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Abstract

In a tapered matched comparison, one group of individuals, called the focal group, is compared to 

two or more nonoverlapping matched comparison groups constructed from one population in such 

a way that successive comparison groups increasingly resemble the focal group. An optimally 

tapered matching solves two problems simultaneously: it optimally divides the single comparison 

population into nonoverlapping comparison groups and optimally pairs members of the focal 

group with members of each comparison group. We show how to use the optimal assignment 

algorithm in a new way to solve the optimally tapered matching problem, with implementation in 

R. This issue often arises in studies of groups Defined by race, gender, or other categorizations 

such that equitable public policy might require an understanding of the mechanisms that produce 

disparate outcomes, where certain specific mechanisms would be judged illegitimate, necessitating 

reform. In particular, we use data from Medicare and the SEER Program of the National Cancer 

Institute as part of an ongoing study of black-white disparities in survival among women with 

endometrial cancer.
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1 Introduction and Review

1.1 Introduction: What is Tapered Matching?

In a tapered matched comparison, one group of individuals, called the focal group, is 

compared to two or more nonoverlapping matched comparison groups constructed from one 

population in such a way that successive comparison groups increasingly resemble the focal 

group. ‘Tapering’ refers to this narrowing or successive removal of naturally occurring 

discrepancies between the focal group and the comparison population. The focal group 

never changes; it represents the focal group as it actually exists in the population. The 

successive comparison groups resemble their own population less and less, and resemble the 

focal population more and more. Tapered matching is used in an effort to understand how 

and why outcomes in the focal population differ from those in the comparison population, 

by successively removing some discrepancies that may be responsible for part of the 
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difference in outcomes. Because the comparison groups are nonoverlapping, they may be 

compared to one another using simple statistical methods. Tapered comparisons of this sort 

shed some light on questions of the form: When certain baseline discrepancies are removed, 

how much of the disparity in outcomes is also removed?

An optimally tapered matching solves two problems simultaneously: it optimally divides the 

single population into C ≥ 2 nonoverlapping comparison groups and optimally pairs 

members of the focal group with members of each comparison group. More generally, each 

member of the focal group may be matched to kc ≥ 1 controls in comparison group c, c = 1, 

…, C. For discussion of matching with one comparison group and multiple controls from 

that group, see Smith (1997).

This problem occurs in various contexts, including studies of disparities in outcomes in 

which one is seeking insight into mechanisms that produce the disparities. In the example, 

black women with endometrial cancer (the focal group) survive for a shorter period 

following diagnosis than do white women, and we compare black women to white women 

who were diagnosed with similar cancer (a wider comparison group) and white women who 

were similar in diagnosis and also similar in surgical treatment (a narrower comparison 

group). Because the two white groups do not overlap, they may be compared to each other 

using conventional statistical methods to ask: If whites who were diagnosed in the same 

health as blacks also received the same surgery as blacks, could the difference in surgery 

help in understanding the difference in survival? Unaided by matching, a model fitted to the 

entire population would give disproportionate weight to the large and comparatively healthy 

white population, and that model may substantially misrepresent the situation in the small, 

sicker black population; see Dehejia and Wahba (1999) for discussion of the failure of 

models unaided by matching. In contrast, it is often useful to apply model-based adjustments 

to matched samples (Rubin 1979).

We use the assignment algorithm in a new way to solve the optimally tapered matching 

problem. The assignment algorithm is reviewed in §1.2. An example is discussed in §2. 

Advantages of tapered matching in the context of the example are discussed in §2.2. The 

method for optimal tapered matching is discussed in §3. Technical details of the example in 

§2 are discussed in §3.3. The choice of distance function in tapered matching is discussed in 

§3.4.

1.2 Review: The Optimal Assignment Algorithm

The assignment algorithm is one of the oldest combinatorial optimization algorithms, and it 

solves the following problem. There is an A × B matrix Δ of nonnegative, possibly infinite 

‘distances,’ δab ≥ 0, a = 1, …, A, b = 1, …, B, with A ≤ B. These ‘distances’need not satisfy 

the triangle inequality, so they need not be distances in the sense of a metric space. One 

familiar distance is the Mahalanobis distance (Rubin 1979). An assignment, β (·), of 

columns to rows pairs each row a ∈ {1, …, A} to a different column β (a) ∈ {1, …, B} with 

β (a) ≠ β (a′) if a ≠ a′. Let ℬ be the set containing all B!/ (B−A)! assignments β (·). The total 

distance, δ {β (·)}, for an assignment β (·) is sum of the distances for its A row-column pairs, 
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. The optimal assignment problem is to find any assignment, β̃ (·) ∈ 

ℬ, that is optimal in the sense of minimizing the total distance over all assignments:

(1)

The problem is not trivial: two or more rows, a and a′, may want the same column b — that 

is, δab = minj δaj and δa′b = minj δa′j — so the A assignments of columns to rows are 

interdependent. The assignment algorithm and related procedures have been used for 

optimal matching in observational studies; see Rosenbaum (1989, 1991), Silber, et al. (2001, 

2005, 2007), Hansen (2004, 2007), Hansen and Klopfer (2006), Lu (2005), Augurzky and 

Kluve (2007) and Rosenbaum, Silber and Ross (2007). One of the fastest algorithms holds 

an auction, in which two rows a and a′ that both want the same column b offer competing 

bids for it, with the bids adjusting as the auction progresses; see Bertsekas (1981). The 

pairmatch function in Hansen’s (2004, 2007) optmatch package in R makes Bertsekas’ very 

fast Fortran code available from within R. Dell’Amico and Toth (2000) review and compare 

algorithms to solve the assignment problem. As discussed by Papadimitriou and Steiglitz 

(1982), polynomial time algorithms for the assignment problem are available, including 

Kuhn’s Hungarian algorithm, with time bound of O (B3). Carpaneto, and Toth (1980) 

provide Fortran code implementing the Hungarian method. In SAS OR, Proc Assign solves 

the assignment problem; see Bergstralh, Kosanke and Jacobsen (1996).

As we demonstrate in §3, for a suitably Defined matrix Δ, the problem of optimal tapered 

matching can be reduced to the assignment problem. Specifically, the assignment algorithm 

will both partition the comparison population into nonoverlapping comparison groups 

matched in varying degrees to the focal group and also match each member of the focal 

group to kc similar members of comparison group c, c = 1, …, C. To make the discussion 

tangible, before discussing the procedure, its application is illustrated in §2 using the 

example that motivated our work.

2 Example: Disparities in Survival with Endometrial Cancer

2.1 Matching At Diagnosis and At Treatment: An Application of Tapered Matching

In the US Medicare population, black women with endometrial cancer survive for a shorter 

time following diagnosis than do white women. Why? Biological differences are not 

inconceivable, but there is naturally concern that the health care system might be providing 

inferior care to black women. In principle, all women in the Medicare population have equal 

access to medical care, but gaps between principle and practice may occur. We examine this 

using merged data from Medicare and from the Surveillance, Epidemiology, and End 

Results (SEER) program of the National Cancer Institute, which provides clinical stage, 

grade and histology.

We begin with the population of black women diagnosed with endometrial cancer, 

specifically 806 black women diagnosed between 1991 and 2000. We compare them to two 

optimally matched, non-overlapping comparison groups: (i) white women who appeared to 
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have similar cancer at diagnosis, and (ii) white women who appeared to have similar cancer 

at diagnosis and who received similar surgical treatment. The construction of the matched 

comparison is discussed in general in §3 with specifics for this example in §3.3. We also 

compare with the unmatched population of white women with endometrial cancer. This 

offers several perspectives and answers several questions. Are blacks and whites diagnosed 

with similarly advanced cancer? (They aren’t.) Do blacks and whites with similar cancer at 

diagnosis have similar survival? (They don’t.) Do blacks and whites with similar cancer 

receive the same surgery? (They don’t.) Do blacks and whites with similar cancer who 

receive the same surgery exhibit similar survival? (They don’t.) Do whites who receive the 

same inferior treatment as blacks have poorer survival than other whites with similar cancer 

at diagnosis? (No, or at least there is no indication that they do.)2

Table 1 describes the four groups of women diagnosed with endometrial cancer between 

1991 and 2000: (i) all 806 black women, (ii) 806 matched white women who appeared to 

have similar cancer at diagnosis, (iii) 806 other matched white women who appeared to have 

similar cancer at diagnosis and received similar surgical treatment, and (iv) all 13,756 white 

women. Both matched groups were matched for age, clinical stage or missing clinical stage, 

grade or missing grade, histology or missing histology, and the presence or absence of 

comorbid conditions; these variables are described in the top half of Table 1. In addition, the 

whites matched at treatment were matched for adequate surgery (AS = yes or no), surgeon 

type (GO = gynecological oncologist, GYN = gynecologist, Other = other surgeon), and an 

approximate measure of days from diagnosis to surgery, where surgeon type and days are 

Defined only for the subset of women who received adequate surgery; these variables are 

described in the bottom half of Table 1.

In Table 1, black women were sicker at diagnosis than all white women. Black women 

tended to have more advanced stage of cancer, higher grade, and were more likely to present 

with a comorbid condition. In contrast, both matched groups of white women were similar 

to the black women in terms of the variables in the top half of Table 1. Black women 

received inferior medical care when compared to all white women and to the first matched 

group of white women who appeared similar in terms of the biological variables in Table 1. 

Black women were more likely to receive either no surgery or inadequate surgery (35% for 

blacks, 18% for similar whites matched at diagnosis, and 14% for the healthier group of all 

whites.) In contrast, the second matched group of white women was similar to the black 

women in terms of both the biological variables in Table 1 and the treatment variables in 

Table 2.

Comparisons of survival in matched pairs are based on Albers (1988) rank test for randomly 

censored matched pairs, using his Wilcoxon-type scores. Largely because blacks were 

diagnosed with more advanced cancer, blacks typically survived for a much shorter time 

than the population of all whites (median 2.9 years for blacks, with 95% confidence interval 

[2.4, 3.3] versus 8.7 years for all whites, [8.4, 8.9]). White women matched for health at 

2The analyses presented here were a pilot study demonstrating the feasibility of the methodology. A clinical analysis along the same 
lines is currently underway; it will differ in a number of particulars, including greater attention to the extent and nature of comorbid 
conditions. A reader interested in endometrial cancer rather than in multivariate matching should refer to our clinical analysis.
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diagnosis survived somewhat longer than the black women (median 4.1 years, [3.5, 4.8], 

with Albers’ one-sided p-value 0.037). Recall from Table 1 that this first matched group of 

white women was more likely to receive adequate surgery than the group of black women. 

When matched also for surgery, the second matched group of white women still had 

somewhat longer survival than the black women (median 3.6 years, [2.7, 4.3], with Albers’ 

one-sided p-value 0.033). Survival in the two nonoverlapping matched groups of white 

women did not differ significantly, despite the higher frequency of adequate surgery in the 

first matched group (Albers’ one-sided p-value 0.48).

In short, blacks are diagnosed with more advanced cancer, and this might account for much 

of the difference in survival. Blacks are less likely to receive adequate surgery than matched 

whites who were similar at diagnosis, but there is little indication that this difference in 

surgery is the cause of the remaining difference in survival, because whites who received 

similar surgical treatment still survived longer. These observations reflect the covariates in 

Table 1, and might be different with more detailed clinical data.

2.2 Advantages of Tapered Matching in this Example

The example in §2.1 illustrates several advantages of tapered matching.

Focus on the correct population—The black population is the natural one: 

(essentially) all blacks diagnosed with endometrial cancer in the SEER-Medicare cohort, 

and that population does not change as the analysis proceeds. All blacks are compared to 

whites who become more and more similar to the blacks, but the comparisons always refer 

to, and are weighted by, the entire actual population of blacks. The question, “How 

beneficial is adequate surgery?,” is a different question if answered in the black population 

than in the entire population, which is mostly white and mostly diagnosed at an earlier, 

healthier stage. The analysis in §2.1 suggests substantial improvements in survival for 

blacks are mostly likely to be achieved through earlier diagnosis, despite the fact that there 

is also a disparity in the use of adequate surgery. See see Dehejia and Wahba (1999) for 

discussion of the dangers of model-based adjustments, unaided by matching, which may not 

focus on the correct population.

Adjusting for interactions—In clinical data, the very meaning of one matching variable 

often changes depending upon the value of another matching variable, and for this reason it 

is important to control for interactions. The stage of endometrial cancer can be determined 

approximately by biopsy, more accurately as a by-product of adequate surgery, and still 

more accurately as a by-product of accurate surgery by a gynecological oncologist whose 

specialty is gynecological cancer surgery. Because of this, the meaning of “stage 3” is 

different for a woman who had adequate surgery than for one who did not, and possibly 

different depending upon the surgeon type (Earle, et al. 2006, Silber, et al. 2007). Time to 

surgery and surgeon type in Table 1 have meaning only for a patient who has surgery. A 

“missing stage” is unlikely to be missing completely at random, as it would result if even a 

biopsy was not performed; see the appendix of Rosenbaum and Rubin (1984) for the 

relationship between matching and incomplete covariates. In Table 1, blacks lacking key 

clinical data are matched to whites lacking the same data, and whites matched at treatment 
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are matched to blacks for ‘adequate surgery’ and typically for surgeon type, so in these 

black-white pairs, important interactions are controlled.

The comparison is easy to understand—Although matching itself requires some 

technology, in the end, patients who are comparable in specific respects are compared in a 

straightforward way. Anyone can understand the degree and nature of the comparability 

displayed in Table 1, and the comparison of survival outcomes. If scientific findings are to 

affect policy, it is helpful to have an analysis that nonstatisticians can understand.

3 Optimal Tapered Matching Using the Assignment Algorithm

3.1 The Tapered Matching Problem

The focal group consists of I individuals, α1, …, αI, and the comparison population consists 

of J individuals, γ1, …, γJ. In §2, I = 806 and J = 13, 756. A total of C ≥ 2 tapered, 

nonoverlapping comparison groups will be formed, c = 1, …, C, and αi will be matched to 

kc ≥ 1 individuals in comparison group c such that each of the J individuals γ1, …, γJ 

appears at most once among the T = IK matched controls, where K = Σkc. In §2, C = 2, k1 = 

k2 = 1, K = 2, T = IK = 1612. Matching is possible only if J ≥ T. Let |H| denote the number 

of elements of a finite set H.

The variables used in forming comparison group c are different from the variables used in 

forming comparison group c′ for c′ ≠ c, so the distance between αi and γj changes with c. In 

§2, the variables used in forming comparison group c = 1 described the health of patients at 

diagnosis, whereas the variables used in forming group c = 2 described both the health of 

patients at diagnosis and their surgical treatment. Let λcij ≥ 0 be the distance between αi and 

γj when forming group c. In §2, λ1ij is the distance between black woman αi and white 

woman γj in terms of variables describing health at diagnosis, whereas λ2ij describes the 

distance between these same two women in terms of health at diagnosis and surgical 

treatment. Two women, αi and γj, might have been similar in terms of health at diagnosis, so 

λ1ij is small, but they might have been treated very differently, so λ2ij is large. An infinite 

distance, λcij = ∞, is used to prevent matching αi and γj at level c of the taper. In §2, we 

insisted on an exact match on clinical stage at both levels of the taper, c = 1, 2, and an exact 

match on the binary indicator of adequate surgery at level c = 2 of the taper, so λcij = ∞ if αi 

and γj differed in these ways.

The problem is to determine the subset of {γ1, …, γJ} to be matched to αi at each level c of 

the taper. Let ωci ⊂ {γ1, …, γJ} be the set containing the kc individuals matched to αi at 

level c of the taper; so ωci identifies kc controls, |ωci| = kc, and no control is used twice, ωci ∩ 

ωc′i′ =  if i′ ≠ i or c′ ≠ c, and there are T = IK distinct controls in all, 

. Write Ω for the I × C array of sets ωci, i = 1, …, I, c = 1, …, C. The 

optimal tapered matching problem, Problem 1, is to construct Ω in such a way as to 

minimize the total of the distances λcij between focal group members, αi, and their matched 

controls, γj, j ∈ ωci.
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Problem 1 An I × C array Ω of sets ωci ⊂ {γ1, …, γJ}, i = 1, …, I, c = 1, …, C, such that |

ωci| = kc, ωci∩ωc′i′ =  if i′ ≠ i or c′ ≠ c is called feasible. Find a feasible array Ω that 

minimizes .

3.2 An Equivalent Assignment Problem

Define a matrix Δ with T = IK rows and J columns as follows. The J columns of Δ 

correspond with γ1, …, γJ. The IK rows of Δ divide into I groups of K rows, one group for 

each αi. The K = Σkc rows in each of the I groups further divide into k1 rows for the first 

level of the taper, c = 1, k2 rows for the second level, c = 2, …, kC rows for level C. Form Δ 

by placing λcij in the kc rows

(2)

and column j, for i = 1, …, I, c = 1, …, C, j = 1, …, J, with .

Method 1: Solve the optimal assignment problem for the distance matrixΔ. For the resulting 

optimal assignment, Define ωci to be the columns paired with the rows for αi with the kc 

indices (2), for i = 1, …, I, c = 1, …, C.

Proposition 2 The tapered matching method solves Problem 1

Proof. Each β (·) ∈ ℬ determines a feasible Ω in Problem 1 using Method 1; then, the ωci so 

Defined are disjoint because β (·) is an assignment and have |ωci| = kc by construction. 

Conversely, if Ω is any feasible array of ωci in Problem 1, then Ω picks out T = IK distinct 

columns of Δ from {γ1, …, γJ} because the ωci do not overlap. For each c and i, there are kc! 

ways to assign the columns in ωci to the rows of Δ with indices (2), so each Ω corresponds 

with  different assignments β (·) ∈ ℬ with the same cost δ {β (·)} which equals λ 

(Ω). It follows that any minimum cost assignment β (·) corresponds with a minimum cost 

feasible array Ω.

In Hansen’s (2007) optmatch package, when k1 = … = kC > 1, a smaller distance matrix 

with IC rows may be used in place of Δ in (2) with IK ≥ IC rows, by instructing the package 

to match each row to k1 > 1 controls. In R, an unnecessarily large distance matrix may lead 

to an inefficient use of memory, with slower performance.

3.3 Details of Implementation in the Example

The optimization used Hansen’s (2005, 2007) optmatch package in R. The two distances, 

λcij, c = 1, 2, were each formed using Mahalanobis metric matching within calipers on two 

propensity scores. The two distances, λcij, c = 1, 2, for matching at the time of diagnosis, c = 

1, and at the time of treatment, c = 2, were Defined as follows. For the diagnosis match, the 

probability that a patient is black rather than white was estimated from the variables in the 

top half of Table 1 using a logit model; for matching purposes, this is similar to a propensity 

score. For the treatment match, the probability that a patient is black rather than white was 
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estimated from all of the variables in Tables 1 using a logit model. For discussion of the 

consequences of using an estimated propensity score, see Hirano, et al. (2003). In both 

matches, we insisted on an exact match on clinical stage or stage missing. This can be 

implemented with infinite distances, but in fact it is more efficient in time and space to 

divide the matching problem into five separate problems, one for each level of stage. The 

distance λ1ij was calculated as the Mahalanobis distances (Rubin 1979) for the variables in 

the top of Table 1, and λ2ij was calculated as the Mahalanobis distances for all the variables 

in Tables 1, with certain penalties added. Specifically, a penalty of 106 was added to λ2ij if 

αi and γj differed on the binary indicator of adequate surgery; this ensured that in the 

treatment match, c = 2, patients were exactly matched for adequate surgery. In addition, 

penalties of 103 were added to λcij if αi and γj differed on propensity score c by more than 

one fifth of a standard deviation of the propensity score c, c = 1, 2, and a penalty of 103 was 

added if αi and γj differed on the binary indicator for comorbidity.

This use of penalties is standard in optimization: it replaces a constraint by a change in the 

objective function. With a sufficiently large penalty, if the constraint can be respected, it will 

be, and if the constraint cannot be respected in every case, it will be respected as often as 

possible. In Table 1, in the match at diagnosis, the comorbidity constraint was respected in 

796/806 = 98.8% of pairs. In the match at treatment, there are 805/806 = 99.9% pairs 

matched for comorbidity.

3.4 Choice of Distance

In tapered matching, two or more definitions of ‘distance,’ say λ1ij and λ2ij, are added 

together in λ (Ω). These different distances need to be such that they can reasonably be 

added together. Use of the Mahalanobis distance, with or without added penalties, is 

attractive in this context. This brief section explains why.

Suppose that the covariates for the I + J individuals {α1, …, αI, γ1, …, γJ} are in a matrix X 
= (X1,X2, …, XC) with I + J rows and L = ℓ1 + … + ℓC columns, where level c = 1 of the 

taper will match on the ℓ1 variables in V1 = X1, level c = 2 of the taper will match on the 

ℓ1+ℓ2 variables in V2 = (X1,X2), and generally, level c of the taper will match on the ℓ1 + … 

+ ℓc variables in Vc = (X1,X2, …, Xc), for c = 1, …, C. Here, row i of Vc, say vci, describes 

αi, i = 1, …, I, while row I + j of Vc, say vc,I+j, describes γj, j = 1, …, J and each is of 

dimension ℓ1 + … + ℓc. Suppose that λcij is the sample Mahalanobis distance between αi and 

γj computed from Vc = (X1, X2, …, Xc), that is, , 

where  is the sample covariance matrix computed from Vc. The Mahalanobis distances 

are invariant under affine transformations of the data matrix. In particular, if Gram-Schmidt 

orthogonalization (Rao 1973, §1b.2ix) were applied to the columns of X = (X1, X2, …, XC), 

and the resulting columns were standardized to mean zero and unit variance, and the 

Mahalanobis distances, the λcij’s, were recomputed from these uncorrelated, standardized 

variables, then all C × I × J distances λcij would be unchanged. In other words, without loss 

of generality, one may view all C × I × J Mahalanobis distances λcij as having been 

computed from uncorrelated variables with sample mean zero and sample standard deviation 

one. For such variables, the Mahalanobis distance λcij is the sum of ℓ1 + … + ℓc squared 
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differences in the variables describing αi and γj. In other words, in the criterion λ (Ω), a 

difference of one standard deviation in one of these standardized variables contributes a 

value of one no matter where it occurs. The first variable in Table 1 is age. If the standard 

deviation of age in this Medicare population were five years, and if αi were 70 and γj were 

75 then αi and γj would differ by one standard deviation. Speaking informally, the two 

Mahalanobis distances count this five year difference in age between αi and γj as equally 

serious for the match at diagnosis and the match at treatment, even though there are more 

variables in the match at treatment, so the distances tend to be larger in total at treatment. 

Recall that Gram-Schmidt orthogonalization makes the columns of X orthogonal by, 

essentially, finding the residuals when column k of X is regressed on columns 1, …, k − 1, 

for k = 2, …, L. Speaking somewhat more formally, the Mahalanobis distance between αi 

and γj at treatment, namely λ2ij, equals the Mahalanobis distance between αi and γj at 

diagnosis, namely λ1ij, plus the Mahalanobis distance between αi and γj on the residuals of 

the treatment variables after regression on the diagnostic variables. In consequence, the 

difference between αi and γj on the diagnostic variables in Table 1 counts the same, namely 

λ1ij, at both levels of the taper, but there is an additional contribution from the treatment 

variables, so λ2ij ≥ λ1ij. In words, the Mahalanobis distance does not regard mismatches of a 

certain magnitude on the diagnostic variables to be more or less important when matching 

also on the surgical variables, and this is appropriate if both groups are to be well-matched 

in Table 1. Similar considerations apply to the large penalties, whether they are added 

because of violations of the propensity score caliper or because of mismatches on a specific 

variable such as comorbidity.
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Table 1

Matching Variables for All Blacks, Two Nonoverlapping Matched Comparison Groups of Whites, and All 

Whites. Numbers are percents, except as noted.

Matching Variables
at Diagnosis

Black Matched Whites
at Diagnosis

Matched Whites
at Treatment

All Whites

n 806 806 806 13,756

Age (mean) 75 75 75 75

Stage 1 46 46 46 69

Stage 2 12 12 12 8

Stage 3 11 11 11 8

Stage 4 16 16 16 8

Stage Missing 14 14 14 7

Total % 100 100 100 100

Grade 1 14 14 14 32

Grade 2 21 21 22 33

Grade 3 or 4 38 38 37 24

Grade Missing 27 27 27 11

Total % 100 100 100 100

Adenocarcinoma 41 41 43 59

Endometroid 19 19 19 25

Papillary 23 23 22 10

Unknown 17 17 16 6

Total % 100 100 100 100

Diagnosis Year (mean) 1995 1995 1995 1995

Comorbidity % 43 42 43 26

Matching Variables
at Treatment

Black Matched Whites
at Diagnosis

Matched Whites
at Treatment

All Whites

Inadequate or No Surgery 35 18 35 14

Adequate Surgery (AS) 65 82 65 86

Total % 100 100 100 100

AS by GO Surgeon 28 28 28 24

AS by GYN Surgeon 25 43 26 50

AS by Other Surgeon 12 11 12 12

Inadequate or No Surgery 35 18 35 14

Total % 100 100 100 100

<= 50 Days to AS 47 68 49 71

> 50 Days to AS 18 13 17 15

Inadequate or No Surgery 35 18 35 14
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Total % 100 100 100 100
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