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ABSTRACT. Informative dropout can lead to bias in statistical analyses if not handled appropriately.
The objective of this simulation study was to investigate the performance of nonlinear mixed effects
models with regard to bias and precision, with and without handling informative dropout. An efficacy
variable and dropout depending on that efficacy variable were simulated and model parameters were
reestimated, with or without including a dropout model. The Laplace and FOCE-I estimation methods in
NONMEM 7, and the stochastic simulations and estimations (SSE) functionality in PsN, were used in the
analysis. For the base scenario, bias was low, less than 5% for all fixed effects parameters, when a
dropout model was used in the estimations. When a dropout model was not included, bias increased up to
8% for the Laplace method and up to 21% if the FOCE-I estimation method was applied. The bias
increased with decreasing number of observations per subject, increasing placebo effect and increasing
dropout rate, but was relatively unaffected by the number of subjects in the study. This study illustrates
that ignoring informative dropout can lead to biased parameters in nonlinear mixed effects modeling, but
even in cases with few observations or high dropout rate, the bias is relatively low and only translates into
small effects on predictions of the underlying effect variable. A dropout model is, however, crucial in the
presence of informative dropout in order to make realistic simulations of trial outcomes.
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INTRODUCTION

In longitudinal studies, it is common that patients
withdraw, or drop out, of the study and no further data is
collected from that individual. This missing data is a
complicating factor in the analysis of the studies, and could
have consequences for the interpretation of the results (1).
Dropout has in the statistical literature been classified as
missing completely at random (MCAR), when the dropout
does not depend on observed or unobserved values of the
dependent variable, missing at random (MAR) when the
dropout is dependent on the observed, but not the unob-
served, value of the dependent variable, and missing not at
random (MNAR) when the dropout is dependent on
unobserved measurements (2–5). Dropout can also be
described as ignorable, when the interpretation of the study
endpoint is valid even if the dropout is ignored, or
nonignorable, when the dropout needs to be taken into
account to make valid inference of the drug effects (4).
Dropout that is MNAR is nonignorable (3) and can also be
referred to as informative dropout (6).

In a dropout analysis, the time of dropout is typically
modeled. If a patient has not dropped out at the end of the
study period, the dropout in that patient is said to be right-
censored, i.e., the time of dropout is greater than the time of
the last observation. If a patient drops out between two
observations, but the exact time is not known, the dropout
time is said to be interval-censored, i.e., occurring any time
between two time points.

Missing observations could potentially complicate nonlin-
earmixed effects modeling. As long as the dropout is at random,
it only leads to lower precision because of the reduced
information due to the missing observations. However, when
the dropout is not at random, it has been suggested that it could
lead to biased parameter estimates in nonlinear mixed effects
models (7–9). Informative dropout, if not handled appropriately,
can also lead to unrealistic simulations, for example, when
performing clinical trial simulations, or visual predictive checks
(VPC) (6,7,9–11). If informative dropout is ignored in the
simulations, the simulated data will include records that would
not be present if dropout is accounted for, leading to a
discrepancy between simulated and observed data. For exam-
ple, in a pain trial, simulated without a dropout model, the
model may simulate patients that have high pain intensity for a
long time, but in reality, these patients would drop out due to
lack of efficacy. In order to make realistic simulations in
the presence of informative dropout, patients simulated
with high pain intensity will need to have a higher
probability of dropping out.
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There are many different reasons why patients drop out
of clinical trials, e.g., due to adverse events or lack of efficacy
(1). This simulation study deals only with dropout due to lack
of efficacy of the treatment. When the dropout is influenced
by the dependent variable, the fact that a subject has or has
not dropped out provides some information about the
dependent variable. By modeling such informative dropout
together with the dependent variable, potential bias may be
avoided and imprecision in the parameter estimates could
potentially be decreased.

The objectives of this simulation study were to assess the
performance of nonlinear mixed effects models with and
without taking informative dropout into account and to
investigate the influence of sample size, number of assess-
ments, size of the placebo effect and magnitude of dropout on
bias and imprecision in parameter estimates, as well as the
effect on the underlying efficacy variable. In addition, the
effect of dropout that is completely at random, as well as the
effect of ignoring informative dropout, on simulations is
exemplified by VPCs.

MATERIALS AND METHODS

In this study, simulations of a hypothetical efficacy
variable were performed. The model used for the simulations
was adapted from a published model on the effect on pain
intensity and dropout in dental pain (11). Study dropout, that
was dependent on the efficacy variable, was also simulated.
The simulated studies were reestimated with and without
dropout models, and with different estimation methods, in
order to assess bias and imprecision in the parameter
estimates and the influence on the underlying efficacy
variable. Different design aspects and certain parameters of
the simulation model were also altered to investigate their
impact on the bias and imprecision.

Simulation Model

The simulation model consisted of a pharmacokinetic (PK)
model, a placebo effect model, a drug effect model, and a dropout
model. The parameters for the base model are presented in
Table I, and the concentrations, efficacy endpoint, and probability
of remaining in the study over time for a typical individual in the
base scenario (scenario 1) are presented in Fig. 1.

An exponential model was used to describe the placebo
effects, including the natural progression of pain in the
absence of active treatment, according to:

Eplacebo ¼ PLmax⋅ 1−e−kpl�time� �

where PLmax is the maximum placebo effect (restricted to a
maximum of 1) and kpl is describing the rate constant for
placebo effect development.

The inhibitory effect of the drug (Edrug) was described by
an Emax model, where it was assumed that full effect (Edrug=1,
no pain) can be achieved:

Edrug ¼ C
EC50 þ C

where C is the drug concentration and EC50 is the concen-
tration resulting in 50% reduction in the effect variable. The

drug concentration was modeled as a one-compartment
model with the PK parameters clearance (CL) and volume
of distribution (V). The drug effect model was combined with
the placebo model to describe the effect variable according
to:

Effect ¼ BL⋅ 1−Eplacebo
� �

⋅ 1−Edrug
� �

where BL is the effect variable at baseline.
Interindividual variability was log-normally distributed

for BL, kpl, EC50, CL, and V. For PLmax, the interindividual
variability was additive, allowing for the placebo effect to be
either positive or negative in relation to baseline. An additive
model was also used to describe the residual unexplained
variability in the effect.

The probability of remaining in the study at time t, S(t),
was described by a survival function,

S tð Þ ¼ exp −
Z

0

t

h tð Þdt
0
@

1
A

where h(t) is the hazard function, modeled as

h tð Þ ¼ h0⋅eheEffect tð Þ

where h0 is the background hazard and he describes the
relationship between the hazard and the effect score at time t
(Effect(t)). As the hazard is dependent on the unobserved
efficacy variable, the mechanism of dropout is not at random.
No other reasons for dropout were included in the model. For
interval-censored dropout, the probability of dropping out
during an interval equals the difference between the proba-
bility of remaining in the study at the beginning of the
interval and the probability of remaining in the study at the
end of the interval.

As a comparison, simulations were also performed where
the mechanism of dropout was completely at random (a
constant hazard of 0.065 h−1, giving approximately 40%
dropout), or at random, where the hazard was dependent
on the previous observation of the efficacy variable (the
dependent value simulated with residual error) rather than
the underlying predictions.

Study Design

Fourteen different scenarios were constructed to inves-
tigate different study designs or model properties. The
different simulated scenarios consisted of changes in number
of patients per dose group (scenarios 2–4), size of the placebo
effect, PLmax, (scenarios 5–7), number of observations per
patient (scenarios 8–10), and extent of efficacy-dependent
dropout (different he, scenarios 12–14). The different scenar-
ios are presented in Table II.

All scenarios consisted of four groups, treated either with
active drug, in a 1:2:4 relation between the three dose levels,
or placebo. In this simulation study, the drug was adminis-
tered as a constant infusion over the study duration, 8 h. The
base study design included 45 patients per group, and the
effect variable was simulated at baseline and at every hour
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after start of treatment until end of the study. In all scenarios,
simulated dropout was allowed to be recorded in the
simulated dataset at their actual time of dropout, i.e., also at
times when there was no observation of the effect variable.
Dropout can only be simulated at prespecified times in the
NONMEM dataset, and therefore data records for potential
dropout were added at every 5 min. In order to explore the
potential benefit of knowing the actual time of dropout,
compared to only knowing if a subject has dropped out
between two visits (interval censoring), scenarios 1, 8, 9, and
10 (i.e., the base model with different observation interval)
were also simulated without recording the exact time of
dropout.

Stochastic Simulation and Reestimation

Stochastic simulations and estimations (SSE) were
performed using NONMEM 7.2 (ICON Development
Solutions, Ellicott City, MD) (12) and PsN version 3.4.2
(13). The F_FLAG option in NONMEM was used to
simultaneously model the continuous effect data and the
likelihood of the categorical dropout data. For each
scenario, 1,000 replicate studies were simulated and each
of the simulated studies was analyzed using two different
models; the same model as was used for the simulations,
i.e., including estimation of the dropout, and the simula-
tion model but ignoring the part of the model describing
dropout. When a dropout model was included, the
estimation was done with the Laplacian method, whereas
both the Laplacian method and the FOCE with interac-
tion (FOCE-I) were used when the analysis was done with

a model not including dropout. The bias, expressed as the
difference between the means of the estimated and true
parameters divided by the true parameter according to

Bias ¼ 100%⋅
1
N

⋅
X

i

Esti−Truei
True

and imprecision, expressed as the relative root mean squared
error in the parameter estimates, according to

RMSE ¼ 100%�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

⋅
X

i

Esti−Trueið Þ2
True2i

vuut

were calculated by PsN for all estimation models and
methods. In the estimation models, the simulated PK
parameters were fixed for each individual.

In the simulations where the actual time of dropout
was not recorded, models using interval censoring were
used to analyze the data. The probability of dropping out
during an interval was equal to the probability of
remaining in the study in the beginning of the interval,
minus the probability of remaining in the study at the end
of the interval.

Visual Predictive Checks

To illustrate the need for using adropoutmodel in simulations,
VPCs were created in NONMEM using PsN, Xpose (14), and R.
An arbitrarily simulated dataset, simulated from the base model,

Table I. Parameter values used in the simulation of the base scenario (scenario 1)

Parameter Typical value Interindividual variability (%)a Explanation

BL 50 30 Efficacy variable at baseline
PLmax (%) 20 120 Maximum placebo effect
kpl (h

−1) 0.25 44 Rate constant for onset of placebo effect
EC50 (units/L) 20 122 Concentration leading to 50% of maximum efficacy
CL (L/h) 10 30 Clearance
V (L) 10 30 Volume of distribution
h0 (h

−1) 0.01 - Baseline hazard
he 0.05 - Parameter for relationship between hazard and

effect variable
σ (effect units) 7.5 - Additive residual variability

a Interindividual variability expressed as coefficient of variation
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Fig. 1. Drug concentrations, effect variable, and probability of remaining in the study for a typical
individual based on the true model parameters from the base model. Blue=placebo, black=low dose,
red=medium dose, green=high dose
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served as the observations. Subjects that were simulated to dropout
only had “observations” up to the time of dropout. VPCs were
created by simulating both with and without a dropout model. The
true parameters were used in the simulations. In addition, an
arbitrarily simulated dataset with 40% dropout completely at
random (a constant hazard of 0.065 h−1), instead of the informative
dropout used in the other simulations, was used to create a VPC.
The simulations for this VPC were created without the use of any
dropout model.

RESULTS

When dropout was accounted for, i.e., when the simulat-
ed data were analyzed with the same model as used for the
simulation, bias was less than 5% in all fixed effects
parameters in scenario 1 (base model and base study
design; Fig. 2). The bias was larger when data were
analyzed without including a dropout model, although the
bias was still less than 8% in the fixed effects when using

Table II. Parameters and design variables varied in the different simulation scenarios. For each scenario, the gray cells gives the value of the
variable that was changed compared to the base scenario (scenario 1)

Scenario N per group PLmax
a

(%)

Observation 

interval (h)

Observations

per patient 

he
b

Dropout
c 

(%)

1 (Base) 45 20 1 9 0.05 22-52

2 15 20 1 9 0.05 22-52

3 25 20 1 9 0.05 22-52

4 65 20 1 9 0.05 22-52

5 45 10 1 9 0.05 23-57

6 45 40 1 9 0.05 20-43

7 45 80 1 9 0.05 16-30

8 45 20 0.5 17 0.05 22-52

9 45 20 2 5 0.05 22-52

10 45 20 4 3 0.05 22-52

11 45 20 1 9 0 0

12 45 20 1 9 0.025 13-22

13 45 20 1 9 0.06 27-68

14 45 20 1 9 0.07 34-83

aMaximum placebo effect
b Parameter relating the hazard to the effect variable. A high value represents a larger probability of dropout
cThe range of probability of dropout for a typical individual between treatment groups, where the lower number represents the highest dose
and the highest number represents placebo
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the Laplacian method. When dropout was not accounted
for and the FOCE-I method was used in the estimation,
the bias was more pronounced. In this situation, bias was
21% in EC50 for scenario 1. For the random effect
parameters, bias was up to 22% in scenario 1 regardless
of estimation model or method. Bias in the interindividual
variability was higher when a dropout model was not used
for the following parameters and estimation methods: rate
constant for placebo when the Laplace method was used
(8.1 vs. 4.5 and 4.9% for the model including dropout and
the model ignoring dropout using FOCE-I, respectively),
and EC50 when FOCE-I was used (14.8 vs. 8.9 and 8.8%
for the model including dropout and the model ignoring
dropout using Laplace, respectively). For all other estima-
tion models and methods, bias in random effect parame-
ters was rather similar (Fig. 2). When the effect variable
was simulated without any dropout at all (scenario 11),
bias was less than 1% in all fixed effects parameters
except PLmax (8.9%) when the Laplace method was used,
and less than 2% in all fixed effects parameters except
EC50 (−7.8%) when FOCE-I was used.

For scenario 1, the bias did not, however, result in any
major difference in the predictions of effect variable at any
time point (Fig. 3, top row). A correlation between the
estimated placebo effect parameters was apparent, and the
bias in the rate constant of onset of placebo effect was
balanced by the bias in the maximum placebo effect, leading
to very similar simulated effect profiles over time as for
simulations with unbiased parameter estimates. Bias in the
baseline value of the effect variable was low in all scenarios
and with all different estimation models.

As expected, the bias in EC50 increased with increasing
dropout rate, increasing placebo effect, and decreasing
number of observations per subject (Fig. 4). The increase in

bias was larger when dropout was ignored, and it was also
larger when the FOCE-I method was used compared to the
Laplacian method. The largest bias in EC50, 50% for the
FOCE-I method, was found when the observation interval
was long, with only two post dose assessments of efficacy
during the 8-h study period. The impact on the underlying
effect variable when only two post dose assessments were
used is shown in the middle row of Fig. 3, and the impact
when the dropout rate was on average 57% is shown in the
bottom row of Fig. 3. Bias in EC50 was relatively unaffected
by number of patients per treatment group, although there
was a trend toward higher bias with lower number of subjects
per group, especially when the FOCE-I method was used
(Fig. 4d).

When simulations were performed without recording the
exact time of dropout (interval censoring), bias was, as
expected, higher than when the exact time of dropout was
recorded. This was especially evident when there were few
measurements of the effect variable. When there were only
three measurements of the effect variable, bias in EC50 was
almost five times higher for interval censoring, compared to
when the exact time of dropout was known.

An increased imprecision was seen with increasing
dropout rate, increasing placebo effect and decreasing
number of observations per subject (Fig. 5). In contrast to
the bias, imprecision increased with decreasing number of
patients per treatment group. The lowest imprecision was
seen when a dropout model was used, although the impreci-
sion was almost as low without a dropout model as long as the
Laplacian method was applied. The highest imprecision was
seen when the FOCE-I method was used and no dropout
model was included (Fig. 6).

The mechanism of dropout in the above mentioned
simulations is MNAR. As a comparison, simulations were
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made where the dropout was either MCAR or MAR
(dependent on the observed effect variable at the time of
the last observation). In the simulations where the dropout
was at random, the bias was similar to that found after the
base simulations (Fig. 7). Due to dense sampling and a
relatively low residual variability the MNAR and MAR
mechanisms were relatively similar. For the simulations with
dropout completely at random, bias was in general less than
for the base model (Fig. 7). The MCAR scenario for efficacy
modeling in our work can be viewed as dropout due to
toxicity under the assumption that toxicity is unrelated to
efficacy.

The VPCs created when not simulating with a
dropout model showed clear differences between the
“observed” and simulated medians and percentiles (Fig.
8a). This was most apparent for the placebo group, where
the reduction in the effect variable was small and dropout
was high, and the “observed” median was lower than the
simulated median. For the active treatment groups, it was
apparent that the simulated 97.5th percentile was high,
while in the “observed” data, most patients with a high
effect variable had dropped out. When including a
dropout model in the VPC simulations, the resulting
VPCs showed a good fit and agreement between

“observed” and simulated medians and percentiles (Fig.
8b). This clearly shows that a dropout model is necessary
in order to produce realistic simulations in the presence of
informative dropout. When the dropout was completely at
random, however, a dropout model was not needed in
order to produce realistic VPCs (Fig. 8c).

DISCUSSION

This work shows that ignoring informative dropout
can lead to biased parameter estimates in nonlinear mixed
effects modeling. This has previously been suggested by
others, based on what is known from linear mixed effects
models, but the size or importance of the bias has not
been investigated (7–9). The size of the bias, however,
does not necessarily need to be large, suggesting that
simultaneous modeling of dropout and the variable of
interest is not always necessary in nonlinear mixed effects
modeling. With increasing dropout rate, the information
provided by the dropout data was larger, not only because
there was more dropout, but also because the number of
observations of the effect variable decreased, leading to
more information from dropout in relation to the infor-
mation provided from effect measurements. The increase
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in bias with decreasing number of observations per patient
was more prominent when a dropout model was not used.
As a dropout event may provide information about the
efficacy variable between the observations, this informa-
tion becomes more important the fewer the observations.
Naturally, as there is less data available when dropout
increases, the imprecision in the parameter estimates also
becomes higher. When the magnitude of the placebo
effect was increased, bias in EC50 also increased, even
though the dropout rate decreased with increased placebo
effect. This may be due to that when the drug effect
becomes small in relation to the placebo effect, it also
becomes more difficult to quantify. The need for simulta-
neous modeling of the effect variable and informative
dropout is hence dependent on the information content
remaining in the effect variable data. In many nonlinear
mixed effects analyses, it will be sufficient to develop the
dropout model separately from the effect variable.

The effect of changing the number of subjects was more
pronounced on the imprecision than on the bias in EC50.
This is because decreasing the number of patients does
not change the structure of the captured data, but rather
change the amount of information, and hence a reduced
number of patients increase the imprecision. The bias in
the efficacy variable at baseline was small in all scenarios.
This is not surprising, as the baseline observations were

included in all estimations, and the dropout occurred after
the baseline visit.

This simulation study was based on a model from a
short-duration study design, but the results could potentially
be extended to a long-term trial. The constant infusion
regimen used in the simulations could be compared to a slow
increase to steady-state concentrations after multiple dosing
or the slow onset of drug action. In the current study, dropout
was recorded at the actual time of dropout. This is generally
the case in, for example, acute pain trials, during which the
request of rescue medication is the main cause of dropout and
the time of rescue medication is typically recorded. In other
studies, the exact time of dropout may not be recorded, but
rather it is noted that a patient has dropped out between two
predefined visits. This interval censoring did in this work lead
to less information in the dropout, and a smaller difference in
bias between a model that accounts for the dropout and one
that does not. In this study, the reason for the dropout was
only lack of efficacy, but in reality, a mix of different reasons
for dropout, e.g., adverse events and reasons completely at
random, may be present.

The simulated data was analyzed using the same
models as were used for the simulations, with or without
including a dropout model. In some of the simulated
studies, other models such as a linear concentration-effect
relationship instead of an Emax model might have been
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more appropriate based on goodness of fit criteria (e.g.,
objective function value or diagnostic graphics). It is
possible that all parameters would not have been identi-
fiable in all scenarios, which might have affected the bias
and imprecision. The choice of dropout model could also
possibly influence the bias and imprecision in the param-
eter estimates. Time to event models can have problems
with stability if they get more complex, and other methods
to model dropout are available, e.g., logistic regression.
This method has, however, been shown to introduce more
bias than when a time to event model is used, possibly
because it assumes that the hazard for dropout is constant
between observations.

When a dropout model is used, NONMEM requires
the use of the Laplace method, as the dropout is of
categorical type data. When a dropout model is not used,
the FOCE-I method can be applied on effect variables of
continuous type data, but our results indicate that the bias
is lower if the Laplace method is used despite not
including a dropout model. Typically, the Laplace method
is not used for analysis of continuous data, but our results
suggest that in the case of informative dropout, the
Laplace method could lead to less bias and higher
precision than using the FOCE-I method.

In the simulations, the dropout mechanism was not at
random, as the hazard was dependent on the unobserved,
predicted effect variable. However, as the measurements
of efficacy was frequent, the dropout was similar to that
simulated at random, where the hazard was dependent on
the last observation of the effect variable, and the bias
was similar between the two dropout mechanisms. When
the dropout was completely at random, or the dropout
was related to other drug effects than those measured,
bias was in general lower. The comparison between the
different mechanisms of dropout is complicated by the
fact that the proportion of patients dropping out is not

exactly the same, and the distribution of dropout in the
different treatment groups is different for the different
mechanisms.

Although there was bias in the parameters when
dropout was not accounted for in the estimation, the bias
was in general not very high. Simulations of the efficacy
variable were also in many cases not very different between
biased and unbiased parameters, and decisions based on the
model would in most cases not be different. It is possible,
however, that with a different study design and other
properties of the measured variable, nonrandom dropout
can be of greater importance. In this case, the true model
was always used for the estimations, but in case of sparse or
complex data, and a high degree of missing data, it may not
be possible to identify the true model, leading to more bias
or an erroneous model structure. Even though the bias may
be small, and the effect on the underlying efficacy time
course may be limited, informative dropout will still affect
simulations and goodness of fit plots like VPC, making it
difficult to select a good model without adequate handling
of the dropout (6,7,9–11). In order to simulate realistic
studies, e.g., for clinical trial simulation purposes, a model
describing the dropout is needed. VPC in the presence of
nonrandom dropout also require special consideration in
study designs allowing dose adjustments, as the simulations
require assumptions of what the dosing regimen would have
been if dropout had not occurred (9). The VPC presented
used simulated “observations,” and therefore the presented
figures are just one representation of how the VPC may
appear. Another simulation, given the same set of param-
eters, would have given other “observations,” but the
general trends of overpredicting the efficacy variable at late
time points could on average be expected as similar. The
VPC shown should therefore be seen as an illustration
rather than a quantitative assessment of the importance of
simulating informative dropout.
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Fig. 7. Bias in the parameter estimates for scenario 1, when simulations were performed with dropout not
at random (base model), at random, or completely at random. The estimations were performed using the
FOCE-I method
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CONCLUSIONS

Ignoring informative dropout leads to biased parameter
estimates in nonlinear mixed effects modeling, although the
bias may be small and may not affect the predictions of the
efficacy variable. A dropout model is, however, important in
order to make realistic simulations. The bias increased with
increasing dropout rate, increasing placebo effect and de-
creasing number of observations per subject. Knowing the
exact time of dropout decreased the bias compared to
interval-censored data. Using FOCE-I can lead to larger bias
than if the Laplace method is used for models ignoring
informative dropout.
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