplitude and quantal content back to wild-type levels
(Fig. 21, M,Q, compare red and blue traces). We observed the
same result in flies double heterozygous for Df (BSC 416) and the
Blos1F¥-null mutation (Fig. 2], compare red and blue traces). As
expected, BlosI expressed in trans with the dysb®", which is a
perfect excision of the dysb’ mutation, behaved similar to a
single-copy loss of BlosI (Fig. 2N, compare red and blue traces).
Further, we found that the ability of dysb alleles to modify BlosI
mEJP and resultant quantal content phenotypes is presynaptic, as
adding back Dysbindin presynaptically (elav“'*>-Gal4; UAS-
dysb) in the Blos1®¥";dysb"”’" transheterozygous animal did, in
fact, lead to increased mEJP amplitude and reduced quantal con-
tent, similar to the effect observed in single-copy loss of BlosI
(Fig. 2R, compare red and green traces).

The increased mEJP amplitude observed in BlosI-null alleles
could result from an increase in synaptic vesicle size. Therefore,
we determined synaptic vesicle sizes using glycerol velocity sedi-
mentation of adult head high-speed supernatants (Fig. 3A) as
well as electron microscopy of the larval NMJ (Fig. 3B—F). We
found no differences in synaptic vesicle sizes in BlosI-null ani-
mals compared with controls (Fig. 3A,B) or Blos1®*;dysb"*
animals (Fig. 3A) that display normal amplitude mE]JPs. From
this, we conclude that the mEJP data demonstrate that BLOC-1
subunits participate in a common presynaptic molecular and
genetic network to regulate baseline neurotransmission at the
Drosophila NMJ in a manner independent from vesicle size. Ad-
ditionally, these data show that neurotransmission is sensitive to
the genetic dosage and precise stoichiometry of BLOC-1 subunits
Dysbindin and Blosl rather than an additive genetic effect of
sequential reduction of individual subunits predicted from a re-
cessive trait.
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transheterozygote (E, green) increases mEJP amplitude compared with the transheterozygote (E, red). No changes in EJP amplitude or mEJP frequency were observed in any of the genotypes.
Asterisk denotes that there are no differences between w1118 and Canton S control strains (F). G—R, Event size plotted against frequency of event for BLOC-1 loss-of-function allelic combinations.
Shiftin the curve to the right indicates larger events in that genotype. All comparisons in F were performed with one-way ANOVA followed by Bonferroni’s multiple-comparison test. Comparisons
were performed by Kolmogorov—Smimov test. F-R, Data were obtained from 7 to 11 animals per genotype. G-R, Plots graph between 992 and 2880 randomly selected mEJP events.

Normal synaptic growth and morphology require BLOC-1
function

Spontaneous neurotransmission regulates synapse function and
morphology, and is required in Drosophila for synaptic structural
maturation (Sutton et al., 2004; Choi et al., 2014). For example,
gene mutations associated with neurodevelopmental disorders,
such as in dFMRP, affect the morphology of Drosophila synapses
while displaying spontaneous release phenotypes reminiscent of
the BlosI-null phenotype (Reeve et al., 2005; Gatto and Broadie,
2008; Zhao et al., 2013). Therefore, we explored the morphology
of the neuromuscular junction in BLOC-1 loss-of-function allele

combinations. We sought to test whether synapse morphology
phenotypes followed the dominant inheritance defined by the
spontaneous release. We performed anti-HRP immunohisto-
chemistry of larval muscle 6/7 synapses to quantify the number of
boutons per unit muscle area (Fig. 4). We determined that BlosI-
null alleles have significantly increased number of boutons per
muscle at the 6/7 synapse (Fig. 4], compare A with B, C). This
increase in bouton number occurred without changes in muscle
size across genotypes (Fig. 4K). The increased number of bou-
tons was a dominant phenotype as it was also observed in
heterozygous Blos] mutants (Fig. 4/, compare A with D, E), a
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Blos1-null alleles possess normal-sized synaptic vesicles and presynapse ultrastructure. A, Adult head homogenates were differentially centrifuged and high-speed supernatants

resolved by glycerol velocity sedimentation. Synaptic vesicles in fractions were detected by csp immunoblotting (IB). Csp-positive vesicles peaked at the same fractions regardless of the BLOC-1
genotype. B, Representative transmission electron micrographs of larval wild-type (W1118) and Blos1-null (Blos1 %) NMJs. Inserts correspond to threefold magnification of areas boxed. €, D, F, Dot
plots of synaptic vesicle density, diameter, and the number of T-bars per presynapse, respectively. E, frequency plot of synaptic vesicle diameters. No differences were detected among genotypes.
All comparisons were made with Wilcoxon—Mann—Whitney test. NS indicates nonsignificant p values. Dot plots depict number of animals analyzed. Black represents wild-type and blue symbols

Blos1-null animals, respectively.

genotype-to-phenotype correlation matching the changes in
mEJP amplitude and quantal content. Importantly, when a
single-copy loss of BlosI-null alleles was expressed in trans with
either dysb’ or the dysb deficiency, the bouton count phenotype
was suppressed to resemble wild-type numbers (Fig. 4], compare
D, E with F, G). The specificity of the suppression achieved with
the dysb’ allele was tested by expressing BlosI mutants in trans
with the dysb” revertant (dysb™), a genotype that phenocopied the
Blosl1 heterozygotic animals (Fig. 4/, compare F, G and H, I).
These results demonstrate that there is a one-to-one correspon-
dence between genotypes and the bouton morphology and spon-
taneous release phenotypes at the NMJ. In both instances BlosI
loss-of-function alleles dominantly affect the phenotypes, which
are suppressible by loss-of-function dysb allele in trans. These
results indicate that similar BLOC-1-dependent genetic and mo-
lecular mechanisms control spontaneous release and synapse
morphology.

Dysbindin and Blos1 are necessary for the function of
synaptic vesicle pools

BLOC-1 loss-of-function allelic combinations have a one-to-one
correspondence between genotypes and the bouton morphology
and spontaneous release phenotypes. Thus we asked whether this
genotype-to-phenotype congruency was observed across multi-
ple synaptic organization levels. We hypothesized that increas-
ingly complex synaptic functions would be similarly sensitive to
reductions in the genetic dosage of neuronal BLOC-1 subunits if
a common BLOC-1-dependent molecular mechanism controls
these synaptic functions. In contrast, if synaptic processes were to
respond divergently to the same genetic dosage imbalances, it

would indicate that different BLOC-1-dependent molecular
mechanisms are required for diverse synapse functions. To dif-
ferentiate between these hypotheses, we assessed the effect of
BLOC-1 genetic dosage on the mobilization of synaptic vesicle
pools in response to either a philanthotoxin or high-frequency
stimulation challenge (Delgado et al., 2000; Dickman and Davis,
2009; Frank et al., 2013). We focused on the Blos1®";dysb’ tran-
sheterozygote, as the ability for the dysb mutations to preclude
the dominant effects of Blos! on mEJP amplitude suggests that
synaptic mechanisms require precise BLOC-1 subunit stoichi-
ometry rather than an additive reduction of BLOC-1 complex
function.

We first tested the effects of BLOC-1 loss-of-function alleles
on philanthotoxin-induced presynaptic homeostatic compensa-
tion at the NMJ. In response to an acute, 10 min incubation with
philanthotoxin, which irreversibly blocks non-NMDA glutamate
receptors, wild-type animals exhibit robust homeostatic com-
pensation to this postsynaptic block, as observed through a re-
duction in mEJP amplitude while maintaining the amplitude of
their EJP (Fig. 5A—A1, compare black and blue traces; Dickman
and Davis, 2009; Dickman et al., 2012; Davis, 2013; Frank et al.,
2013; Frank, 2014). This synaptic compensation occurs by dou-
bling their quantal content of neurotransmitter release over base-
line (Fig. 5H). However, dysb’ mutants failed to display such
presynaptic homeostatic compensation in response to this toxin,
as reflected by the unchanged quantal content after toxin incu-
bation (Fig. 5B, H, compare black and blue traces). Importantly,
single-copy loss of dysbindin does not block synaptic homeosta-
sis (data not shown). Unlike what we observed with the mEJP and
branching dominant phenotypes, BlosI-null (Fig. 5C,H) and
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heterozygous animals (Fig. 5D,H) have no defect in synaptic
compensation. However, transheterozygotic Blos1"";dysb’ mu-
tants blocked synaptic homeostasis to the same extent as dysb’
homozygotic mutants (Fig. 5A, H, compare B, E). These results
demonstrate that the BLOC-1 complex is necessary for homeo-
static synaptic plasticity, yet the BLOC-1-dependent molecular
mechanisms that synaptic homeostasis relies on differ from those
required by spontaneous release and synapse morphology. This
incongruence in inheritance supports the hypothesis that synaptic
mechanisms are differentially sensitive to BLOC-1 gene-dosage im-
balances, which do not follow a simple recessive reduction of
BLOC-1 complex function.

Increased quantal content during presynaptic homeostatic
compensation requires a calcium-dependent increase in size of
the readily releasable pool. Thus, we hypothesized that BLOC-1
loss-of-function allele combinations could alter the mobilization
of synaptic vesicle pools following the genotype-to-phenotype
pattern observed in homeostatic plasticity. To test this hypothe-
sis, we measured the size of the total vesicle pool and the recycling
pool in different BLOC-1 mutants. To do this, NMJ responses
were recorded under different stimulation frequencies in the
presence of the vATPase inhibitor bafilomycin Al. This inhibitor
prevents reloading of neurotransmitter into synaptic vesicles
after exocytosis. Low-frequency stimulation (3 Hz; Fig. 6A-C),

engages the recycling pool of vesicles to maintain neurotransmis-
sion; however, intense, high-frequency stimulation (10 Hz; Fig.
6D,E) mobilizes the reserve pool of vesicles to support neu-
rotransmission (Delgado et al., 2000; Kim et al., 2009). None of
the loss-of-function allele combinations affected the rate of vesi-
cle depletion at low-frequency stimulation (Fig. 6A—C), indicat-
ing that BLOC-1 is not required for the mobilization or
engagement of the recycling pool. However, we found that Blos1
homozygous mutants (Fig. 6E) but not dysb’ mutants (Fig. 6D)
had a significantly enhanced depletion rate of the total vesicle
pool compared with wild-type animals and Blosl single-copy
loss. The divergent effects of the BlosI and dysb’ homozygous
mutants on the mobilization of the total vesicle pool did not
reflect BLOC-1 independent functions of these alleles as evi-
denced by transheterozygotic Blos1*";dysb" mutants, which phe-
nocopied the BlosI homozygous animals when stimulated at 10
Hz (Fig. 6F). The accelerated rate of depletion of the total vesicle
pool paired with a lack of effect on the recycling vesicle pool
indicates a selective perturbation to the reserve pool of vesicles in
these animals. We conclude that the reserve pool necessitates the
BLOC-1 complex, but this BLOC-1 requirement molecularly dif-
fers from the BLOC-1 requirement for synaptic homeostatic
plasticity.
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BLOC-1 gene dosage regulates synaptic homeostasis. A-F, Representative EJP traces. Black indicates baseline stimulated response; blue indicates response following acute 10 min

incubation with 4 um PhTx for each genotype. AT—F1, Reduced mEJP amplitudes following PhTx incubation (blue) compared with baseline (black). Representative mEJP traces shown in inset. G,

1EY

Reduction inmEJP amplitude following toxin incubation. H, w1118 control, Blos1*', and Blos
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animals display robust homeostaticincrease in quantal content following toxin incubation, while

dysb " and Blos15" " ;dysb " animals did not. A7—E1, Plots graph between 909 and 2888 randomly selected mEJP events. All comparisons in G and H were performed with one-way ANOVA
followed by Bonferroni’s multiple comparison test. Data were obtained from 6 to 11 animals per genotype.

Dysbindin and Blos1 are required for olfactory short-term
habituation in Drosophila

The divergent effects of BLOC-1 subunit gene-dosage reductions
among four NM]J synapse phenotypes prompted us to ask how
would a learning behavior respond to BLOC-1 subunit gene-
dosage reductions? To address this question, we assessed BLOC-1
mutants in a short-term olfactory habituation assay. Short-term
olfactory habituation in adults involves a retrograde signal and
mobilization of the reserve pool of vesicles to potentiate GABAe-
rgic neurotransmission in the local interneurons (LNs) of the
olfactory circuit in Drosophila (Das et al., 2011; Sadanandappa et
al., 2013; Twicketal., 2014). Thus, we predicted that this complex
learning behavior in adult flies would be affected by BLOC-1
mutations following a genotype-to-phenotype pattern similar to
the reserve pool phenotypes (Fig. 6). We explored genotype-to-
phenotype relationships across different combinations of
BLOC-1 loss-of-function alleles (Fig. 7). BLOC-1 mutant flies are
healthy and viable, with no defects in locomotion, and can there-
fore be tested in behavioral assays (data not shown). We trained
wild-type and mutant animals with a 30 min aversive odor expo-
sure (5% ethyl butyrate) to determine odorant-specific reduc-
tions in avoidance to a second odor exposure.

Wild-type flies exhibit olfactory habituation as determined by
areduced avoidance response by prior exposure to ethyl butyrate
(Fig. 7A, CS, compare pre- and post-test in blue). In contrast,
animals homozygous for the dysb' mutation showed no reduc-

tion in avoidance behavior, indicating a deficit in short-term
olfactory habituation (Fig. 7A). While the hypomorph dysb' an-
imals are viable and healthy, the BSC 416 dysb deficiency flies are
not. Therefore, to test if the habituation phenotype was dysb allele
specific, we expressed the dysb’ mutation in trans with the dysb™.
Single-copy loss of dysb, either by the dysb’ or the dysb™ muta-
tion, did not affect habituation (Fig. 7A). However, short-term
olfactory habituation was impaired in dysb’ animals in trans with
the dysbindin deficiency (BSC 416; Fig. 7A) confirming that loss
of dysbindin inhibits short-term olfactory habituation.
Short-term olfactory habituation requires plasticity in the
GABAergic local interneurons and antennal lobe projection neu-
rons, which form a circuit that relays information from olfactory
sensory neurons to higher centers, the mushroom bodies and the
lateral protocerebrum (Das et al., 2011; Sadanandappa et al.,
2013; Twick et al., 2014). We determined the requirement for
Dysbindin within these neuronal subtypes by conditionally
knocking down dysbindin in a cell type-specific manner. We used
dysb RNALI selectively expressed in the lateral interneurons and
antennal lobe projection neurons with the LN1 and GH146-Gal4
drivers, respectively (Das et al., 2011; Sadanandappa et al., 2013).
Dysbindin requirement in both cell types for short-term olfac-
tory habituation demonstrate that Dysbindin is necessary for ol-
factory memory formation (Fig. 7B). Moreover, the Dysbindin
cell-specific requirement is temporally limited to the adult olfac-
tory circuit as determined by experiments that restricted Dysbin-
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BLOC-1 gene dosage regulates synaptic vesicle pool properties. Animals were stimulated at low frequency(3 Hz; A-C) and high frequency (10 Hz; D—F) in the presence of 1 m

bafilomycin A1. Inset shows stimulation to 50% depletion compared with response at stimulation 0. No changes in rate of vesicle pool depletion were observed across genotypes at low frequency

(A-0). At high frequency, no changes were observed in vesicle depletion rate in dysb ' (D, red)
dySb 1/+

or Blos1 5 (D, blue) compared with control (D, w1118, black). Blos1% (E, blue) and Blos15/™;

transheterozygote (F, blue) both displayed significantly faster vesicle depletion compared with the Blos1 5/ (E, F, black). All comparisons in F and G were performed with one-way ANOVA

followed by Fisher's multiple comparison. Data were obtained from 6 to 9 animals per genotype.

din knockdown to the adult circuit using the transcriptional
repressor tub-Gal80* (Fig. 7C, 18°C). Repression of Gal80" at
the nonpermissive temperature led to the expression of
dysbindin-RNAi and impaired olfactory habituation phenotype
(Fig. 7C, 29°C), whereas at the permissive temperature of 18°C,
olfactory habituation was normal. These data demonstrate that
Dysbindin is acutely necessary in the local interneurons and pro-
jections neurons during adult Drosophila olfactory habituation.

We next asked whether the observed defect in short-term ha-
bituation was specific to loss of the Dysbindin subunit, or if it
could be attributed to the BLOC-1 complex. Homozygous loss of
Blos1 prevented olfactory short-term habituation (Fig. 7D). Sim-
ilar to dysbindin, however, a single-copy loss of BlosI was insuf-
ficient to produce the phenotype. While a single-copy loss of each
subunit did not preclude short-term habituation, transheterozy-
gotic expression of these mutations did prevent olfactory short-
term habituation (Fig. 7E). We conclude that BLOC-1 is required
for olfactory short-term habituation in Drosophila. These results
indicate that the genotype-to-phenotype relationships observed
for the reserve vesicle pool differ from those observed in olfactory
short-term habituation as illustrated by the dysb homozygous
loss-of-function alleles. These data show that the BLOC-1 com-
plex is required regardless of the synapse organization level ana-
lyzed or the central or peripheral character of a synapse.
However, these BLOC-1 complex requirements follow different
genotype-to-phenotype relationships.

Hierarchical clustering analysis of BLOC-1 genotype and
associated phenotype

We used the array of genotypes and phenotypes exploring
BLOC-1 synaptic functions to quantitatively determine cosegre-
gation of traits with genotypes. We analyzed genotype-to-
phenotype pairs using single linkage hierarchical clustering (Fig.
8). We assigned a value of 0 to wild-type and 1 to mutant pheno-
types, respectively. Clustering revealed that a homozygous BlosI-
null genotype (Fig. 8A, Blos1~'~) is phenotypically closer to a
Blos1 heterozygote (Fig. 8A, Blos1~’*) than to homozygous dysb
loss-of-function genotype (Fig. 8A, dysb™’~). In contrast, the
phenotypes observed in homozygous dysb loss-of-function-null
flies (Fig. 8A, dysb™’") cosegregated better with a dysb, BlosI
transheterozygotes (Fig. 8A, Blosl/dysb). Similarly, mEJP ampli-
tude and branching dominant traits were clustered together and
away from the presynaptic homeostasis, reserve pool, and habit-
uation phenotypes. Phenotype and genotype clustering were dif-
ferent from randomized phenotype—genotype pairs (Fig. 8B).
This analysis shows that an array of six genotypes and five traits
identify as a minimum two nonoverlapping phenotypic clusters
within a collection of BLOC-1 loss-of-function mutations. Our
findings demonstrate that alleles reducing the function of the
BLOC-1 protein complex at the synapse are modified by a second
complex subunit-encoding locus. However, these genetic inter-
actions depart from Mendelian inheritance even though alleles
affect the same restricted molecular network.
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How do BLOC-1 mutations produce divergent synaptic phenotypes? Model depicts the wild-type BLOC-1 complex and two outcomes of gene loss-of-function alleles on the levels and
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(bottom right). The extent of these two molecular outcomes would be dependent of the mutations affecting BLOC-1 subunit genes. Phenotypes emerge either because of downregulation of the

BLOC-1 octamer or the appearance of remnants. See discussion for details.

Discussion

Here, we examined the impact of combined loss-of-function mu-
tations affecting the BLOC-1 complex on synaptic neurotrans-
mission in Drosophila. BLOC-1 is a closely associating octameric
protein complex whose interaction network we defined in the fly
through the schizophrenia susceptibility factor and BLOC-1 sub-
unit Dysbindin (Fig. 1; Cheli et al., 2010; Guruharshaetal., 2011).
We found that homozygous loss-of-function alleles of dysb,
Blos1, or compound heterozygotes of these alleles impaired di-
verse presynaptic mechanisms. These identified deficits affect
mechanisms of increasing complexity, from abnormal spontane-
ous neurotransmitter release and synapse morphology at the
neuromuscular junction to olfactory habituation. This multipa-
rameter assessment indicated that phenotypes were differentially
sensitive to genetic reductions of BLOC-1 function in a way that
departs from the predicted recessive inheritance of dysbindin loss
of function. On one extreme, spontaneous neurotransmission
and synapse morphology at the NM]J follow a dominant inheri-
tance in response to BlosI loss of function (Figs. 2—4). This phe-
notype is rescued by a second loss-of-function allele in dysb. This
is particularly striking when we consider that the polypeptides
encoded by these genes form a complex, as we demonstrated in
Drosophila neurons (Fig. 1). In contrast, short-term olfactory
habituation behaves as a recessive character (Fig. 7). We draw two
conclusions from these findings that we would like to focus on.
First, gene-dosage reductions in two or more genetic loci encod-
ing BLOC-1 polypeptides, which belong to the same protein in-
teraction network, do not confer strictly additive functional
consequences. Second, genotype-to-phenotype correlations ob-
served in a BLOC-1 trait following a gene pair analysis better
predict, although not precisely, how other traits may respond.
These findings provide a perspective to the complexity and pre-
dictability of synaptic phenotypes derived from copy number
variation associated to human neurodevelopmental disorders
(Stefansson et al., 2009, 2014 Bassett et al., 2010; Malhotra and
Sebat, 2012; Rapoport et al., 2012; Moreno-De-Luca et al., 2013;
Ahn et al.,, 2014).

Dominant and recessive fly traits associated with mutations
affecting BLOC-1 complexes support the dosage balance hypoth-
esis, which predicts that mutations affecting genes encoding dif-
ferent subunits of a protein complex may confer distinct
phenotypes and inheritance mechanisms (Veitia et al., 2008;
Birchler and Veitia, 2012). The ultimate result is a range of resul-
tant subcomplex remnants spanning from total complex deple-

tion to combinations of residual subunits, referred to here as
remnants. These remnants have been described in mice carrying
mutations in genes encoding BLOC-1 complex subunits, includ-
ing dysbindin. However, no phenotype has been assigned to these
remnants to date (Huang et al., 1999; Zhang et al., 2002; Ciciotte
et al., 2003; Li et al., 2003; Gwynn et al., 2004; Starcevic and
Dell’Angelica, 2004; Yang et al., 2012). We postulate that olfac-
tory habituation, a BLOC-1 recessive phenotype, is at one end of
this spectrum and requires fully assembled octameric BLOC-1,
which would be disrupted by any BLOC-1 subunit mutation.
Further, olfactory habituation mechanisms would be unaffected
by BLOC-1 remnants (Fig. 9). In contrast, traits that depart from
a recessive inheritance pattern and display diverse responses to
BLOC-1 subunit mutations may be caused by at least three non-
mutually exclusive mechanisms related to the dosage balance hy-
pothesis. First, mutations in different BLOC-1 subunits may
result in similar reductions of BLOC-1 content and activity.
However, traits may be differentially sensitive to total BLOC-1
cellular content. Second, divergent phenotypes in response to
gene-dosage reductions may reflect different functions engaged
by distinct BLOC-1 subunits, performed by either monomeric
subunits or monomers as part of other protein complexes. Fi-
nally, loss-of-function mutations affecting BLOC-1 subunits may
lead to gain-of-function remnants (Fig. 9). Thus, some pheno-
types may emerge from these BLOC-1 complex remnants left
over after uneven protein downregulation of the octamer. The
remnant hypothesis best explains the mEJP amplitude pheno-
types, which lie at the other end of the spectrum from olfactory
habituation. If increased mEJP amplitude is caused by BlosI mu-
tations leaving behind “deleterious,” Dysbindin-containing sub-
complex remnants, then reducing Dysbindin levels by dysb
mutations should restore mEJP amplitude to wild-type levels.
This prediction is satisfied by our results with multiple BlosI and
dysb allele combinations (Fig. 2). Thus, the mEJP amplitude phe-
notype suggests the existence of a class of neurodevelopmental
disease phenotypes that do not simply result from network loss of
function but rather from changes in the stoichiometry of network
components. It is possible that a loss-of-function allele in
DTNBP]I or other gene may increase the risk or be causative of a
disease trait when in isolation yet have no consequences when
combined with another gene defect affecting the network. We
speculate that philanthotoxin-induced homeostasis and reserve
pool mobilization are differentially sensitive to BLOC-1 rem-
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nants, and that these phenotypes reside somewhere in the middle
of this spectrum.

In this study, we modeled a two-gene synaptic neurodevelop-
mental defect in the fly in an effort to comprehend how multiple
genes influence synaptic functions that may be compromised in
schizophrenia. Our strategy is founded on the polygenic charac-
ter of schizophrenia, illustrated by copy number variations that
strongly confer disease risk (Gottesman and Shields, 1967; Mir-
nics et al., 2000; Purcell et al., 2009, 2014; Faludi and Mirnics,
2011). Here, we focus on the product of a gene associated to
schizophrenia susceptibility and a modulator of brain structure
and cognition in normal humans, dysbindin (Straub et al., 2002;
Van Den Bogaert et al., 2003; Bray et al., 2005; Luciano et al.,
2009; Markov et al., 2009, 2010; Mechelli et al., 2010; Cerasa et al.,
2011; Mullin et al., 2011; Tognin et al., 2011; Wolf et al., 2011;
Ghiani and Dell’Angelica, 2011; Ayalew et al., 2012; Papaleo etal.,
2014). Moreover, similar to Drosophila dysb alleles, cognitive
traits associated to alleles of the human dysb ortholog, DTNBPI,
are modified by a second locus in a human dysbindin functional
interactome (Papaleo et al., 2014). Finally, mutations in Drosoph-
ila genes encoding the BLOC-1 subunits Dysbindin and Blosl
preclude short-term olfactory habituation, as established here
(Fig. 7). We draw several parallels between our analyses in the fly
and observed deficits in schizophrenia, which make our study of
particular relevance. First, Drosophila olfactory habituation is
mediated by GABAergic interneurons, which modulate the out-
put of odorant-selective projection neurons to mushroom bodies
(Das et al., 2011; Sadanandappa et al., 2013; Twick et al., 2014).
We demonstrate the requirement of BLOC-1 function in these
interneurons in short-term olfactory habituation. GABAergic in-
terneuron dysfunction is also observed in mice lacking dysbindin
(Carlson et al., 2011; Larimore et al., 2014), as well as in both the
prefrontal cortex and hippocampus of schizophrenia patients
(Benes and Berretta, 2001; Beasley et al., 2002; Hashimoto et al.,
2003, 2008; Nakazawa et al., 2012). Second, impaired sensory
habituation is a common manifestation in schizophrenia sub-
jects (Geyer and Braff, 1987; Braff et al., 1992; Holt et al., 2005;
Williams et al., 2013; Hu et al., 2014). In humans, sensory
habituation defects are considered an intermediate, or “endo-
”phenotype. In complex genetic disorders such as schizophrenia,
endophenotypes may serve as useful biological markers, bridging
diagnostic phenomenology with cellular and molecular mecha-
nisms of disease (Gottesman and Gould, 2003). As such, our
studies are the first example of deconstructing an endophenotype,
sensory habituation, into lower complexity synaptic mechanisms in
Drosophila. We measured distinct functional properties of synapses
that could be substrates of defective sensory habituation. While
none of the synaptic functions assessed precisely matched their
response to combinations of gene-dosage reductions, sensory ha-
bituation clustered with synaptic plasticity mechanisms observed
during high-frequency stimulation and philanthotoxin-induced
synaptic homeostasis (Fig. 8). Clustering of phenotypes and their
underlying mechanisms is most clearly perceived through the
study of combined heterozygotic gene defects. These findings
demonstrate that mechanistic deconstruction of an endopheno-
type is better understood through assessments spanning different
levels of synaptic organization and complexity, as well as through
genetic perturbations of two or more genes encoding network
components.
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