

NIH Public Access

Author Manuscript

Pharmacogenet Genomics. Author manuscript; available in PMC 2015 January 08.

Published in final edited form as:

Pharmacogenet Genomics. 2013 August ; 23(8): 395-402. doi:10.1097/FPC.0b013e328362f9f2.

Rare SERINC2 variants are specific for alcohol dependence in subjects of European descent

Lingjun Zuo^{1,*}, Ke-Sheng Wang², Xiang-Yang Zhang³, Chiang-Shan R. Li¹, Fengyu Zhang⁴, Xiaoping Wang⁵, Wenan Chen⁶, Guimin Gao⁶, Heping Zhang⁷, John H. Krystal^{1,8,9}, and Xingguang Luo^{1,*}

¹Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA

²Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA

³Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA

⁴Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA

⁵Department of Neurology, First People's Hospital, Shanghai Jiaotong University, Shanghai, China

⁶Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA

⁷Department of Biostatistics, Yale University School of Epidemiology and Public Health, New Haven, CT, USA

⁸Psychiatry Services, Yale-New Haven Hospital, New Haven, CT

⁹VA Alcohol Research Center, VA Connecticut Healthcare System, West Haven, CT

Abstract

Objectives—We previously reported a top-ranked risk gene [i.e., serine incorporator 2 gene (*SERINC2*)] for alcohol dependence in the subjects of European descent by analyzing the common variants in a genome-wide association study. In the present study, we comprehensively examined the rare variants [minor allele frequency (MAF) < 0.05] in the *NKAIN1-SERINC2* region, in order to confirm our previous finding.

Methods—A discovery sample (1,409 European-American cases with alcohol dependence and 1,518 European-American controls) and a replication sample (6,438 European-Australian family subjects with 1,645 alcohol dependent probands) underwent association analysis. A total of 39,903 subjects from 19 other cohorts with 11 different neuropsychiatric and neurological disorders served as contrast groups. The entire *NKAIN1-SERINC2* region was imputed in all cohorts using the same reference panels of genotypes that included rare variants from the whole-genome

^{*}Corresponding authors and reprints: Xingguang Luo, PhD and Lingjun Zuo, PhD; Yale University School of Medicine; West Haven, CT 06516. Xingguang.Luo@yale.edu and Lingjun.Zuo@yale.edu; Tel: 203-932-5711 ext 5745; Fax: 203-937-4741. Conflict of Interest: None.

sequencing data. We stringently cleaned the phenotype and genotype data, and obtained a total of about 220 SNPs in the subjects with European descent and about 450 SNPs in the subjects with African descent with 0 < MAF < 0.05 for association analysis.

Results—Using a weighted regression analysis implemented in the program SCORE-Seq, we found a rare variant constellation across the entire *NKAIN1-SERINC2* region that was associated with alcohol dependence in European-Americans (Fp: overall p= 1.8×10^{-4} ; VT: overall p= 1.4×10^{-4} ; Collapsing p= 6.5×10^{-5}) and European-Australians (Fp: overall p=0.028; Collapsing p=0.025), but not African-Americans, and not associated with any other disorder examined. Association signals in this region came mainly from *SERINC2*, a gene that codes for an activity-regulated protein expressed in brain that incorporates serine into lipids. Additionally, 26 individual rare variants were nominally associated with alcohol dependence in European-Americans (p<0.05). The associations of 5 of these rare variants that lay within *SERINC2* exhibited region-wide significance (p< α =0.0006); and 25 associations survived correction for false discovery rate (q<0.05). The associations of 2 rare variants at *SERINC2* were replicated in European-Australians (p<0.05).

Conclusion—We concluded that *SERINC2* was a replicable and significant risk gene specific for alcohol dependence in the subjects of European descent.

Keywords

SERINC2; alcohol dependence; rare variant constellations; European descent; association

Introduction

Individuals with alcohol dependence continue to use alcohol despite adverse consequences in health, job and family functions. Several lines of evidence demonstrated a substantial genetic component in the risk of developing alcohol dependence. Siblings of alcoholic probands had a 3–8 fold increase in the risk of developing alcohol dependence [1]. The heritability of risk for alcohol dependence was estimated to be ~39% by studies of the adopted-away offspring of affected and unaffected parents [2] and as high as 60% by twin studies [3]. These studies provided evidence that genetic factors constitute a significant cause of alcohol dependence.

Recently, a gene at 6q21, i.e., Na+/K+ transporting ATPase interacting 2 gene (*NKAIN2*) (alias: *TCBA1*), was found to have replicable associations with alcohol dependence in both the COGA family-based Caucasian ($p<10^{-3}$) and European-Australian samples ($p=5.1\times10^{-7}$) [4]. This gene is highly conserved among species, transcribed in different splice variants, specific to the central nervous system [5], and critical for neuronal functions [6]. It has also been associated with neuroticism in a genome-wide associations study (GWAS) [7], a complex neurological phenotype [5], and a developmental delay with recurrent infections [8]. This gene encodes a member protein, i.e., NKAIN2, of a mammalian protein family that contains four members, i.e., NKAIN3 1–4, with similar conservation, distributions and functions. All four proteins interact with the beta subunit of Na,K-ATPase (ATP1B1) that belongs to the family of Na+/K+ and H+/K+ ATPases beta chain proteins, and to the subfamily of Na+/K+ -ATPases. Na+/K+ -ATPase is an integral

membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These electrochemical gradients are essential for osmoregulation, sodium-coupled transport of a variety of organic and inorganic molecules, and electrical excitability of nerve and muscle.

Interestingly, the *NKAIN1* gene at 1p35.2, which encodes the member protein NKAIN1 from the same family as NKAIN2, is closely located to the serine incorporator 2 gene (*SERINC2*) that was a top-ranked risk gene ($p=2.3 \times 10^{-7}$) for alcohol dependence reported by one of our recent GWASs [9]. In the present study, we comprehensively examined the rare variants [minor allele frequency (MAF) < 0.05] in the *NKAIN1-SERINC2* region, in order to confirm our previous GWAS finding that was based on common variant analysis (MAF > 0.05).

The variants with low allele frequencies are proposed to be the key for "missing" heritability. An increasing number of human diseases have been found to be caused by a constellation of multiple rare, regionally concentrated, variants. Some association signals credited to common variants may be synthetic associations resulting from the contributions of multiple rare variants within a genomic region [10]. In these cases, the synthetic effects of region-wide rare variant constellations may be more significant than individual rare variants. In this study, based on our prior work, we comprehensively examined the associations between rare *NKAIN1-SERINC2* variants [MAF < 0.05] and alcohol dependence in a European-American discovery cohort and a European-Australian replication cohort.

It has been reported that alcohol dependence has a high rate of comorbidity with numerous neuropsychiatric conditions including anxiety disorders, major depression, bipolar disorders, schizophrenia and PTSD [11–13]. It has also been reported that many genes have pleiotropic effects on alcohol dependence and other neuropsychiatric conditions; e.g., the autism susceptibility candidate gene 2 (*AUTS2*) was reported to be a risk gene for autism [14], alcohol consumption (by a GWAS) [15], mental retardation [16] and heroin dependence [17]. It is known that alcohol dependence and these other neuropsychiatric conditions shared etiologies that implicate monoaminergic, cholinergic, GABAergic and glutamatergic, neurotransmission. *NKAIN1-SERINC2* region might be related to these neurotransmission systems [18]. Thus, in this study, we also examined the associations between the *NKAIN1-SERINC2* variants and several other neuropsychiatric and neurological disorders available from the dbGaP database, in order to examine if the *NKAIN1-SERINC2* variants are specific to alcohol dependence.

Materials and Methods

Subjects

The discovery cohort included 1,409 European-American cases with alcohol dependence (DSM-IV) (38.3 ± 10.2 years) and 1,518 European-American controls (38.4 ± 10.4 years). The replication cohort included 2,252 European-Australian small nuclear families with 2 generations. These families had a total of 6,438 subjects including 4,342 founders and 2,096 nonfounders; the latter included 1,645 alcohol dependent probands. The average family size

was 2.97 subjects. These families included 3,818 sib-pairs, 20 half-sib pairs and 4,192 parent-child pairs.

The discovery cohort came from the merged SAGE and COGA datasets (dbGaP access number: phs000092.v1.p1 and phs000125.v1.p1), and the replication cohort came from the OZ-ALC dataset (dbGaP access number: phs000181.v1.p1). Affected subjects met lifetime DSM-IV criteria for alcohol dependence [19]. The control subjects were defined as individuals who had been exposed to alcohol (and possibly to other drugs), but never met the criteria for alcohol or substance use disorder (lifetime diagnosis). All subjects were interviewed using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) [20]. A total of 39,903 subjects of European or African descent from 19 other dbGaP cohorts with 11 different neuropsychiatric and neurological disorders served as the contrast groups. These different neuropsychiatric and neurological disorders included alcohol dependence (in African-Americans), major depression, bipolar disorder, schizophrenia, autism, attention deficit hyperactivity disorder (ADHD), Alzheimer's disease, amyotrophic lateral sclerosis (ALS), early onset stroke, ischemic stroke, and Parkinson's disease. Diagnoses, ethnicities, study designs, and dataset names for these cohorts are shown in Table 1. More detailed demographic information for these samples including dbGaP accession numbers, genotyping platforms, sample sizes, sex and age structures and mean ages were published previously [21-24]. These 21 cohorts included case-control and family-based samples, genotyped on ILLUMINA (Illumina, Inc., San Diego, CA, USA), AFFYMETRIX (Affymetrix, Inc., Santa Clara, CA, USA) or PERLEGEN (Perlegen Sciences, Inc., Mountain View, CA, USA) microarray platforms. The discovery sample was genotyped on the Illumina Human 1M and the replication sample was genotyped on Illumina Human CNV370v1.

Imputation

The NKAIN1-SERINC2 region includes NKAIN1, SNRNP40, ZCCHC17, FABP3 and SERINC2. We imputed the missing SNPs across the entire NKAIN1-SERINC2 region from Chr1:31,425,179 to Chr1:31,732,987 using the same reference panels, to render the genetic marker sets highly consistent across different cohorts. The reference CEU panel YRI panels from two databases (i.e., 1,000 genome project and HapMap 3) were adopted in the imputation for the samples of European descent and African descent, respectively. All cohorts were imputed using both programs IMPUTE2 [25] and BEAGLE [26]. We maximized the success rate and accuracy of imputation and minimized the false-positives during imputation. Only the genotypes that were imputed consistently between the two independent reference databases and consistently both by IMPUTE2 and BEAGLE were selected for analysis. The uncertainty rate of inference for missing genotypes was controlled at less than 1%. Furthermore, only the SNPs that had similar minor allele frequencies (with frequency difference < 0.2%) in the healthy controls across different cohorts and HapMap database within the same ethnicity were selected for analysis. With these selection criteria, we were highly confident in the quality of these imputed genotype data. Checking the imputed genotypes in all of our four family-based cohorts, we did not find any one individual (considering all SNPs tested) or any one SNP (considering all individuals tested) with more than 0.1% Mendelian inconsistency.

Data cleaning

We stringently cleaned the phenotype and genotype data within each ethnicity before association analysis. Excluded were subjects with poor genotypic data, subjects with allele discordance, sample relatedness, subjects with a mismatch between self-identified and genetically-inferred ethnicity, and subjects with a missing genotype call rate 2% across all SNPs. Furthermore, we filtered out the monomorphic SNPs and the SNPs with allele discordance, Mendelian errors (in family samples), an overall missing genotype call rate 2%, and MAFs >0.05. We also filtered out the SNPs with missing rate differences > 2% between two samples that had the same phenotype and microarray platform. As a result, a total of ~220 (in the subjects of European descent) and ~450 (in the subjects of African descent) SNPs with 0<MAF<0.05 in either cases or controls were extracted for association analysis. The cleaned sample sizes and SNP numbers of all cohorts are shown in Table 1.

Association tests for region-wide rare variant constellations

We initially tested associations between rare variant constellations and alcohol dependence using a score-type program, SCORE-Seq [27]. The mutation information was aggregated by virtue of a weighted linear combination across all rare variants of the entire NKAIN1-SERINC2 region or across each gene within NKAIN1-SERINC2 region, and then related to alcohol dependence using regression models. Sex, age and the first 10 principal components served as the covariates in the regression models. The principal component scores of our samples were derived from all common autosomal SNPs across the genome using principal component analysis implemented in the software package EIGENSOFT [28]. Each individual received scores on each principal component. These principal components reflected the population structure of our samples, with the first 10 principal component scores accounting for >95% of variance. As covariates in the regression model, these principal components controlled for population stratification and admixture effects on association analysis. The same analytic procedures were applied to the other 10 neuropsychiatric and neurological disorders. For the association analyses on major depression, bipolar disorder, schizophrenia and Alzheimer's disease, "alcohol drinking" was also included as an additional covariate in the regression to control for the potential confounding effects of "alcohol drinking behaviors". This covariate was not assessed in ADHD, autism, ALS, Early Onset Stroke, Ischemic Stroke and Parkinson's disease.

Two tests, Fp and VT, were performed to derive the overall p values. (1) In the <u>Fp</u> tests, the MAF upper bound threshold was <u>fixed</u> at 0.05, but the weight was 1/sqrt(p(1-p)) where <u>p</u> was the estimated MAF with pseudo counts in the pooled sample. (2) In the <u>VT</u> test, the weight was fixed at 1, while the <u>threshold varied</u> between 0 and 0.05. Statistical significance was assessed using a bootstrap procedure with 1 million times of resampling. Finally, these tests were confirmed by another program ARIEL [29] that used a regression-based collapsing approach.

Association tests for individual rare variants (exploratory)

For case-control samples in the discovery cohort, the allele frequencies of each SNP were compared between cases and controls using logistic regression as implemented in PLINK [30]. Diagnosis and alleles each served as the dependent and independent variables, with

sex, age and the first 10 principal components as covariates. For family samples in the replication cohort, we tested the allele-disease associations using the program FBAT [31], assuming an additive genetic model under the null hypothesis of no linkage and association, biallelic mode, minimum number of informative families of 10 for each analysis and offset of zero. The same analytic procedures were applied to the other 10 neuropsychiatric and neurological disorders, with "alcohol drinking", if available, as an additional covariate in the models. Different cohorts were analyzed independently. The MAFs and the minimal p values of the most significant risk SNPs and the numbers of the nominally-significant risk SNPs (p<0.05) in all cohorts are shown in Table 1. Finally, the cumulative Positive Predictive Values (PV⁺) and the cumulative Positive Likelihood Ratios (LR⁺) of the significant (p< α) and independent (r²<0.2) risk alleles across the *NKAIN1-SERINC2* region were calculated using Bayesian formula.

Correction for multiple testing in single-point association tests

The experiment-wide significance levels (α) were corrected for the numbers of effective markers that were calculated by the Bonferroni-type program SNPSpD [32], accounting for linkage disequilibrium (LD). Approximately 80 and 120 effective SNPs captured most of the information content of all rare variants across the entire *NKAIN1-SERINC2* region in the subjects of European and African descent, respectively. Thus, the corrected significance levels (α) for single-point association tests were set at 0.0006 in the subjects of European descent and 0.0004 in the subjects of African descent, respectively. The numbers of the statistically-significant (i.e., p< α) risk SNPs in all cohorts are shown in Table 1. The false discovery rate (q value) for each SNP was estimated from the p values within each disease group using the R package QVALUE [33]. Finally, for those associations replicated in the European-Australian cohort, the α was set at 0.05.

Results

Rare variant constellation across the entire *NKAIN1-SERINC2* region was associated with alcohol dependence in European-Americans (Fp: overall p= 1.8×10^{-4} ; VT: overall p= 1.4×10^{-4} ; Collapsing p= 6.5×10^{-5}) and European-Australians (Fp: overall p=0.028; Collapsing p=0.025), but not African-Americans, and not associated with any other disease examined (Collapsing p>0.05). When the rare variant constellation within each gene region were tested, *SERINC2* variant constellation was significantly associated with alcohol dependence in European-Americans (Fp: p= 2.7×10^{-4} ; VT: p= 1.6×10^{-4} ; Collapsing p=0.030) (corrected α =0.01 for five genes within *NKAIN1-SERINC2*). The other four genes were suggestively (i.e., p close to 0.05) or modestly (0.01) associated with alcohol dependence in European-Americans (Tables 1 and 2).

Single-point association analysis showed that, among a total of 196 individual rare variants in European-Americans, 26 SNPs were nominally associated with alcohol dependence (p<0.05). Twenty-five associations survived correction for false discovery rate (q<0.05) and the associations of 5 *SERINC2* variants survived Bonferroni correction ($p<\alpha=0.0006$) (Table 1). If further corrected by the number of cohorts examined (i.e., n=21), 2 variants (i.e.,

rs35961897 and rs4949405) of these 5 SNPs remained suggestively significant (α =2.9×10⁻⁵). Two independent SNPs, i.e., rs34278290 and rs7417775, can tag these 5 variants (Table 3). The cumulative PV⁺ of these two markers was 0.0791 when we used 3.81% as the one-year prevalence rate of alcohol dependence; it was 0.2366 when we used 12.5% as the lifetime prevalence rate of alcohol dependence. Furthermore, the cumulative LR⁺ of these two markers was 2.169. Two other associations at *SERINC2* were replicable (p<0.05) between European-Americans and European-Australians (Table 4). Among these SNPs, rs7417775 at the 3'-UTR of *SERINC2* had significant *cis*-acting regulatory effects on *SERINC2* mRNA expression (p=0.024; n=45 unrelated HapMap individuals) [34], and was predicted to affect miRNA binding site activity; this SNP was also the most significant risk variant for Alzheimer's disease in one Caucasian sample (Tables 1 and 3). Additionally, rs34278290 at intron 2 of *SERINC2* was located in a transcript factor binding site. Finally, no significant individual rare variant was associated with any other disease including alcohol dependence in African-Americans (p> α), although this African-American cohort had a 66% power to detect the most significant risk variant, i.e., rs35961897.

Furthermore, we did transcriptome-wide mRNA expression correlation analysis in 93 European brain tissues and 80 European Peripheral Blood Mononuclear Cell (PBMC) samples [35]. The expression of *NKAIN1-SERINC2* transcripts was significantly correlated with the expression of numerous alcoholism-related genes, mostly from the dopaminergic, serotoninergic, cholinergic, GABAergic, glutamatergic, histaminergic, endocannabinoid, metabolic, neuropeptide and opoidergic systems [18].

Discussion

Mainly from the association tests for the region-wide rare variant constellations, we drew the conclusion that *SERINC2* was a replicable and significant risk gene specific for alcohol dependence in the subjects of European descent. Results from individual variant analysis supported this conclusion. Rare *SERINC2* variants may contribute a small increase to the risk for alcohol dependence based on their cumulative PV⁺ and LR⁺. Based on these results, we postulate that *SERINC2* may harbor a causal variant(s) for alcohol dependence. Our study provides an additional example to support the hypothesis that region-wide rare variant constellations could have significant synthetic effects on disease phenotypes, even though the effects of individual variants might be not significant. Rare variant constellation analysis is an important tool in genetic association studies.

SERINC2 encodes serine incorporator 2 (Serinc2). Serinc2 is highly expressed in neurons of the hippocampus and cerebral cortex [36]. It is an effector in endoplasmic reticulum membranes that incorporates serine into membranes and facilitates the synthesis of phosphatidylserine and sphingolipids [37]. Phosphatidylserine is specifically distributed in the brain. Consumption of phosphatidylserine supplement has been reported to reduce the risk of dementia and cognitive dysfunction in the elderly [38, 39], and thus has been used to treat memory deficit disorders such as Alzheimer's disease and other forms of dementia, to support cognitive functions during aging, and to remediate cognitive deficits as a result of heavy drinking and cigarette smoking. Also specifically expressed in the brain [37], sphingolipids play a functional role in neural plasticity, signaling and axonal guidance [40–

42]. Activity of the sphingolipid metabolism enzyme, i.e., acid sphingomyelinase (ASM), has been reported to be increased in alcohol-dependent patients [43]. Alcohol consumption can increase sphingosine levels in the rat brains [44]. Additionally, there are numerous functional variants in SERINC2 including rare variants (Table 3), common variants and frameshift variants such as Indels and CNVs (see NCBI dbSNPs). The function of Serinc2 altered by the alleles of these functional SERINC2 variants may be implicated in the synthesis of phosphatidylserine and sphingolipids and thus relevant for the development of alcohol dependence. Alternatively, correlation between the expression of NKAIN1-SERINC2 transcripts and other genes suggested that NKAIN1-SERINC2 may contribute to alcohol dependence via other neurotransmitter or metabolic pathways [18]. For example, the glutaminergic pathway is known to play important roles in alcohol intoxication and withdrawal [45]. Within the hippocampus, Serinc2 expression is increased following seizures induced by kainite, a glutamate agonist [37]. A drug that blocks kainite glutamate receptor function appears to decrease drinking [46]. This evidence supports the glutaminergic pathway hypothesis underlying the connection between Serinc2 and alcohol dependence.

A few limitations need to be considered in the current study. The imputed genotypes were not directly observed from molecular experiments, even though their error rates and uncertainty were extremely low. Future work is warranted to verify these results by directly sequencing the samples. Additionally, because not all neuropsychiatric and neurological disorders comorbid with alcohol dependence were exhaustively examined in the present study, we could not completely exclude the possibility that the other neuropsychiatric and neurological disorders not examined might share this *SERINC2* risk gene with alcohol dependence. Furthermore, "alcohol drinking behaviors" were not assessed in some of the neurological disorders in the present study. Their potential confounding effects on the association analysis of these disorders need to be assessed. Finally, more independent cohorts with alcohol dependence to replicate our findings in the future are warranted too.

ACKNOWLEDGMENTS

We thank for Dr. Malison's helpful comments. This work was supported in part by National Institute on Drug Abuse (NIDA) grants K01 DA029643 and R01DA016750, National Institute on Alcohol Abuse and Alcoholism (NIAAA) grants R01 AA016015 and R21 AA020319 and the National Alliance for Research on Schizophrenia and Depression (NARSAD) Award 17616 (L.Z.). We thank NIH GWAS Data Repository, the Contributing Investigator(s) who contributed the phenotype and genotype data from his/her original study (e.g., Drs. Bierut, Edenberg, Heath, Singleton, Hardy, Foroud, Myers, Gejman, Faraone, Sonuga-Barke, Sullivan, Nurnberger, Devlin, Monaco, etc.), and the primary funding organization that supported the contributing study. Funding and other supports for phenotype and genotype data were provided through the National Institutes of Health (NIH) Genes, Environment and Health Initiative (GEI) (U01HG004422, U01HG004436 and U01HG004438); the GENEVA Coordinating Center (U01HG004446); the NIAAA (U10AA008401, R01AA013320, P60AA011998); the NIDA (R01DA013423); the National Cancer Institute (P01 CA089392); the Division of Neuroscience, the NIA National Institute of Neurological Disorders and Stroke (NINDS); the NINDS Human Genetics Resource Center DNA and Cell Line Repository; the NIH contract "High throughput genotyping for studying the genetic contributions to human disease" (HHSN268200782096C); the Center for Inherited Disease Research (CIDR); a Cooperative Agreement with the Division of Adult and Community Health, Centers for Disease Control and Prevention; the NIH Office of Research on Women's Health (ORWH) (R01NS45012); the Department of Veterans Affairs; the University of Maryland General Clinical Research Center (M01RR165001), the National Center for Research Resources, NIH: the National Institute of Mental Health (R01MH059160, R01MH59565, R01MH59566, R01MH59571, R01MH59586, R01MH59587, R01MH59588, R01MH60870, R01MH60879, R01MH61675, R01MH62873, R01MH081803, R01MH67257, R01MH81800, U01MH46276, U01MH46282, U01MH46289, U01MH46318, U01MH79469, U01MH79470 and R01MH67257); the NIMH Genetics Initiative for Bipolar Disorder; the Genetic Association Information Network (GAIN); the Genetic Consortium for Late Onset

Alzheimer's Disease; the Autism Genome Project, the MARC: Risk Mechanisms in Alcoholism and Comorbidity; the Molecular Genetics of Schizophrenia Collaboration; the Medical Research Council (G0601030) and the Wellcome Trust (075491/Z/04), University of Oxford; the Netherlands Scientific Organization (904-61-090, 904-61-193, 480-04-004, 400-05-717, NWO Genomics, SPI 56-464-1419) the Centre for Neurogenomics and Cognitive Research (CNCR-VU); Netherlands Study of Depression and Anxiety (NESDA) and the Netherlands Twin Register (NTR); and the European Union (EU/WLRT-2001-01254), ZonMW (geestkracht program, 10-000-1002). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the Genetic Consortium for Late Onset Alzheimer's Disease, the GENEVA Coordinating Center (U01 HG004446), and the National Center for Biotechnology Information. Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research, and GlaxoSmithKline, R&D Limited. The datasets used for the analyses described in this manuscript were obtained from dbGaP at http:// www.ncbi.nlm.nih.gov/sites/entrez?Db=gap. The dbGaP accession numbers include phs000125.v1.p1, phs000021.v3.p2, phs000021.v3.p2, phs000167.v1.p1, phs000167.v1.p1, phs000267.v1.p1, phs000016.v2.p2, phs000092.v1.p1, phs000092.v1.p1, phs000181.v1.p1, phs000020.v2.p1, phs000017.v3.p1, phs000017.v3.p1, phs000017.v3.p1, phs000168.v1.p1, phs000219.v1.p1, phs000101.v3.p1, phs000292.v1.p1, phs000292.v1.p1, phs000102.v1.p1, phs000196.v2.p1, phs000126.v1.p1, phs000089.v3.p2, phs000089.v3.p2, phs000089.v3.p2 and phs000089.v3.p2.

References

- Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P, et al. Genome-wide search for genes affecting the risk for alcohol dependence. Am J Med Genet. 1998; 81:207–215. [PubMed: 9603606]
- Cloninger CR, Bohman M, Sigvardsson S. Inheritance of alcohol abuse. Cross-fostering analysis of adopted men. Arch Gen Psychiatry. 1981; 38:861–868. [PubMed: 7259422]
- Heath AC, Bucholz KK, Madden PA, Dinwiddie SH, Slutske WS, Bierut LJ, et al. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med. 1997; 27:1381–1396. [PubMed: 9403910]
- Wang KS, Liu X, Aragam N, Jian X, Mullersman JE, Liu Y, et al. Family-based association analysis of alcohol dependence in the COGA sample and replication in the Australian twin-family study. J Neural Transm. 2011; 118:1293–1299. [PubMed: 21445666]
- Bocciardi R, Giorda R, Marigo V, Zordan P, Montanaro D, Gimelli S, et al. Molecular characterization of a t(2;6) balanced translocation that is associated with a complex phenotype and leads to truncation of the TCBA1 gene. Hum Mutat. 2005; 26:426–436. [PubMed: 16145689]
- Gorokhova S, Bibert S, Geering K, Heintz N. A novel family of transmembrane proteins interacting with beta subunits of the Na,K-ATPase. Hum Mol Genet. 2007; 16:2394–2410. [PubMed: 17606467]
- Calboli FC, Tozzi F, Galwey NW, Antoniades A, Mooser V, Preisig M, et al. A genome-wide association study of neuroticism in a population-based sample. PLoS One. 2010; 5:e11504. [PubMed: 20634892]
- Yue Y, Stout K, Grossmann B, Zechner U, Brinckmann A, White C, et al. Disruption of TCBA1 associated with a de novo t(1;6)(q32.2;q22.3) presenting in a child with developmental delay and recurrent infections. J Med Genet. 2006; 43:143–147. [PubMed: 15908570]
- Zuo L, Gelernter J, Zhang CK, Zhao H, Lu L, Kranzler HR, et al. Genome-wide association study of alcohol dependence implicates KIAA0040 on chromosome 1q. Neuropsychopharmacology. 2012; 37:557–566. [PubMed: 21956439]
- Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010; 8:e1000294. [PubMed: 20126254]
- Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, et al. Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. Jama. 1990; 264:2511–2518. [PubMed: 2232018]
- Kessler RC, Nelson CB, McGonagle KA, Edlund MJ, Frank RG, Leaf PJ. The epidemiology of cooccurring addictive and mental disorders: implications for prevention and service utilization. Am J Orthopsychiatry. 1996; 66:17–31. [PubMed: 8720638]
- 13. Grant BF, Stinson FS, Dawson DA, Chou SP, Dufour MC, Compton W, et al. Prevalence and cooccurrence of substance use disorders and independent mood and anxiety disorders: results from

the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry. 2004; 61:807–816. [PubMed: 15289279]

- Sultana R, Yu CE, Yu J, Munson J, Chen D, Hua W, et al. Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. Genomics. 2002; 80:129–134. [PubMed: 12160723]
- 15. Schumann G, Coin LJ, Lourdusamy A, Charoen P, Berger KH, Stacey D, et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc Natl Acad Sci U S A. 2011; 108:7119–7124. [PubMed: 21471458]
- Kalscheuer VM, FitzPatrick D, Tommerup N, Bugge M, Niebuhr E, Neumann LM, et al. Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation. Hum Genet. 2007; 121:501–509. [PubMed: 17211639]
- 17. Chen YH, Liao DL, Lai CH, Chen CH. Genetic analysis of AUTS2 as a susceptibility gene of heroin dependence. Drug Alcohol Depend. 2012
- Zuo L, Wang K, Zhang X, JH K, Li CR, Zhang F, et al. NKAIN1-SERINC2 is a functional, replicable and genome-wide significant risk region specific for alcohol dependence in subjects of European descent. Drug Alcohol Depend. 2013; 129:254–264. [PubMed: 23455491]
- 19. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. fourth edition ed.. Washington, DC: American Psychiatric Press; 1994.
- Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI Jr, et al. A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol. 1994; 55:149–158. [PubMed: 8189735]
- 21. Zuo L, Zhang H, Malison RT, Li CSR, Zhang XY, Wang F, et al. Rare ADH variant constellations are specific for alcohol dependence. Alcohol Alcohol. 2013; 48:9–14. [PubMed: 23019235]
- 22. Heath AC, Whitfield JB, Martin NG, Pergadia ML, Goate AM, Lind PA, et al. A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications. Biological Psychiatry. 2011; 70:513–518. [PubMed: 21529783]
- Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, et al. A genome-wide association study of alcohol dependence. Proc Natl Acad Sci U S A. 2010; 107:5082–5087. [PubMed: 20202923]
- Edenberg HJ, Koller DL, Xuei X, Wetherill L, McClintick JN, Almasy L, et al. Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol Clin Exp Res. 2010; 34:840–852. [PubMed: 20201924]
- Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009; 5:e1000529. [PubMed: 19543373]
- Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009; 84:210– 223. [PubMed: 19200528]
- 27. Lin DY, Tang ZZ. A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet. 2011; 89:354–367. [PubMed: 21885029]
- Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38:904– 909. [PubMed: 16862161]
- Asimit JL, Day-Williams AG, Morris AP, Zeggini E. ARIEL and AMELIA: Testing for an Accumulation of Rare Variants Using Next-Generation Sequencing Data. Hum Hered. 2012; 73:84–94. [PubMed: 22441326]
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559–575. [PubMed: 17701901]
- Horvath S, Xu X, Laird NM. The family based association test method: strategies for studying general genotype--phenotype associations. Eur J Hum Genet. 2001; 9:301–306. [PubMed: 11313775]

- 32. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb). 2005; 95:221–227. [PubMed: 16077740]
- Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003; 100:9440–9445. [PubMed: 12883005]
- 34. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 2005; 1:e78. [PubMed: 16362079]
- Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna KV, Gabriel WN, et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol. 2008; 6:e1. [PubMed: 19222302]
- 36. Grossman TR, Luque JM, Nelson N. Identification of a ubiquitous family of membrane proteins and their expression in mouse brain. J Exp Biol. 2000; 203:447–457. [PubMed: 10637174]
- Inuzuka M, Hayakawa M, Ingi T. Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J Biol Chem. 2005; 280:35776–35783. [PubMed: 16120614]
- Schreiber S, Kampf-Sherf O, Gorfine M, Kelly D, Oppenheim Y, Lerer B. An open trial of plantsource derived phosphatydilserine for treatment of age-related cognitive decline. Isr J Psychiatry Relat Sci. 2000; 37:302–307. [PubMed: 11201936]
- Jorissen BL, Brouns F, Van Boxtel MP, Ponds RW, Verhey FR, Jolles J, et al. The influence of soy-derived phosphatidylserine on cognition in age-associated memory impairment. Nutr Neurosci. 2001; 4:121–134. [PubMed: 11842880]
- 40. Nguyen PV, Abel T, Kandel ER. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 1994; 265:1104–1107. [PubMed: 8066450]
- 41. Tsui-Pierchala BA, Encinas M, Milbrandt J, Johnson EM Jr. Lipid rafts in neuronal signaling and function. Trends Neurosci. 2002; 25:412–417. [PubMed: 12127758]
- Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ. Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron. 2004; 42:51–62. [PubMed: 15066264]
- Reichel M, Beck J, Muhle C, Rotter A, Bleich S, Gulbins E, et al. Activity of secretory sphingomyelinase is increased in plasma of alcohol-dependent patients. Alcohol Clin Exp Res. 2011; 35:1852–1859. [PubMed: 21595704]
- 44. Dasgupta S, Adams JA, Hogan EL. Maternal alcohol consumption increases sphingosine levels in the brains of progeny mice. Neurochem Res. 2007; 32:2217–2224. [PubMed: 17701351]
- 45. Krystal JH, Petrakis IL, Mason G, Trevisan L, D'Souza DC. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol Ther. 2003; 99:79–94. [PubMed: 12804700]
- 46. Johnson BA, Rosenthal N, Capece JA, Wiegand F, Mao L, Beyers K, et al. Topiramate for treating alcohol dependence: a randomized controlled trial. Jama. 2007; 298:1641–1651. [PubMed: 17925516]

NIH-PA Author Manuscript

Table 1

Associations between NKAIN1-SERINC2 region and different neuropsychiatric or neurological disorders

			# dNS	# dNS	# dNS	SNP #	Collapsing	Minimal	Most sig.		<u>Minor allele f</u>	requency (N)	
Human Diseases	Ethnicity	Dataset name	(total)	(p<0.05)	(p <a)< th=""><th>(q<0.05)</th><th>p value</th><th>p value</th><th>SNP</th><th>Gene</th><th>Affected</th><th><u>Unaffected</u></th><th></th></a)<>	(q<0.05)	p value	p value	SNP	Gene	Affected	<u>Unaffected</u>	
Alcoholism	EA (CC)	SAGE+COGA	196	26	5	25	6.5×10^{-5}	$4.1{ imes}10^{-5}$	rs35961897	SERINC2	0.059 (1409)	0.038 (1518)	
Alcoholism	EAu (Fam)	OZ-ALC	185	6	0	0	0.025	0.0196	rs77840364	SERINC2	0.015 (1645)	0.012 (4793)	
Alcoholism	AA (CC)	SAGE+COGA	450	4	0	0	0.534	0.0141	rs16834507	SERINC2	0.040(681)	0.021 (508)	
ADHD	CA (Fam)	IMAGE	163	12	0	0	0.429	0.0017	rs114467377	NKAINI	0.015 (924)	0.014 (1833)	
Autism	EA (Fam)	AGP	189	13	0	0	0.977	0.0013	rs114336824	SERINC2	0.010 (1330)	0.010 (2745)	
Major Depression	CA (CC)	PRSC	162	12	0	0	0.089	0.0010	rs116080631	SERINC2	0.028 (1805)	0.015 (1820)	
Bipolar Disorder	EA (CC)	BDO+GRU	136	0	0	0	0.735	0.0902	rs7541681	SERINC2	0.125 (368)	0.036~(1034)	
Bipolar Disorder	EA (CC)	BARD+GRU	138	5	0	0	0.714	0.0048	rs55781513	NKAINI	0.026 (653)	0.044~(1034)	
Bipolar Disorder	AA (CC)	BARD+GRU	351	7	0	0	0.312	0.0033	rs114478713	SERINC2	0.019(141)	0.001 (671)	
Schizophrenia	EA (CC)	GAIN	180	1	0	0	0.692	0.0080	rs6659255	SERINC2	0.073 (1351)	0.046 (1378)	
Schizophrenia	AA (CC)	GAIN	441	20	0	0	0.816	0.0147	rs80029070	NKAINI	0.025 (1195)	0.038 (954)	
Schizophrenia	EA (CC)	MGS_nonGAIN	144	12	0	0	0.145	0.0024	rs74872508	SNRNP40	0.009 (1437)	0.003 (1347)	
Alzheimer's Disease	CA (Fam)	$LOAD \times 4$	191	16	0	0	0.556	0.0057	rs7417775	SERINC2	0.052 (2298)	0.037 (2921)	
Alzheimer's disease	EA (CC)	GenADA	113	10	0	0	0.514	0.0064	rs76859788	NKAINI	0.012 (806)	0.025 (782)	
ALS	CA (CC)	GRU	125	6	0	0	0.111	0.0111	rs12024466	ZCCHC17	0.004 (261)	0.025 (246)	
Early Onset Stroke	EA (CC)	$GEOS \times 3$	144	1	0	0	0.246	0.0447	rs13376139	SNRNP40	0.008 (372)	0.034 (430)	
Early Onset Stroke	AA (CC)	$GEOS \times 3$	431	54	0	0	0.080	0.0008	rs56095638	SERINC2	0.087 (309)	0.038 (290)	
Ischemic Stroke	CA (CC)	ISGS	132	11	0	0	0.512	0.0041	rs116007405	SERINC2	0.028 (219)	0.004 (266)	
Parkinson's Disease	CA (CC)	NGRC	187	Э	0	0	0.745	0.0348	rs114215404	NKAINI	0.002 (2000)	0.005 (1986)	
Parkinson's Disease	CA (CC)	PDRD+GRU	142	0	0	0	0.088	0.0694	rs75239059	NKAINI	0.003 (900)	0.008 (867)	
Parkinson's Disease	CA (CC)	lng_coriell_pd	171	5	0	0	0.079	0.0195	rs12564915	SNRNP40	0.015(940)	0.039 (801)	
Only the most significal American; EAu, Europe 2008:65(1):45–53; Filip	nt risk markers 2an-Australian; 10ini et al. Neur	with minimal p valu CA, Caucasian; CC roimage. 2009;44(3)	les are liste , case-cont :724–728.	ed. ADHD, . rol design;] AGP: The /	Attention Fam, fami AGP Cons	deficit hype ly-based des ortium. Nati	ractivity disorc sign; N, sampl ure. 2010;466(ler; ALS, A1 e size. Datas 7204):368–3	nyotrophic Later et names refer to 372: Human Mol	al Sclerosis; / dbGaP and re ecular Genetic	A, African-Am ferences [GenA] ss. 2010;19(20):2	erican; EA, European- DA: Li et al. Arch Neur 4072–4082; Nature Gen	ol. etics.

Pharmacogenet Genomics. Author manuscript; available in PMC 2015 January 08.

2007;39(3):319–328]. The significance level (a) is corrected for the numbers of effective genetic markers (calculated by SNPSpD). Collapsing p values for entire NKAINI-SERINC2 region were calculated

using the program ARIEL.

Table 2

p values for associations between rare variant constellations and alcohol dependence

			European-Ar	nericans			European-At	<u>ıstralians</u>
Tests	Whole region	NKAINI	SNRNP40	ZCCHC17	FABP3	SERINC2	Whole region	SERINC
$_{\rm Fp}$	1.8×10^{-4}	0.039	0.020	0.025	0.041	2.7×10^{-4}	0.028	0.028
ΥT	1.4×10^{-4}	,	0.022	0.022	0.066	1.6×10^{-4}		ı
Collapsing	6.5×10^{-5}	0.088	4.7×10^{-3}	8.0×10^{-3}	0.045	8.0×10^{-5}	0.025	0.030

Fp and VT, association tests using SCORE-Seq. Collapsing, association test using ARIEL.

Table 3

Top-ranked risk SNPs (p< α) for alcohol dependence in *SERINC2* in European Americans

				IAF	Eu	opean-Amo	ericans
SNP	Gene	Location	Cases	Controls	OR	p-value	q-value
rs34278290 ◀	SERINC2	Intron 2	0.061	0.044	1.52	5.9×10 ⁻⁴	0.0043
rs2275437	SERINC2	Exon 7	0.057	0.039	1.60	2.0×10^{-4}	0.0025
rs35961897	SERINC2	Intron 10	0.059	0.038	1.69	$4.1{ imes}10^{-5}$	0.0008
rs4949405	SERINC2	Intron 12	0.050	0.030	1.79	4.2×10^{-5}	0.008
rs7417775 O #	SERINC2	3' UTR	0.033	0.021	1.79	5.3×10^{-4}	0.0043
 ✓ located in trar 	nscription fact	tor binding si	ites;				
, affacting miR	NA binding s	ite activity;					

, having significant cis-acting regulatory effects on SERINC2 mRNA expression (p=0.024).

Table 4

Replicable risk SNPs (p<0.05) for alcohol dependence in SERINC2 in subjects of European descent

			2	IAF	Eur	opean-Am	ericans	Aus	tralians	<u>Meta-a</u>	<u>nalysis</u>
SNP	Gene	Location	Cases	Controls	OR	p-value	q-value	OR	p-value	Z-score	P-value
rs77840364	SERINC2	Intron 10	0.030	0.022	1.45	0.029	0.0433	8.00	0.020	2.348	0.0189
rs115360541	SERINC2	Intron 12	0.065	0.043	1.50	0.008	0.0256	2.00	0.019	2.815	0.0049

Zuo et al.