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Abstract

Introduction—Current FDA-approved smoking cessation pharmacotherapies have limited 

efficacy and are associated with high rates of relapse. Therefore, there is a clear need to develop 

novel antismoking medications. Nicotine withdrawal is associated with cognitive impairments that 

predict smoking relapse. It has been proposed that these cognitive deficits are a hallmark of 

nicotine withdrawal that could be targeted in order to prevent smoking relapse. Thus, 

pharmacotherapies that increase cognitive performance during nicotine withdrawal may represent 

potential smoking cessation agents.

Areas covered—The authors review the clinical literature demonstrating that nicotine 

withdrawal is associated with deficits in working memory, attention and response inhibition. They 

then briefly summarize different classes of compounds and strategies to increase cognitive 

performance during nicotine withdrawal. Particular emphasis has been placed on translational 

research in order to highlight areas for which there is strong rationale for pilot clinical trials of 

potential smoking cessation medications.

Expert opinion—There is emerging evidence that supports deficits in cognitive function as a 

plausible nicotine withdrawal phenotype. The authors furthermore believe that the translational 

paradigms presented here may represent efficient and valid means for the evaluation of cognitive-

enhancing medications as possible treatments for nicotine dependence.

Keywords

cognition; nicotine; reinstatement; relapse; self-administration; smoking; tobacco; withdrawal

© 2014 Informa UK, Ltd. All rights reserved
†Author for correspondence: Tel: +1 215 746 5789; rlashare@mail.med.upenn.edu. 

Declaration of interest
The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or 
financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

NIH Public Access
Author Manuscript
Expert Opin Drug Discov. Author manuscript; available in PMC 2015 January 08.

Published in final edited form as:
Expert Opin Drug Discov. 2014 June ; 9(6): 579–594. doi:10.1517/17460441.2014.908180.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Background

More than 400,000 people die annually of smoking-related illnesses in the USA [1]. Despite 

this enormous public health problem, only 3% are able to quit smoking successfully [2]. 

More than half of smokers try to quit each year, and approximately one-third use medication 

to assist their quit attempt. There are currently three FDA-approved pharmacological 

treatments for nicotine dependence: nicotine replacement therapy (NRT), bupropion and 

varenicline. However, among those treated with varenicline, 44% are abstinent at the end of 

treatment, and at 6 months, this number drops to 27%. Abstinence rates for combination 

NRT (e.g., patch plus inhaler) at 6 months are only slightly higher at 32% [3]. Therefore, 

there is a critical need to develop novel, efficacious pharmacotherapies for smoking 

cessation. The majority of smokers who relapse, do so during the first week of a quit attempt 

[4,5]. Moreover, the ability to maintain smoking abstinence during the first week of a quit 

attempt is a strong predictor of success at end of treatment and at 6 months [6]. Thus, the 

early withdrawal period is a vulnerable time for most smokers and represents a critical 

window in which to evaluate novel smoking cessation treatments.

The nicotine withdrawal syndrome is complex as the time course and nature of symptoms 

vary across smokers. In nicotine-dependent smokers, abstinence produces a variety of 

physiological, psychological and cognitive symptoms. One approach to further our 

understanding of nicotine dependence and identify novel pharmacotherapies is to dissect the 

withdrawal syndrome into its component symptoms in order to target research on more 

focused core phenotypes [7,8]. Increasingly, attention has focused on cognitive impairments 

that emerge during smoking abstinence. Indeed, there is a high prevalence of cognitive 

deficits among treatment-seeking smokers that may predict relapse. Although the 

mechanisms that mediate nicotine withdrawal-induced cognitive impairments are not clear, 

evidence suggesting that higher order cognitive control is critical for maintaining goal-

directed behaviour [9,10] and may provide a theoretical framework for explaining why 

cognitive deficits may be associated with smoking relapse.

In this review, we highlight the neurobiological, preclinical and clinical evidence supporting 

cognitive enhancers as promising candidates for smoking cessation. First, we will discuss 

evidence supporting the repurposing of pharmacotherapies that may enhance cognition in 

disorders that share cognitive symptoms with nicotine withdrawal (Table 1). Next, we will 

review the translational approaches for testing novel treatments using animal, human and 

neuroimaging paradigms. Specifically, we review human laboratory models of smoking 

relapse, which focus on the critical early withdrawal period. These models may represent 

more efficient methods for screening novel medications and provide a means for testing 

mechanisms of a medication’s efficacy [8,11,12]. We conclude with a discussion of the 

potential for this strategy to facilitate the development of novel treatments for nicotine 

dependence, challenges and limitations to this approach and recommendations for future 

research.
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2. Potential treatments for nicotine withdrawal-induced cognitive deficits

2.1 Drugs that modulate cholinergic transmission

Smoking cessation and nicotine withdrawal are associated with drug craving and cognitive 

impairments [13]. A growing literature indicates that cognitive deficits represent a core 

symptom of nicotine withdrawal that predict relapse during abstinence [14]. Thus, it has 

recently been proposed that cognitive-enhancing medications may prevent drug craving and 

relapse, in part, by reversing or normalizing nicotine withdrawal-induced cognitive 

impairments [15,16]. Consistent with these findings, nicotine re-exposure [17,18] and 

administration of the α4β2* nicotinic acetylcholine receptor (nAChR) partial agonist and α7 

nAChR full agonist varenicline [19,20] reverse abstinence-induced cognitive deficits and 

blunt relapse in both humans and rodents. Taken together, these findings suggest that other 

cognitive-enhancing drugs that increase endogenous acetylcholine levels and/or cholinergic 

transmission in the brain may prevent smoking relapse.

2.1.1 nAChR agonists—Nicotine is the principal psychoactive chemical in tobacco that 

mediates tobacco’s reinforcing effects [21]. Nicotine binds to and stimulates nAChRs, 

ligand-gated ion channels activated by the endogenous neurotransmitter acetylcholine. 

Twelve nAChR subunits have been identified in the brain (α2 – α10, β2 – β4). These 

subunits combine to form cation channels. The most abundant nAChRs in the brain are 

heteromeric α4- and homomeric α7-containing receptors [22]. There is clear evidence that 

α4β2* nAChRs play a critical role in nicotine addiction [23-25]. Recent studies have also 

demonstrated that nAChRs containing α4, α5 and α6 subunits also mediate nicotine 

reinforcement [23]. In contrast, studies examining the functional significance of α7-

containing nAChRs in nicotine dependence have yielded mixed results [23]. Due to an 

extensive literature demonstrating a role for α4β2* nAChRs in nicotine taking, the majority 

of drug discovery programs aimed at identifying novel nAChR-based pharmacotherapies for 

smoking cessation have focused on compounds that target α4β2* nAChRs.

nAChR agonists substitute for the reinforcing effects of nicotine, alleviate some of the 

adverse symptoms associated with nicotine withdrawal and are generally well tolerated [26]. 

While NRTs have been the mainstay of smoking cessation pharmacotherapies, partial 

agonists of nAChRs have gained increasing attention as potential treatments for smoking 

relapse. Compared to full agonists, partial agonists produce less than maximal stimulation of 

nAChRs thereby substituting for the reinforcing effects of smoking with less abuse liability. 

Partial agonists of nAChRs also function as antagonists in that they reduce nicotine 

reinforcement and nicotine-evoked neurotransmitter release in the brain.

Varenicline is an α4β2* nAChR partial agonist and full agonist at α7 nAChRs that fully 

substitutes for nicotine in drug discrimination studies and attenuates nicotine taking and 

seeking in rats [27,28]. Varenicline increases cognitive performance during smoking 

abstinence and reduces the subjective rewarding effects of nicotine in humans [20,29,30]. 

Despite these effects, approximately one in four smokers successfully maintain long-term 

abstinence when treated with varenicline [3,31]. Moreover, varenicline treatment is 

associated with adverse events including depressed mood and suicidal ideation in some 

patients [32]. Varenicline, similar to nicotine, increases expression and desensitization of 
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α4β2* nAChRs in the brain. These processes are thought to facilitate persistent smoking 

behaviour and smoking relapse [33,34]. It has been proposed that the limited efficacy of 

varenicline for smoking cessation is due, in part, to increased expression and desensitization 

of nAChRs [33,34].

Sazetidine-A is a partial agonist that binds selectively to α4β2* nAChRs with high affinity, 

which results in desensitization of these receptors [35]. Sazetidine-A administration 

attenuates nicotine self-administration and increases cognitive performance in rats [36,37]. 

Unlike varenicline and nicotine, sazetidine-A administration desensitizes α4β2* nAChRs 

without a concomitant increase in α4β2* nAChR expression in the brain [33]. If increased 

expression of α4β2* nAChRs is a critical neuroadaptation that promotes smoking relapse 

and limits the efficacy of varenicline for smoking cessation then nAChR partial agonists 

such as sazetidine-A that do not increase α4β2* nAChR expression may be more efficacious 

smoking cessation medications. Future clinical studies are needed to investigate the efficacy 

of sazetidine-A in treatment-seeking smokers.

α7 nAChRs have a clear role in cognition [38] and modulators of α7 nAChRs are currently 

being investigated as treatments for cognitive dysfunction. For example, the α7 antagonist 

ABT-126 is currently being investigated for attenuating cognitive symptoms in Alzheimer’s 

disease (NCT01527916) and schizophrenia (NCT01678755). In addition, one study 

demonstrates beneficial effects of TC-5619, an α7 agonist, on cognitive dysfunction in 

schizophrenia. Interestingly, these effects are more pronounced in smokers with 

schizophrenia [39]. EVP-6124 is an α7 partial agonist that improves cognition in patients 

with Alzheimer’s disease [40] and is currently being investigated as a smoking cessation aid 

(NCT01480232). However, it is important to note that cognitive deficits observed in patients 

with Alzheimer’s disease and schizophrenia are likely to be distinct from nicotine 

withdrawal-induced cognitive impairments. Thus, therapeutic responses (i.e., improved 

cognitive performance) in these patient populations may not be predictive of efficacy in 

smoking cessation trials.

2.1.2 Acetylcholinesterase inhibitors—Acetylcholinesterase inhibitors (AChEIs) 

increase extracellular levels of acetylcholine in the brain and augment cholinergic 

transmission through inhibition of acetylcholinesterase, a catabolic enzyme responsible for 

metabolizing acetylcholine in the synapse. Galantamine and donepezil are two AChEIs that 

are FDA-approved for treating cognitive impairments associated with mild-to-moderate 

Alzheimer’s disease [41]. Given that one hallmark of nicotine withdrawal is cognitive 

impairments, AChEIs may improve nicotine withdrawal symptoms in abstinent smokers and 

prevent smoking relapse. Consistent with this hypothesis, recent preclinical studies 

demonstrate that acute galantamine or donepezil administration during withdrawal 

attenuates the reinstatement of nicotine of nicotine-seeking behaviour, an animal model of 

relapse [42,43]. Moreover, galantamine administration improves cognitive performance 

following nicotine withdrawal in mice [44]. Taken together, these studies are provocative 

and suggest that AChEIs could be repurposed as pharmacotherapies for smoking cessation.

Although there has been great interest in prescribing cognitive enhancers, including AChEIs, 

for treating drug addiction and/or drug-associated cognitive deficits, there is a paucity of 
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clinical data directly assessing the efficacy of AChEIs and other cognitive enhancing 

compounds on drug-seeking and withdrawal-induced cognitive deficits [16]. Preliminary 

studies indicate that AChEI administration increases cognitive performance in non-

treatment-seeking smokers [45,46]. AChEIs also partially substitute for the discriminative 

stimulus properties of nicotine in humans [46] and rats [47]. Although these findings suggest 

that AChEIs may prevent smoking relapse, studies examining the effects of AChEIs on 

tobacco craving and smoking behaviour are mixed [45,46,48-50]. These conflicting clinical 

results are likely due to different patient populations (i.e., genetic variability, 

neuropsychiatric disorders, etc), comorbid drug use and small sample sizes. Therefore, the 

efficacy of AChEIs in treating smoking relapse remains to be defined in healthy, treatment-

seeking smokers without comorbidities.

2.1.3 Positive allosteric modulators of nAChRs—In addition to inhibiting 

acetylcholinesterase, galantamine also functions as a positive allosteric modulator (PAM) of 

α7 homomeric and α4β2* heteromeric nAChRs [51]. PAMs bind nAChRs at allosteric sites 

that are distinct from the binding sites for nicotine and acetylcholine. The binding of PAMs 

to nAChRs facilitates nicotine- and acetylcholine-evoked receptor responses [52]. PAMs of 

nAChRs have recently been proposed as potential smoking cessation medications based on 

studies demonstrating that hypofunction of nAChRs is associated with increased smoking 

rates [53].

PAMs of α7 and α4β2* nAChRs increase cognitive performance in drug-naive rats [54,55]. 

These findings suggest that PAMs of α7 and α4β2* nAChRs may reverse nicotine 

withdrawal-induced cognitive deficits and attenuate nicotine seeking. No studies, however, 

have examined the role of PAMs of α7 and α4β2* nAChRs on cognitive function and the 

reinstatement of nicotine seeking during nicotine withdrawal. A recent study demonstrated 

that systemic administration of a PAM of α4β2* nAChRs attenuated nicotine self-

administration in rats [56]. Although these results suggest that PAMs of α4β2* nAChRs 

may attenuate nicotine consumption in humans, more studies are needed to determine the 

effects of PAMs of nAChRs on aberrant behavioural phenotypes during withdrawal.

2.2 Glutamatergic agents

The neurotransmitter glutamate plays an important role in learning and memory [57]. There 

is also evidence that nicotine enhances the release and function of glutamate, particularly in 

brain regions important for cognitive function including the prefrontal cortex (PFC) [58]. Of 

the several types of glutamatergic receptors, the NMDA receptors are thought to be integral 

to learning processes [57]. For example, memantine, which is FDA-approved for the 

treatment of cognitive deficits in patients with Alzheimer’s disease, is a noncompetitive 

antagonist at the NMDA receptor and blocks the serotonin type 3 receptor (5-HT3) and 

nAChRs [59]. A recent meta-analysis concluded that memantine improved cognition and 

clinician’s global impression in patients with Alzheimer’s disease [60]. Although it is not 

clear whether memantine improves cognitive performance in healthy adults [61], memantine 

attenuated nicotine self-administration in rats [62] and decreased the subjective effects of 

cigarette smoking in adult smokers [63]. Another study found no effect of memantine on 

cognition or smoking behaviour [63]. There is also evidence that combined treatment of 
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memantine and AChEIs may be more effective at reducing cognitive decline in Alzheimer’s 

patients [64]. Compounds such as MDX-8704, which is a fixed-dose combination of 

memantine and donepezil from Adamas pharmaceuticals, are being investigated for 

Alzheimer’s disease. Thus, combined pharmacotherapy may be a useful strategy to explore 

for nicotine dependence treatment.

D-Cycloserine (DCS) is an antibiotic that acts as a partial agonist of the NMDA receptor. 

More recently, it has been studied for its role in promoting extinction of conditioned fear 

responses in patients with anxiety disorders [65]. To date, the majority of clinical research 

with DCS has demonstrated efficacy for treating obsessive–compulsive disorder and post-

traumatic stress disorder [66]. However, several preclinical studies found that DCS 

enhanced function in other cognitive domains including working memory and episodic-like 

memory [67,68]. A few studies have begun to investigate the role of DCS in nicotine 

dependence. For instance, DCS attenuated nicotine self-administration in rats with low-

baseline levels of self-administration suggesting that DCS may be most effective for helping 

lighter smokers to quit smoking [69]. In humans, DCS reduced reactivity to smoking cues 

and cigarette cravings but exerted little effect on smoking behaviour [70]. In another study, 

when DCS was combined with smoking, it improved response inhibition but not attention or 

cognitive flexibility [71]. DCS also had differential effects on the subjective symptoms of 

smoking depending on whether smokers were in a nicotine-deprived or satiated state [71]. It 

is possible that DCS only improves specific domains of cognitive function, although this 

hypothesis warrants further exploration. Furthermore, DCS may be most efficacious when 

given to smokers prior to a quit attempt and used in combination with another cholinergic 

medication (e.g., varenicline).

2.3 Adrenergic agents

2.3.1 α2 adrenergic receptor agonists—There is strong evidence that the adrenergic 

system is critical in cognitive function [72]. Guanfacine, an α2 adrenergic (α2A) receptor 

agonist, improves working memory performance in nonhuman primates and humans [73]. 

Guanfacine was FDA-approved for treating symptoms of attention-deficit/hyperactivity 

disorder (ADHD) in 2009 [74] and has been shown to attenuate stress responses and 

improve multiple domains of cognition, including spatial working memory, behavioural 

flexibility and reversal learning [75]. Using a laboratory paradigm of stress-precipitated 

smoking, guanfacine reduced smoking behaviour and craving, enhanced PFC activity 

associated with improved attention and self-control and improved treatment outcome during 

a brief follow-up period [76]. Although larger clinical trials are necessary to replicate these 

results, these data suggest stimulation of α2A receptors may be a useful strategy for nicotine 

dependence.

In addition, clonidine is an α2A agonist that also binds to the 2B and 2C receptors. It is 

FDA-approved for the treatment of ADHD and demonstrates beneficial effects on 

inattention and hyperactive/impulsive symptoms [77]. Initial evidence also supports its 

efficacy as a smoking cessation medication, at least among women [78]. However, the 

unfavorable side-effect profile of clonidine limits its use and there is at least some evidence 

that it may impair cognition among nonsmoking control subjects [79]. Future studies of 
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smoking cessation may focus on newer adrenergic receptor agonists, such as AR08 from 

Arbor pharmaceuticals, which is currently being investigated as a treatment for ADHD 

(NCT01876719).

2.3.2 Norepinephrine reuptake inhibitors—The norepinephrine reuptake inhibitor, 

atomoxetine, is also an approved treatment for ADHD and has been shown to improve 

response inhibition in both healthy controls [80] and individuals with ADHD [81,82]. 

Although initial studies in mice indicated that atomoxetine may attenuate nicotine 

withdrawal-induced deficits in contextual fear conditioning [83], it had no effect on 

withdrawal-related attentional deficits or smoking behaviour in a placebo-controlled human 

laboratory study of smokers following overnight abstinence [84,85]. Nortriptyline, a 

tricyclic antidepressant, which acts as a norepinephrine and serotonin reuptake inhibitor, has 

demonstrated some efficacy for smoking cessation [86], but another norepinephrine reuptake 

inhibitor, venlafaxine, had no effect on abstinence [87]. These equivocal findings may be 

partially explained by the fact that, similar to dopamine, norepinephrine has an inverted U-

like relationship with PFC function. That is, either too much or too little norepinephrine may 

impair function. Prolonged elevation of norepinephrine levels during chronic stress may 

contribute to deficits in cognition and blockage of norepinephrine receptors may reverse 

stress-induced cognitive deficits [88]. Thus, the effects of atomoxetine and other adrenergic 

agents may be dose-dependent and this may partially explain the mixed effects observed on 

cognitive performance. One direction for clinical research may be to establish a dose-

response curve to evaluate whether there is an optimal dose at which atomoxetine may be an 

efficacious smoking cessation medication.

3. Translational strategies for designing and optimizing nicotine 

dependence treatment

Thus far, we have reviewed several classes of medications that have demonstrated: i) some 

efficacy for either improving cognitive function under certain conditions (e.g., stress) or in 

particular groups (e.g., patients with ADHD); and ii) have some impact on the cholinergic 

system suggesting they may have some impact on smoking behaviour. The majority of the 

medications reviewed above have undergone rigorous testing for safety and tolerability prior 

to FDA approval. Repurposing medications that have been ‘de-risked’ through prior 

development removes a key reason for drug failure (i.e., safety) and substantially reduces 

the time and cost associated with typical drug development strategies [89]. Below, we 

review translational approaches for evaluating novel treatments for nicotine dependence. We 

begin with preclinical studies that are critical for examining the neurobiological mechanisms 

underlying nicotine taking and seeking, identifying novel targets for drug discovery 

programs aimed at developing smoking cessation medications and screening potential 

smoking cessation pharmacotherapies. We then review strategies for translating preclinical 

data for the development of clinical studies to evaluate the efficacy of novel treatments in 

humans.
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3.1 Preclinical models of nicotine addiction

3.1.1 Nicotine self-administration and the reinstatement of nicotine seeking-
behaviour—The overarching goal of translational research focused on identifying 

medications for nicotine addiction is to screen novel therapeutics for potential efficacy in 

preclinical animal models before proceeding to more costly clinical trials in human smokers. 

The rat nicotine self-administration model has played a critical role in understanding the 

biological mechanisms underlying nicotine addiction. Drug self-administration is a 

behavioural paradigm used commonly to measure the reinforcing effects of nicotine. Briefly, 

nicotine self-administration requires that an animal perform an operant response (i.e., 

pressing a lever) in order to obtain a drug infusion. While nicotine self-administration 

studies in human subjects typically study cigarette-smoking behaviour, the majority of 

nicotine self-administration studies in rodents utilize an intravenous route of administration. 

Intravenous self-administration is used primarily because this route simulates the rapid rise 

in arterial nicotine and rapid distribution of nicotine to the brain that occurs via the typical 

pulmonary route of exposure in humans [90]. Despite procedural differences, data from both 

human and rodent self-administration studies depict an inverted U-shaped dose-response 

curve, with maximal rates of responding occurring at intermediate doses of nicotine [91]. 

Nicotine self-administration has the highest degree of face validity of all animal models of 

nicotine addiction primarily because it mimics voluntary tobacco consumption in humans 

[8]. Plasma nicotine levels are similar in animals self-administering nicotine and human 

tobacco smokers, further validating this animal model of nicotine addiction [92]. 

Furthermore, the predictive validity associated with nicotine self-administration and the 

effectiveness of smoking cessation medications appear to be relatively high [8]. For 

example, all three FDA-approved treatments for smoking cessation decrease nicotine self-

administration in rodents [93-95]. Finally, it is thought that nicotine self-administration has 

good construct validity and an emerging literature indicates that changes in dopaminergic, 

cholinergic, GABAergic, glutamatergic, serotonerigc, and cannabinoid systems mediate the 

reinforcing effects of nicotine in humans and laboratory animals [96].

Drug craving and relapse of drug-taking behaviour in humans are precipitated by three 

major factors: a stressful life-event, an environmental stimulus previously associated with 

drug taking or re-exposure to the drug itself [97]. Relapse in humans is typically modeled in 

animals as follows: following a period of drug self-administration and the subsequent 

extinction of the drug reinforced behaviour, the ability of stress, drug-associated stimuli or 

re-exposure to the drug itself to reinstate drug seeking is assessed [97]. For example, 

following extinction of nicotine self-administration, systemic injections of relatively low 

doses of nicotine or cues previously paired with nicotine taking reinstate operant responding 

in the absence of drug reinforcement in rodents [42,43]. The rein-statement model’s validity 

as an in vivo medication screen appears promising for relapse to nicotine taking [98]. For 

example, varenicline administration attenuates nicotine seeking in rats [28,99].

3.1.2 Preclinical models of nicotine withdrawal-induced cognitive deficits—As 

reviewed above, cognitive deficits are a hallmark of nicotine withdrawal that may promote 

smoking relapse. Therefore, it has been proposed that cognitive-enhancing drugs may 

attenuate nicotine seeking by improving cognitive deficits during periods of smoking 
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abstinence [16]. Previous studies examining the effects of nicotine withdrawal on cognition 

utilized subcutaneous osmotic minipumps to deliver chronic nicotine [44,100,101]. 

Continuous delivery of nicotine in rodents does not model pulsatile delivery in human 

smokers and produces neuroadaptations in the brain that are distinct from episodic smoking 

[102] and nicotine self-administration [103]. Therefore, nicotine self-administration in rats is 

a more homologous model of voluntary nicotine taking in humans and cognitive deficits that 

appear during withdrawal from nicotine self-administration are more likely to model 

cognitive deficits in abstinent human smokers.

While rat nicotine self-administration studies clearly demonstrate withdrawal-induced 

changes in behaviour as measured by overt somatic signs of withdrawal [104], changes in 

intracranial self-stimulation thresholds [105] and anxiety [106], no studies have examined 

withdrawal-induced cognitive deficits in rats following voluntary nicotine self-

administration. Withdrawal following continuous nicotine exposure via osmotic minipumps 

in mice results in cognitive impairments that are reversed/normalized by increased nAChR 

signaling in the brain [17]. Moreover, administration of galantamine improves cognitive 

performance following nicotine withdrawal in mice [44]. Markou and colleagues have 

shown that nicotine withdrawal is associated with increased impulsivity [107] and deficits in 

attention [108] in rats. These studies, however, are limited in that osmotic minipumps were 

used to deliver continuous nicotine and, therefore, do not model voluntary, episodic nicotine 

consumption in human smokers. Thus, there is a clear need for preclinical models of 

withdrawal-induced cognitive deficits following nicotine self-administration that can be 

used to screen the efficacy of cognitive-enhancing compounds to reverse/normalize theses 

impairments.

3.2 Clinical

3.2.1 Laboratory studies of acute nicotine withdrawal—A necessary step in 

evaluating potential novel treatments is to examine whether they attenuate cognitive deficits 

during nicotine withdrawal. Many human laboratory paradigms have been developed to test 

a variety of cognitive functions after some period of withdrawal. Typically, the duration of 

abstinence ranges from overnight (~ 9 – 12 h) to 24 h [109,110], although some have 

required smokers to undergo longer periods of abstinence (e.g., up to 72 h [111]). Because 

the majority of smokers who make a quit attempt relapse within the first week [6], most 

studies have focused on the early withdrawal period. Thus, one limitation is that little is 

known about the persistence of cognitive deficits during prolonged abstinence. Furthermore, 

these laboratory studies often only examine smokers with low motivation to quit smoking, 

which may reduce the generalizability to the broader population of smokers who want to 

quit.

Nicotine withdrawal-associated cognitive deficits can be assessed via self-report using 

standard rating scales [112] or objective measures using computerized tasks that assess 

executive cognitive function. Objective measures reduce the bias associated with self-report 

and enhance the translational potential because many of the computerized assessments have 

been adapted for animal models. We will briefly discuss the most common tasks used in 

animals and humans (Table 2). For reviews of the effects of nicotine and nicotine 
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withdrawal on cognitive function, see [34,113,114]. For example, sustained attention, or 

vigilance, refers to the ability to discriminate between targets and distractors [115]. In 

humans, attention is commonly assessed with a Continuous Performance Test (CPT) [116] 

or a Rapid Visual Information Processing [117]. The five-choice serial reaction time task (5-

CSRTT) is a commonly used analogue in animals [118]. Working memory is a multi-

component process responsible for the active maintenance and manipulation of information 

[119]. In humans, working memory is often assessed using the n-back task [120] and in 

animals, performance on Morris water maze and radial-arm maze tasks are considered 

indices of working memory [121]. Response inhibition refers to the ability to inhibit 

prepotent responses [122]. Assessments of response inhibition in humans include the stop 

signal task, the go/no-go task and commission errors on a CPT [110,122]. In animals, 

indices of response inhibition include premature responding on the 5-CSRTT and the more 

recently developed stop signal task [123]. Recently, a rodent five-choice CPT paradigm was 

established that is more analogous to the human CPT. Studies of five-choice CPT in rodents 

and human patients with schizophrenia indicate that this animal model has translational 

validity and relevance [124,125]. Reversal learning, sometimes referred to as cognitive or 

behavioural flexibility, requires the ability to adapt to changes in reward contingency and 

respond to stimuli that were previously not associated with reward. Although less studied 

than the other domains mentioned, reversal learning paradigms have been developed for 

animals and humans and have demonstrated clear links with addictive behaviours [126]. 

Importantly, there is substantial overlap in the assessment of these cognitive domains and 

their underlying neurocircuitry. Therefore, comprehensive test batteries may help to isolate 

specific treatment targets.

3.2.2 Laboratory models of smoking relapse—A critical limitation of laboratory 

studies of cognitive deficits during nicotine withdrawal is that they cannot establish whether 

medication effects are related to the ability to abstain from smoking. Because Phase III 

clinical trials are costly and time intensive, human laboratory models of smoking relapse 

may represent more efficient methods for screening novel medications [8,11,12]. Using 

early Phase II approaches, these models require smaller sample sizes and shorter duration of 

testing. Critically, these laboratory paradigms focus on abstinence as an outcome and 

therefore can provide an early signal for medication efficacy, which can be tested in a 

clinical trial. This can reduce the likelihood of wasting valuable resources on a large clinical 

trial. One model, developed by Perkins and colleagues [127-130] focuses on smokers with 

high motivation to quit using a within-subject crossover design during week-long ‘practice 

quit attempts’. In this model, smokers undergo a 7-day abstinence period during which they 

receive small monetary incentives ($15/day) for providing biochemical verification of 

abstinence. The significance of the week-long quit period is based on evidence that 

abstinence during the first week is highly predictive of long-term abstinence [6]. This model 

has been validated using existing treatments for nicotine dependence including NRT, 

varenicline and bupropion and has demonstrated specificity using ineffective treatments 

(e.g., modafinil) [127,128,130].

Another model for early medication screening focuses on the ability to resist the first 

cigarette and subsequent smoking [12]. This model is based on the premise that a ‘slip’, 
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defined as smoking even one puff of a cigarette that often occurs soon after quitting, is one 

of the best predictors of smoking relapse [4]. Following exposure to common triggers of 

smoking relapse (e.g. nicotine deprivation, alcohol, stress), smokers are given the 

opportunity to smoke or to delay smoking for up to 50 min in exchange for money (e.g., 

modeling the first ‘slip’). Once participants ‘give in’ (or 50 min passes), smokers are given 

60 min to smoke cigarettes or receive money for cigarettes not smoked (e.g., modeling 

subsequent smoking after the first ‘slip’). This model has been validated with evidence that 

both varenicline and bupropion increased the ability to resist smoking and reduced ad-

libitum cigarette consumption, compared with placebo [131]. Both the models described 

above combine the validity of clinical trials with the practical advantages of laboratory tests 

and a means for evaluating mechanisms of efficacy [8,11]. For instance, McKee and 

colleagues found that their model is sensitive to stress- and alcohol-precipitated smoking 

relapse [132,133]. Furthermore, Perkins and colleagues [130] found that one mechanism of 

bupropion’s efficacy may be attenuation of withdrawal-related cognitive deficits.

3.2.3 Neuroimaging approaches—In addition to the behavioural paradigms reviewed 

above, advances in neuroimaging techniques may provide a more sensitive test of 

pharmacological agents to better understand their mechanisms. These strategies include 

blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) to examine 

neural activity associated with treatment targets such as attention, working memory, and 

response inhibition and positron emission tomography (PET) and single-photon emission 

computed tomography (SPECT) to estimate receptor availability and neurotransmitter levels 

in the brain. Although fMRI techniques provide better temporal resolution, PET and SPECT 

provide a means for examining in vivo receptor binding and occupancy. Imaging techniques 

can be used to characterize brain activation and receptor density patterns that may represent 

biomarkers that can be used to identify neural pathways from which novel medications can 

be screened for nicotine dependence or predict treatment outcome. Furthermore, these 

techniques may also be used to examine individual differences in treatment response to 

identify those most likely to benefit from a particular treatment. Although a full review of 

the studies examining the neural substrates of cognitive function during nicotine withdrawal 

and in response to current treatments is beyond the scope of the present manuscript, for 

reviews see [134-136].

4. Expert opinion

Despite the clear negative consequences of smoking, the majority of smokers who make a 

quit attempt fail within the first week. Thus, there is a clear need to identify novel treatments 

to help more smokers quit smoking. We have focused our review on medications that target 

cognitive function as a core phenotype of nicotine withdrawal. Although medications that 

alter cholinergic function may show the most promise, further research is necessary to 

determine their efficacy at promoting abstinence and their safety profile in smokers. 

Importantly, we do not suggest that targeting cognitive function is a strategy that will work 

for all smokers. Rather, we propose that improving withdrawal-related cognitive deficits 

represents one treatment option. Indeed, one area for future research is to characterize 

subgroups of smokers most likely to experience cognitive deficits and therefore most likely 

to benefit from cognitive-enhancing treatments.
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Although there is consistent evidence in the preclinical and clinical literature that nicotine 

withdrawal produces cognitive deficits, an outstanding question is whether treatments that 

enhance cognition in treatment-seeking smokers also prevent smoking relapse. The evidence 

from studies with varenicline or NRT suggests that these treatments do have beneficial 

effects on cognition, but whether improved cognition mediates treatment effects has not 

been determined. It is possible that these medications may prevent or normalize nicotine 

withdrawal-induced cognitive deficits and have limited efficacy for smoking relapse. If this 

is the case, these treatments may serve as adjunctive treatments for smoking cessation. That 

is, cognitive enhancers may facilitate the ability of first-line pharmacotherapies including 

NRT, varenicline and bupropion to promote smoking cessation. The use of combination 

pharmacotherapy may also provide a means for individualizing treatment to a particular 

smoker’s needs. This also highlights the importance of individual differences, including 

genetics and gender, and their role in susceptibility to relapse, withdrawal-induced cognitive 

deficits and treatment response.

Much of the evidence reviewed here regarding the cognitive enhancing effects of these 

medications is equivocal and suggests that the effects are small, at best. However, the 

majority of these studies have not focused on cigarette smokers and it is not clear how 

smoking may impact the complex interactions among cholinergic, noradrenergic, 

glutamatergic and estrogen function. Furthermore, chronic smoking has adverse effects on 

many of these systems, including inflammation. Changes in cognition, particularly among 

healthy individuals, may be subtle and the current assessments may not be sensitive enough 

to detect changes. Indeed, the cognitive enhancing effects of the medications reviewed 

above may be more pronounced in patient populations and may not be predictive of efficacy 

in smoking cessation trials with smokers without comorbidities. Therefore, we emphasize 

the importance of translational research in identifying and evaluating novel treatments for 

nicotine dependence. It is vitally important that: i) preclinical studies identify novel 

compounds that can be tested in human laboratory paradigms; ii) human imaging studies 

identify neural substrates that can be evaluated in pre-clinical models; and iii) imaging 

studies identify biomarkers of treatment response that can be used to develop more sensitive 

cognitive assessments. Here, we use the role of nAChR subtypes in nicotine withdrawal-

induced cognitive deficits as an example of this translational model. Both α4β2 and α7 

nAChRs have been shown to play important and differential roles in cognitive performance 

[34]. Although administration of α4β2 and α7 nAChR antagonists into the hippocampus 

impairs working memory, these effects are not additive suggesting distinct roles for α4β2 

and α7 nAChRs in cognition [137]. In contrast, cognitive deficits produced by 

administration of an α7 nAChR antagonist into the amygdala are blocked by pretreatment 

with a α4β2 nAChR antagonist [138]. Thus, there is a clear need to further define the role of 

specific nAChR subtypes in the neuroanatomy-mediating cognition. One direction for future 

research would be to evaluate α7 and α4β2 nAChR antagonists using the human laboratory 

paradigms to examine how nicotine withdrawal impacts performance on a battery of 

cognitive tasks. This information could then inform brain imaging studies to explore 

potential biomarkers of treatment efficacy to identify subgroups of smokers most likely to 

benefit from a particular treatment.
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Indeed, more focused translational research programs can expedite identification of novel 

smoking cessation medications. While preclinical studies can inform clinical trials, animal 

models of nicotine addiction have limitations and may not recapitulate the addiction process 

in human smokers. For example, multiple factors including poly-drug use, co-morbid 

neuropsychiatric disorders and environmental stimuli influence compulsive smoking 

behaviour and propensity to relapse. While operant paradigms model voluntary nicotine 

consumption in humans, they do so under defined conditions (an inherent advantage to these 

models as well). Therefore, integrating preclinical studies into translational programs should 

be done cautiously. Nevertheless, we suggest that it is imperative to develop models of 

cognitive deficits following voluntary nicotine self-administration in animals to enhance the 

predictive validity for using preclinical models to screen new compounds.

We identified several classes of medication that may have cognitive-enhancing properties as 

possible treatment for nicotine dependence. These compounds include cholinergic, 

glutamatergic and adrenergic agents. However, there are likely other systems involved that 

should be addressed in future research. For example, estrogen’s effect on cholinergic 

function has been proposed as a neurobiological mechanism to explain its effects on 

cognitive function [139] suggesting estrogen receptor agents may be targets for future 

research (Table 1). There are also well-established links between smoking and inflammation 

[140] and between cognition and inflammation [141]. However, no study to our knowledge 

has explored anti-inflammatory agents as a smoking cessation aid (Table 1). Although our 

review was primarily focused on repurposing medications approved for other indications, 

we identified several compounds being tested for their cognitive enhancing properties that 

may be useful to explore for attenuating nicotine-withdrawal-related cognitive deficits 

[38,142,143]. To this end, we outline strategies for future research to identify and evaluate 

novel compounds. These translational models utilize data from preclinical paradigms of 

nicotine dependence, human laboratory paradigms of withdrawal-induced cognitive deficits 

and human models of smoking relapse. Emerging evidence supports deficits in cognitive 

function as a plausible nicotine withdrawal phenotype, and the translational paradigms 

presented here may represent efficient and valid means for evaluation cognitive-enhancing 

medications as possible treatments for nicotine dependence.
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Article highlights

• Cognitive deficits are a common nicotine withdrawal symptom that may 

precipitate relapse.

• Repurposing medications that may enhance cognition may represent an efficient 

strategy for screening novel medications for nicotine dependence.

• Preclinical models of nicotine dependence can provide valuable data to guide 

the development of clinical studies.

• Human laboratory models of smoking relapse can provide an early signal for 

medication efficacy and allow for testing of potential mechanisms of efficacy.

• The nicotine withdrawal syndrome is heterogeneous and targeting cognitive 

function may only be effective for a subset of smokers.

This box summarizes key points contained in the article.
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Table 2
Commonly used preclinical and clinical laboratory models of cognition

Cognitive domain Preclinical model Human laboratory model

Attention Five-choice serial reaction
time task (5-CSRTT)

CPT hits (correct targets) rapid visual
information processing

Vigilance Five-choice CPT Five-choice CPT

Working memory Morris water maze N-back digit span

Response inhibition; inhibitory control Premature responses on the 5-CSRTT
Stop signal task

Stop signal reaction time task
Go/no-go task
CPT false alarms
Stroop task

Learning, declarative memory Novel object recognition task Recall or recognition tasks

Spatial working memory, discrimination Spatial object recognition task
T-maze, Y-maze

Spatial span

Pavlovian learning, fear memory Fear conditioning Cue exposure therapy

Cognitive domains listed here are a subset of those described in the Research Domain Criteria initiative from the National Institute of Mental 
Health [113,121], 5-CSRTT: Five-choice serial reaction time task; CPT: Continuous performance test.
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