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Summary
Background: Dissemination and adoption of clinical decision support (CDS) tools is a major initi-
ative of the Affordable Care Act’s Meaningful Use program. Adoption of CDS tools is multipronged 
with personal, organizational, and clinical settings factoring into the successful utilization rates. 
Specifically, the diffusion of innovation theory implies that ‘early adopters’ are more inclined to use 
CDS tools and younger physicians tend to be ranked in this category.
Objective: This study examined the differences in adoption of CDS tools across providers’ training 
level.
Participants: From November 2010 to 2011, 168 residents and attendings from an academic medi-
cal institution were enrolled into a randomized controlled trial.
Intervention: The intervention arm had access to the CDS tool through the electronic health record 
(EHR) system during strep and pneumonia patient visits. 
Main Measures: The EHR system recorded details on how intervention arm interacted with the 
CDS tool including acceptance of the initial CDS alert, completion of risk-score calculators and the 
signing of medication order sets. Using the EHR data, the study performed bivariate tests and gen-
eral estimating equation (GEE) modeling to examine the differences in adoption of the CDS tool 
across residents and attendings.
Key Results: The completion rates of the CDS calculator and medication order sets were higher 
amongst first year residents compared to all other training levels. Attendings were the less likely to 
accept the initial step of the CDS tool (29.3%) or complete the medication order sets (22.4%) that 
guided their prescription decisions, resulting in attendings ordering more antibiotics (37.1%) during 
an CDS encounter compared to residents. 
Conclusion: There is variation in adoption of CDS tools across training levels. Attendings tended to 
accept the tool less but ordered more medications. CDS tools should be tailored to clinicians’ train-
ing levels.
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Background
The Health Information Technology for Economic and Clinical Health (HITECH) Act, enacted in 
2009, ignited health information technology (HIT) growth, including mobile health devices and ap-
plications, electronic health records (EHRs), and electronic clinical decision support tools (CDS) 
[1–3]. CDS tools are more useful when decision-making is complex, the clinical stakes are high, or 
cost savings can be achieved without compromising patient care [4]. CDS blends individual patient 
data, a rules engine, and provider intuition or “clinical gestalt” to guide clinicians through complex 
decisions (prognosis, diagnosis or management) at the point of care. Healthcare experts, policy-
makers, and informaticists are predicting that the use of CDS and health IT solutions will signifi-
cantly standardize care, improve resource allocation, reduce overutilization, and bring evidence-
based guidelines into clinical practice [5]. In support of HITECH, the federal government’s mean-
ingful-use initiative has pledged over 6 billion dollars as incentive for hospitals and practices to 
adopt EHR and CDS tools [6–9].

 However, several recent studies and analyses have raised questions about the effectiveness and the 
design parameters of CDS tools embedded into ambulatory EHRs [10–15]. CDS tools have led to: 
reductions in prescribing brand-name antibiotics; improved lipid management in renal transplant 
patients; improved compliance with guidelines for treating HIV; reduced ordering of tests when 
costs were displayed; and age-specific alerts that reduced inappropriate prescribing in the elderly 
[15–27]. However, barriers to CDS utilization and compliance persist and rates of adoption remain 
low [28–30]. A systematic review of ambulatory order entry with CDS found studies with significant 
reductions in medication costs and increased adherence to guidelines, but negative effects as well, 
including increased time and high frequency of ignored alerts [31]. Another study found no changes 
in influenza immunization and found that CDS for lab medication monitoring yielded no improve-
ment [32]. These inconsistent findings of CDS effectiveness have been associated with barriers in 
workflow, usability, and integration. These adverse unintended consequences have made these inter-
ventions ineffective in provider behavior change and little impact on patient outcomes [5, 29, 
33–35].

Health IT conceptual models have been applied to CDS tool design and implementation to im-
prove usability, thereby increasing adoption rates [36, 37]. Similar to conceptual models and theories 
used for behavioral interventions (for example, stages of change and health behavior change), and 
the concerns-based adoption model to improve implementation of education programs, models for 
health IT design have been derived from academia, private industry, psychology, and health in-
formatics to address the complexity of health IT implementation and usability. Most models address 
the structural level (implementation of technology, design, efficiency), clinical level (workflow inte-
gration), and physician level (perception of useful) [38]. Using such conceptual models can allow re-
searchers and designers address the facilitators and barriers to CDS tool integration [36, 37]. Yet, 
there are few studies and conceptual models that include individual characteristics such as users’ 
age, knowledge, and individual workflow.

Structural barriers to health IT tools could include the dissemination, and implementation of 
health IT programs (EHR) and CDS software, integration into workflow, coordination within com-
plex health systems and customizing programs to organizational needs [39]. With the federal man-
dates pushing the health IT agenda many of these structural barriers are being addressed and organ-
izations are highly receptive to take on new innovations. Clinical workflow barriers such as overtrig-
gering of the tool (too frequent CDS reminders) or misplaced triggers (CDS tools appearing at inop-
portune moments), tend to make the tools inefficient, ineffective, and longer clinical visits [40] Us-
ability testing has had varying rates of success on the integration of health innovations on the macro 
(system workflow) and micro level (users workflow) suggesting that structural and clinical workflow 
barriers are a part larger model for adoption [33, 34, 41–45].

 In contrast to examining the structural or clinical factors related to adoption, the diffusion-of-in-
novation (DOI) theory posits that personal characteristics of providers predict the feasibility of dif-
fusion and adoption of innovative tools across social systems (i.e. organizations) [46, 47]. This 
model suggests that individuals and systems adopt innovation at varying paces and places them on a 
continuum – an “S” curve – that reflects their status in that process [41, 47, 48]. The theory con-
siders constructs that influence adoption: perception of relative advantage, compatibility, complex-
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ity, observability, and trialability. The rate of adoption of innovative tools is deeply rooted in these 
constructs and “account[s] for 49–87% of the variance in whether or not they adopt”[49]. This the-
ory suggests that innovative tools must be tailored not only to the workflow processes and macro en-
vironments but also to broad range of users’ perceptions of innovation.

Similar models suggest that technology design and development should focus on human-com-
puter interaction (HCI), which seeks to minimize barriers and maximize benefits of technology use. 
HCI designers and researchers aim to improve the interactions between users and computer inter-
faces to make HIT design more usable and receptive to users’ needs, and by doing so through iter-
ative designs [45]. This design concept suggests that tools should be designed to the unique experi-
ences and resources of the user: their practice, specialty, and comfort level with technology. De-
signers and programmers who implement HCI theory will utilize communication theory, graphic, 
and industrial design disciplines, linguistics, cognitive psychology, social psychology, and human 
factors, such as computer user satisfaction, when developing their tools [45].

 Although the DOI and HCI incorporate user characteristics (perception of and readiness for 
adoption) in HIT design, they do not account for native personal characteristics such as experience 
with HIT, clinical experience, age, or personal preference in HIT. In this analysis we sought to com-
pare the adoption of CDS components across providers’ clinical training experience. We feel that the 
findings of this study add to current theoretical frameworks. Understanding how user character-
istics relate to adoption will allow CDS developers to tailor CDS tools for maximum impact and 
truly meaningful use.

Methods
This is a secondary analysis of data collected from our primary study, a randomized controlled trial 
(RCT) of a tool for integrating clinical prediction rules (iCPR) in a commercial EHR platform. The 
RCT was conducted in 2010 – 2011; a brief description follows [50, 51]. The study data on iCPR pa-
tient encounters were drawn from an academic institution in New York City, New York.

Design of the Intervention
The primary study examined the impact of a well-designed clinical decision support tool on patient 
outcomes and provider adoption. The tool was based on two clinical prediction rules that have been 
validated in a variety of settings and are now considered standard of care but are not consistently ap-
plied in clinical practice: the Walsh rule for strep pharyngitis (Strep) and the Heckerling rule for 
pneumonia (PNA) [52–56]. The study team collaborated with clinicians and informaticists to devel-
op a complex CDS tool that incorporated multiple patient data points, passive, and active triggers, 
and the possibility of dismissing the tool. A more detailed description of iCPR’s design can be found 
in previous publications [50, 51, 56].

The basic components of iCPR include:
1. key-word triggering,
2. risk calculators that provide stratified scores reflecting probability of disease risk,
3. bundled-order sets for tests and medications (SmartSets), and
4. automated personalized risk information and patient instructions in the clinical discharge sum-

mary.

Providers could select from the bundled-order sets, selecting only the medications they wished to 
order. Through numerous iterations derived from repeated usability testing with residents, fellows, 
and attendings, the tool was finally refined to eliminate barriers to workflow and then implemented 
in a RCT. 

Randomized Controlled Trial
The clinician was the unit of randomization. Providers were recruited and consented into the study, 
then randomly assigned to the intervention group (access to iCPR) or control group (no access to 
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iCPR). The iCPR tool was activated in 87 clinicians’ EHR profiles after they attended an hour-long 
training session. A clinical champion of iCPR was available on site during most clinical sessions to 
promptly address questions or problems that arose during its use.

Data Collection
Data were collected from iCPR clinical encounters from the intervention group only, since the pri-
mary outcome was the acceptance of iCPR. An iCPR clinical encounter was defined as a clinical visit 
in which the iCPR tool was triggered for suspected strep or pneumonia. Provider demographic data 
were collected via surveys, including age, gender, and self-rating of overall comfort level with the 
EHR and previous exposure to and comfort level with CDS tools. Clinicians randomized to the in-
tervention arm were asked to complete an additional post-training survey.

For the iCPR encounters, EHR data were collected on the intervention group’s use of the tool in 
addition to the survey data. EHR data included elements on iCPR tool use and medications ordered. 
Benchmarks identified for measuring iCPR use were
1. initial acceptance of iCPR tool alert,
2. completing the iCPR risk score calculator,
3. opening the medication bundled-order set (SmartSet),
4. signing the SmartSet, and
5. orders placed during iCPR encounter but not through the SmartSet.

We also measured the medications prescribed as a result of using the iCPR calculator. 

Statistical Analysis
Usability and demographic data on 87 intervention-arm providers were analyzed. Providers who did 
not complete pre-training surveys (n=8) and nurse practitioners (n=2) were excluded. A final ana-
lytic sample of 78 providers in the intervention-arm contributed to a total of 556 iCPR encounters. 
Providers’ training level was defined as post-graduate year (PGY) 1, 2, or 3, and attendings. Basic 
demographics, and previous use of medication bundle sets, best practice alerts (BPAs), and DocFlow 
(patient progress notes) forms were compared across provider training level using Student’s t- and 
chi-squared tests as appropriate (▶ Table 1 and ▶ Table 2).

 Differences in the completion of each of the five benchmarks for iCPR tool use (during iCPR en-
counters) were compared across training levels, adjusting for provider demographics to isolate the 
independent association between training level and tool acceptance. During the study period, each 
provider had many opportunities to trigger iCPR during iCPR encounters. Generalized estimating 
equations (GEE) model were used to compare across the five benchmarks, to adjust for repeated 
measurements by provider (▶ Table 3). Analyses were conducted in SAS 9.2 (SAS Cong, NC).

Results
 Participant experience with CDS tools varied with training levels. A greater proportion of attendings 
and PGY3s had more experience with SmartSets and BPA (elements of CDS tools) (p=0.02; p=0.05) 
(▶ Table 1). Age was correlated with training level and the median age of attendings was nearly 10 
years greater than that of residents (p<0.0001). 

There were a total of 556 iCPR encounters across all the training levels. PGY1s saw the most en-
counters (32.7%) followed by PGY2s (25.2%), PGY3s (21.2%), and attendings (20.8%) (▶ Table 2). 
Providers with lower training levels had higher acceptance rates of iCPR, with PGY1s accepting 80% 
of their encounters, PGY2s 72% encounters, PGY3s in 61% encounters, and attendings in 23% of 
their encounters (p=0.02). Although not statistically significant, attendings were the least likely to 
complete the SmartSet order set (16.4%), and were more likely to order antibiotics (ordered in 37.1% 
of their encounters) compared to PGY1 (26.4%), PGY2 (24.3%), PGY3 (33.1%) (▶ Table 2). The lack 
of significant difference may be due to there only being 8 attendings.
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 Using the attending level as a benchmark, there were no differences across training level for icpr 
tool accepted (P<0.02), Smart Set opened (P<0.07), and signed (P<0.02) (▶ Table 3, model 1). After 
controlling for provider age and experience with CDS tools (▶ Table 3, model 3), there was no long-
er a significant difference in the acceptance of all the CPR benchmarks and across provider training 
level, suggesting that age and training level are critical factors in the adoption of the iCPR tool and 
various components.

Discussion
There are several HIT conceptual models used to guide design, improve integration, and usability, 
yet adoption of CDS tools continue to be problematic and patient outcomes remain unchanged. 
While the diffusion of innovation theory has been applied to the development and evaluation phase 
of HIT, individual factors influencing CDS adoption is still vague. This study sought to determine 
whether provider training level is one of the personal characteristics that play a significant role in 
adopting a CDS tool. The results indicated that acceptance of iCPR was significantly less among 
clinicians with higher levels of training, adding insights to our knowledge on CDS and suggesting 
that CDS tools may be more widely accepted by younger physicians. This secondary analysis dem-
onstrates that individual characteristics impact adoption. Yet, this study did not examine other in-
trinsic factors related to adoption, such as providers’ knowledge of the evidence behind the CPR, pa-
tient workload or time for CDS completion, and individual workflow (i.e. interaction with EHR), 
which is a limitation of this study and should be incorporated in future studies. 

 The fact that the proportion of participants completing subsequent benchmarked steps (SmartSet 
opened and signed, antibiotic ordered) does not differ by training level indicates that the first – and 
perhaps only – hurdle to iCPR usability is initial acceptance of the tool. Differences across training 
levels for the acceptance step persisted after adjusting for experience using CDS, suggesting that ex-
perience using CDS is not predictive of iCPR acceptance. Nevertheless, differences were rendered 
insignificant after adjusting for age, suggesting that age may have an effect on iCPR acceptance that 
is not explained by either training level or CDS experience. In other words, tailoring engagement of 
CDS tools to training level and age may be critical elements of CDS usability.

To date, most efforts to increase consistent or sustained uptake of CDS tools have emphasized 
workflow design. Usability testing (iterative pilot testing and refinement) has sought to address over-
triggering, misplacement of triggers, and ineffective delivery of guidelines and recommendations 
[51]. This analysis indicates that individual clinician’s characteristics such as training level, experi-
ence with CDS tools, age, and experience with health technology may play a role in adoption. An ex-
tensive systematic review compared business models of adoption were compared to healthcare 
adoption models [58]. The large overarching factor impacting adoption was that decision support 
systems need to be dynamic and be able to launch “multiple assumptions, and incorporation of new 
information in response to changing circumstances”[57]. This concept of dynamic and adaptive de-
sign response of CDS tools should be applied to the variability in individual users.

The study results indicate that compared to PGY levels, attendings had the most experience with 
CDS tools, yet were less likely to use iCPR and ordered more antibiotics. This suggests that the 
model of CDS tools (one model) was not effective for all providers and the tools should be tailored 
for the specific needs of physicians [57, 58]. It is not clear from this analysis why attendings are not 
adopting the tools as frequently as residents. Whether the reason is their perceived knowledge of the 
rule, their perceived value of the rule, or some other factor, it is clear that their failure to adopt the 
rule creates a tendency to prescribe more antibiotics. Physicians’ tendencies to order more anti-
biotics can create a public health issue of antibiotic resistance to infectious diseases.

 This study’s limitations include this study was implemented in a single clinic setting using a single 
EHR system and it’s unclear if the same pattern would be seen in a different clinical practice. In ad-
dition, the tool studied included CPRs for only 2 medical conditions, pneumonia and pharyngitis. A 
different clinical prediction rule may cause different results in adoption across training levels. Lastly, 
there is a possibility that the more experienced practitioners were responding more to complexities 
not taken into account by the algorithms. Nevertheless, the investigators believe that our findings 
clearly show that achieving the full promise of clinical decision supports requires clarifying individ-
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ual provider characteristics that influence adoption. Further research should investigate the in-
fluence of individual factors on the adoption rates and longitudinal usage patterns to guide the de-
sign of CDS tools that will have sustained and tailored use.
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Table 1 Comparison of Providers’ Characteristics between Provider Training Level n (%)

Number of providers

Age – median (iqr**)

Female 

Used Smartset before

Used BPA Alerts before

Used Docflow before

* Response missing for one participant**iqr=interquartile

Total

78

28 (4.0)

44 (56.4)

66 (87)

44 (56.4)

20 (26)

PGY1

34

29 (3.0)

20 (58.8)

24 (72.7)*

16 (47.1)

8 (24.2)

PGY2

18

28.0 (3.0)

9 (50.0)

17 (100)*

10 (55.6)

5 (27.8)

PGY3

18

29.0 (3.0)

10 (55.6)

17 (94.4)

10 (55.6)

5 (27.8)

ATTENDING

8

41.5 (6.5)

5 (62.5)

8 (100)

8 (100)

2 (25.0)

p- value

<0.0001

0.92

0.02

0.05

0.99

Table 2 iCPR Encounters and Process and Outcome Variables between Training Level – n (%)

iCPR Encounters

iCPR Accepted

Smartset Opened

Smartset Signed

Antibiotic Ordered++

Supportive med orders

+ Tallies of each variable indicate at least one occurrence in a given encounter
++ All antibiotics related to strep and pneumonia ordered during the encounter with the exception of antivirals

Total+

556

353 (63.5)

308 (55.4)

238 (42.8)

164 (29.5)

166 (29.5)

PGY1

182 (32.7)

146 (80.2)

127 (69.8)

92 (50.6)

48 (26.4)

55 (30.2)

PGY2

140 (25.2)

101 (72.1)

90 (64.3)

70 (50.0)

34 (24.3)

53 (37.9)

PGY3

118 (21.2)

72 (61.0)

65 (55.1)

57 (48.3)

39 (33.1)

43 (36.4)

ATTENDING

116 (20.8)

34 (29.3)

26 (22.4)

19 (16.4)

43 (37.1)

15 (12.9)

p-value

0.02

0.07

0.39

0.52

0.10
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Table 3 Difference in acceptance of the tool adjusting for use of CDS and age (GEE modeling)

iCPR Accepted

PGY1

PGY2

PGY3

global test

Smartset Opened

PGY1

PGY2

PGY3

global test

Smartsets Signed

PGY1

PGY2

PGY3

global test

Antibiotic Ordered

PGY1

PGY2

PGY3

global test

Supportive Medication ordered

PGY1

PGY2

PGY3

global test

*Tallies of each variable indicate at least one occurrence in a given encounter
** p-values represent the comparison of PGYs to attending training level (control)

Model 1: unadjusted

OR(95%CI), p-value**

8.4 (4.7–15.2), p<0.0001

4.9 (2.3–10.6), p<0.0001

3.5 (1.6–7.6), p=0.002

p=0.02

7.3 (3.6–14.7), p<0.0001

5.2 (2.2–12.3), p=0.0001

4.2 (1.7–10.3), p=0.002

p=0.07

3.6 (1.4–9.6), p=0.01

3.2 (1.2–8.6), p=0.02

3.6 (1.2–10.8), p=0.02

p=0.39

0.66 (0.4–1.1), p=0.11

0.60 (0.3–0.6), p=0.12

0.91 (0.5–1.8), p=0.78

p=0.52

3.0 (1.1–8.8), p=0.04

4.2 (1.5–12.1), p=0.01

4.4 (1.4–12.5), p=0.01

p=0.10

Model 2: model 1 +
past use of CDS
OR(95%CI), p-value

11.9 (5.2–27.5), p<0.0001

7.0 (3.2–15.0), p<0.0001

4.4 (1.8,10.8), p=0.001

p=0.01

8.6 (3.5–21.2), p<0.0001

6.6 (2.7–15.8), p<0.0001

4.7 (1.7–12.9), p=0.003

p=0.07

3.9 (1.2–12.4), p=0.02

3.5 (1.1–10.8), p=0.03

3.7 (1.1–12.7), p=0.04

p=0.42

0.72 (0.4–1.3), p=0.25

0.59 (0.30–1.1), p=0.11

1.1 (0.54–2.1), p=0.87

p=0.41

3.3 (1.0–10.9), p=0.05

1.6 (0.4–2.8), p=0.01

4.8 (1.4–16.6), p=0.01

p=0.08

Model 3: model 2 + age

OR(95%CI), p-value

7.1 (0.85–59.2), p=0.07

4.3 (0.70–26.5), p=0.12

2.7 (0.46–16.4), p=0.27

p=0.22

2.3 (0.33–16.8), p=0.40

2.0 (0.36–11.0), p=0.43

1.5 (0.27–8.0), p=0.7

p=0.77

1.0 (0.2–7.2), p=0.97

1.0 (0.2–1.8), p=0.98

1.1 (0.2–6.6), p=0.88

p=0.99

1.2 (0.2–7.0), p=0.9

0.9 (0.2–4.4), p=0.9

1.6 (0.3–7.7), p=0.5

p=0.52

2.6 (0.43–15.9), p=0.29

4.0 (0.63–25.1), p=0.14

3.9 (0.7–22.6), p=0.13

p=0.30
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