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ABSTRACT

Motivation: The development of cost-effective next-generation

sequencing methods has spurred the development of high-throughput

bioinformatics tools for detection of sequence variation. With many

disparate variant-calling algorithms available, investigators must ask,

‘Which method is best for my data?’ Machine learning research has

shown that so-called ensemble methods that combine the output of

multiple models can dramatically improve classifier performance. Here

we describe a novel variant-calling approach based on an ensemble of

variant-calling algorithms, which we term the Consensus Genotyper

for Exome Sequencing (CGES). CGES uses a two-stage voting

scheme among four algorithm implementations. While our ensemble

method can accept variants generated by any variant-calling algo-

rithm, we used GATK2.8, SAMtools, FreeBayes and Atlas-SNP2 in

building CGES because of their performance, widespread adoption

and diverse but complementary algorithms.

Results: We apply CGES to 132 samples sequenced at the Hudson

Alpha Institute for Biotechnology (HAIB, Huntsville, AL) using the

Nimblegen Exome Capture and Illumina sequencing technology. Our

sample set consisted of 40 complete trios, two families of four, one

parent–child duo and two unrelated individuals. CGES yielded the

fewest total variant calls (NCGES=139�897), the highest Ts/Tv ratio

(3.02), the lowest Mendelian error rate across all genotypes

(0.028%), the highest rediscovery rate from the Exome Variant

Server (EVS; 89.3%) and 1000 Genomes (1KG; 84.1%) and the high-

est positive predictive value (PPV; 96.1%) for a random sample of

previously validated de novo variants. We describe these and other

quality control (QC) metrics from consensus data and explain how the

CGES pipeline can be used to generate call sets of varying quality

stringency, including consensus calls present across all four algo-

rithms, calls that are consistent across any three out of four algo-

rithms, calls that are consistent across any two out of four

algorithms or a more liberal set of all calls made by any algorithm.

Availability and implementation: To enable accessible, efficient and

reproducible analysis, we implement CGES both as a stand-alone

command line tool available for download in GitHub and as a set of

Galaxy tools and workflows configured to execute on parallel

computers.

Contact: trubetskoy@uchicago.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Whole-exome sequencing (WES) has quickly become an afford-

able approach to identifying rare variants contributing to dis-

ease. Over the past 5 years the number of published papers

that were indexed in PubMed with the key words ‘exome

sequencing’ has increased 200-fold, representing a clear trend

in human genetics. The utility of WES for revealing biological

mechanisms depends on the genetic architecture of the pheno-

type in question, the quality of the sequencing technology and, to

a significant extent, the analytic methods used to identify and

genotype variations in sequence. In recent years, several methods

have been developed to analyze raw WES data, including Atlas-

SNP2 (Challis et al., 2012), GATK (DePristo et al., 2011;

McKenna, 2010a), SeqEM (Martin et al., 2010), FreeBayes

(Garrison and Marth, 2012), SAMtools (Li et al., 2009a),

Dindel Albers et al. (2011), SOAPsnp (Li et al., 2009b) and

Varscan2 (Koboldt et al., 2012), among others.

These methods represent substantial effort and expertise in the

analysis of next generation sequencing (NGS) data, including both

whole-exome and whole-genome sequencing. Here we present a

natural extension of these individual algorithms that integrates

their relative strengths into a consensus-calling approach, which

we call CGES. This algorithm, developed as a collaborative effort

between the Department of Medicine and the Computation

Institute at the University of Chicago, takes advantage of the di-

verse variant-calling strategies of four existing algorithms

(GATKv2.8, Atlas-SNP2, SAMtools and FreeBayes) in an

open-source, freely available and user-friendly analysis platform.
While all variant-calling programs seek to optimize perform-

ance relative to some core properties of sequencing data (such as

read depth and allele count), they often differ along other dimen-

sions. We chose to base our consensus-based pipeline on

GATKv2.8, SAMtools, Altas-SNP2 and FreeBayes, as these*To whom correspondence should be addressed.
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four algorithms use complementary approaches. For example, all

algorithms include genotype and indel likelihood models, but the

models themselves differ with respect to information used and

weights given to such information [see O’Rawe et al. (2013) and

Yu and Sun (2013) for complete comparison]. Furthermore,

FreeBayes allows explicit parameterization if there are known

copy number variants in a sample, while GATKv2.8 provides

sophisticated filtering options that can be trained on a given

dataset. Together, these programs constitute a suite of algo-

rithms that attempt to integrate as much information as possible,

including prior variant observations, linkage disequilibrium

structure and structural variation, to reduce both type I and

type II errors.
In brief, CGES first runs each algorithm separately and then

combines the resulting four collections of genotype calls to create

three possible output sets, typically of increasing size but lower

average quality: consensus calls (i.e. calls made by all four algo-

rithms), partial consensus calls (e.g. those made by three or more

algorithms) and the union of all calls (calls made by one or more

algorithms). CGES also harmonizes quality scores from each

algorithm to provide QC reports and publication quality plots

(CGES-QC tool).
CGES and CGES-QC together form a multi-step pipeline and

must performmultiple program invocations, as shown inFigure 1.

We use the Galaxy platform (Goecks et al., 2010) to combine im-

plementations for each branch of the pipeline and for CGES itself.

Our use of Galaxy has the benefit of democratizing NGS data

analysis, as Galaxy reduces the computational expertise needed

to run an NGS pipeline and can run on public clouds such as

those operated by AmazonWeb Services, Google and Microsoft.

The links to theGalaxyworkflows can be found in Supplementary

Table S4. We have applied the CGES consensus-calling approach

to real-world exome data collected on subjects with autism and

their family members. We use the results of this study to demon-

strate the power of the CGES approach and provide project-level,

variant-level, sample-level and family-based qualitymetrics across

all algorithms. Additionally, we provide known rare variant redis-

coveryrates,andanestimateof thePPVofeachalgorithmbasedon

previously identified and lab-validated de novo variation.

2 METHODS

2.1 Samples

To test the robustness of the CGES consensus-calling algorithm in the

context of real-world data, we used binary alignment (BAM) files from

132 individuals representing 40 complete trios, two families of 4 and 2

additional unrelated individuals recruited from the Autism Center of

Excellence study at the University of Illinois at Chicago, Vanderbilt

University or Tufts-New England Medical Center. Probands were as-

sessed with the Autism Diagnostic Interview (ADI-R), the Autism

Diagnostic Observation Schedule by Western Psychological Services

(ADOS-WPS) and clinical evaluation. We included families in this

study if the probands met diagnostic criteria for autism or autism spec-

trum disorder on both the ADI-R and ADOS-WPS (Berument et al.,

1999; Le Couteur et al., 1989).

2.2 NGS

Sequencing for the majority of samples was performed at the HAIB

(Hunstville, AL) as a part of the NIH Autism Sequencing Consortium

(dbGAP Accession Number: phs000298.v1.p1; Liu et al., 2013; Neale,

2012) and for the remainder of samples at HAIB as a part of the

University of Illinois and Vanderbilt Autism Center for Excellence

study. Methods used for WES and alignment are described in depth in

Supplementary Materials and previous publications (Neale et al., 2012).

In brief, samples were sequenced at Hudson Alpha Biotechnology

Institute using a paired-end approach with NimbleGen exome capture

followed by Illumina HiSeq 2000 sequencing.

2.3 Determination of parameter values for

consensus-calling algorithms

Figure 1 illustrates the variant-calling schema used by CGES. The four

variant-calling algorithms used in this analysis are implemented in previ-

ously published programs GATK v2.8 (DePristo et al., 2011; McKenna,

2010a), SAMtools (Li et al., 2009a), Atlas-SNP2 (Challis et al., 2012) and

FreeBayes (Garrison and Marth, 2012). As these methods are described

in depth in their primary publications, here we describe only their par-

ameterization and implementation within the Galaxy framework.

As shown in Figure 1, we implement variant calling for each of the

four programs within an independent subpipeline or branch. Within each

branch, we select parameter values for exome sequence data as follows.

For GATK, we followed best practices published by the Broad Institute

(http://www.broadinstitute.org/gatk/guide/best-practices). We deter-

mined optimal parameters empirically for all callers (Supplementary

Methods) using QC data from our project to iteratively develop a set

of project-specific best practices. As the variant calls from each branch

serve as the substrate for CGES, it is important that parameters for each

branch are optimized for best performance. Thus, we strongly

Fig. 1. High-level schematic of the CGES pipeline running from top to

bottom. Each of the four branches applies a separate caller to the same

input alignment (BAM) files. The basic filter consists of a BED target file

defined by the capture, and a minimum QUAL of 10. Variant normal-

ization entails standardizing the representation of more complex alleles

such as indels. The final product is a multi-sample variant call format

(VCF) file and associated quality metrics
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recommend that investigators review the parameters for each caller, and

ensure that they are appropriately determined for a given dataset.

2.4 CGES calling pipeline

The CGES pipeline (Fig. 1) takes as input BAM files generated and pro-

vided by a sequencing center. The BAM files do not require any prepro-

cessing before entering the CGES workflows, but are subject to the

preprocessing steps required by each branch algorithm. Each branch and

the CGES workflow include SNP and indel calling. All 132 samples were

run together through GATKv2.8, FreeBayes and SAMtools.

The first step in running the CGES pipeline is to run the GATKv2.8

Unified Genotyper across all chromosomes, with separate multi-threaded

processes for each chromosome. The resulting VCF files are then com-

bined and variant recalibration is applied. We train the GATK gaussian

mixture model on 1000 Genomes, HapMap and dbSNP135 data hosted

by the Broad Institute. After performing variant quality score recalibra-

tion (VQSR), variants are then filtered down to a VQSR-based quality

tranche (99.9%). A simple filter is then applied to remove genotype calls

that do not satisfy an on-target status criterion or that have a minimum

QUAL score of510.

The FreeBayes and SAMtools workflows are similar to the GATK

workflow in that we first parallelize variant detection by chromosome.

During this step, we implement the chosen detection and genotyping

parameters described in Supplementary Materials. This results in one

multi-sample VCF file per chromosome. We then combine VCFs, and

finally filter based on a minimum QUAL of 10 and on-target status.

Unlike the other callers, Atlas-SNP2 calls variation per sample instead

of across multiple samples simultaneously. This required a sample-based

parallelization scheme in which we spawn a separate Atlas-SNP2 process

for each sample. The Galaxy Atlas-SNP2 tool was therefore developed

with a Swift (Wilde et al., 2011) backend enabling parallelization across

samples. We then follow the Atlas-SNP2 protocol for creating an initial

multi-sample VCF file from individual sample VCF files (http://source-

forge.net/projects/atlas2/). Finally, we applied an on-target filter and

compiled resulting variants into a multi-sample Atlas-SNP2 VCF file to

produce the final multi-sample VCF file.

Finally, each multi-sample VCF file is normalized by Variant tool (Vt)

(http://genome.sph.umich.edu/wiki/Vt). Variant normalization by Vt en-

sures that such complex variation, including indels and single nucleotide

variants (SNVs) within indels, is represented with the most parsimonious

set of variations with respect to the reference sequence. Applying Vt to all

branches allows results from each branch to be standardized, so that

complex variants may be compared between datasets.

2.5 CGES

We use a two-stage voting scheme to generate consensus genotypes. First,

we identify the variant positions (irrespective of genotype) that agree

among a specified number of callers. At this step, a user can specify a

level of concordance among callers (e.g. three of four, or consensus).

CGES considers variants to be uniquely identified by any difference

from the reference sequence at a given chromosomal position. The algo-

rithm then proceeds to consider genotypes within these consensus sites.

Genotypes that do not agree are set as missing and flagged as discordant

for downstream quality analysis. Stringency thresholds for genotype con-

cordance can be set independently for each stage, conditional on the fact

that genotype concordance cannot be stricter than site concordance. As

each caller uses slightly different priors and weights for SNV and indel

likelihood determination, and as the underlying truth is unknown, each

caller is given an equal vote at both stages of voting.

2.6 CGES-QC

We have also developed CGES-QC, a tool for the calculation, compari-

son and visualization of sample-based, variant-based and project-based

QC metrics across all branches of the consensus genotyper. CGES-QC

incorporates QC calculations from PLINK, VCFtools and scripts de-

veloped in-house to perform analyses and output publication quality

plots. Unless otherwise noted to refer to indels, QC metrics are reported

with respect to single nucleotide variants.

2.7 Project-based QC

Project-based QC results include the total number of variants called,

Transition-Transversion ratio (Ts/Tv), EVS variant rediscovery rate,

1KG variant rediscovery rate, Genome in a Bottle (GiaB) rediscovery

rate and the genotypeMendelian error rate (gMER). The total number of

variants called is limited to the user-specified settings and refers to the

total number of variants present in the output VCF. The Ts/Tv ratio is a

routinely reported QC measure for sequence data and refers to the ratio

of transitions (G$A or C$T) to transversions (G$C or A$T). Based

on previously reported analyses, the Ts/Tv ratio is expected to be 2.1 for

whole-genome sequencing and 2.6–3.3 for exome sequence data (DePristo

et al., 2011). Low Ts/Tv ratios represent technical artifacts, and a ran-

domly generated set of variants yields a Ts/Tv ratio of 0.5 (Zook et al.,

2014). The EVS, GiaB and 1KG rediscovery rates represent the total

number of variants in a VCF that have been previously identified in

those sequencing projects. Finally, for each variant site called, there

may be anywhere from one individual with a sequence variation to N

individuals with variant genotypes (where N=sample size) present in the

VCF file. Therefore, we calculate a ‘genotype Mendelian error rate’,

which is the total number of MEs in a VCF file divided by the total

number of genotypes with the potential for Mendelian inconsistency

(i.e. offspring genotypes with parental genotypes known) in a VCF file.

This measure describes the proportion of all offspring genotypes that are

inconsistent with parental genotypes present in the VCF.

2.8 Sample-based QC

Sample-based QC results include the F-statistic per sample, trio

Mendelian error rate (tMER) and genotype concordance/discordance

per sample. The F-statistic is calculated using the classic Wright formula

one minus the ratio of observed heterozygote genotypes to expected het-

erozygote genotypes according to Hardy–Weinberg equilibrium

(Danecek et al., 2011). This statistic provides a red flag for both

sample contamination (extreme heterozygosity) and consanguinity (ex-

treme homozygosity). We calculate Mendelian errors per trio, which we

defined as the number of MEs in an offspring (given by the trio) divided

by the total number of genotypes in the offspring (Purcell et al., 2007).

This metric is useful for determining whether there are any trios that

require further attention that may be due to sample mismatch or large

copy number variants. In the case of a contaminated sample, the

F-statistic and the tMER can be used jointly to determine whether

the contamination came from a relative or an unrelated sample.

Finally, CGES genotype discordance rates are calculated per sample

defined as the proportion of all genotypes in a given sample that are

flagged as discordant across any of the four calling algorithms.

2.9 Variant-based QC

Variant-based QC includes calculation of the variant site Mendelian error

rate (vMER), variant site missingness distributions and minor allele fre-

quency distributions. The vMER is defined as the number of variant sites

where it is possible to have a Mendelian error (i.e. the total number of

variant sites in probands for which both parents are also genotyped). This

metric provides a bird’s eye view of the general sensitivity and specificity

of each calling algorithm. A more inclusive approach to genotype calling

will allow a higher number of sites to contribute at least one ME, while a

stricter approach will result in fewer sites with at least one ME.

Moreover, the vMER may increase with the inclusion of genomic regions

that are difficult to sequence. We believe this is an important quality
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metric for custom capture exome sequencing and will be important for

whole-genome sequencing. The vMER as implemented in the CGES-QC

tool can also be calculated within a subset of samples or by genomic

region to prioritize regions for further analysis.

At each variant site there are a small proportion of genotype calls that

cannot bemade (i.e. flagged as ‘missing’) because a given algorithm does not

receive enough information to accurately determine the genotype. In the

CGES algorithm, the resulting conflicts between branches are also flagged

and described as ‘missing’. Conflicts between branches consist of any con-

flicting genotype calls, including scenarios in which one caller contributes a

missing call.Wedefined themissingness rate per variant site as the number of

missing genotypes at a site divided by the total number of genotypes at that

site. We then calculated this missingness rate across all variant sites for all

branches and provide the distributions. Finally, we provide the minor allele

frequency distributions across all variant sites for each algorithm.

2.10 PPV estimated from de novo variant calls

A set of predicted de novo variants was predicted based on the Broad

Institute de novo filtering practices (SupplementaryMethods) provided by

the Hudson Alpha Genomic Services Laboratory. A total of 54 variants

from 31 samples were predicted de novo and validated as true positives on

resequencing with Sanger sequencing methods. Twenty variants (37.0%)

were predicted de novo but did not validate with Sanger sequencing and

were, therefore, classified as false positives. This set of laboratory-vali-

dated true-positive and false-positive de novo variants then served as a

benchmark to determine the PPV of CGES and each branch algorithm.

The position and validation status of each variant is included in

Supplementary Table S3. PPV was calculated as the ratio of true positives

detected to the sum of true positives and false positives detected.

2.11 Indel QC

In addition to SNV consensus calls, users can generate identical consen-

sus indel calls by requiring that all four algorithms agree. An investigator

may alternatively require three out of four or two out of four algorithms

agree. We identified 2122 identical consensus calls across all four algo-

rithms, 4093 across three out of four algorithms, 5514 across two out of

four algorithms and a union call set of 13410 indels. As a measure of

indel quality, we have calculated the EVS (82.3%) and GiaB (14.1%)

rediscovery rates for each branch and consensus. It is important to

note that the rediscovery rates can be used as a general measure of dataset

quality, and may help to detect a branch that has been poorly parame-

terized. However, the rediscovery rate will also be influenced by the

number of unique variants detected in a sample, which may increase as

a function of sequence depth, caller sensitivity and population.

2.12 Availability of the CGES pipeline to investigators

There are three primary ingredients needed for the successful use of the

CGES pipeline: (i) the user-supplied files necessary for analysis (i.e. raw

BAMs, target BED file and reference files), (ii) the branch and CGES

software and (iii) a computational infrastructure capable of handling the

demands of the software. The input and reference files are user supplied

and are routinely made available by NGS centers. There are multiple ac-

cessibility points for the CGES and branch software. First, we have made

the enhanced version of these tools (e.g. CGES, FreeBayes, GATKv2.8,

SAMtools, Atlas-SNP2) available in the public Galaxy toolshed

(Blankenberg et al., 2010; Giardine, 7; Goecks, 2010a), so that community

members can download the tools into their own respective Galaxy in-

stances.We have alsomade theworkflows (i.e. descriptions of the pipelines

including various arguments used in the execution of the tools) available

online (Supplementary Table S4). Second, the University of Chicago

Computation Institute maintains and updates the pipelines under the

Globus Genomics service offering (Madduri et al., 2013). Finally, the

code for the CGES tool has been provided as a stand-alone command

line tool (Supplementary Table S4). The computational infrastructure

for the analysis performed in this article was developed by the Globus

Genomics initiative (http://www.globus.org/genomics/), led out of the

Computation Institute (a joint institute between the University of

Chicago and Argonne National Laboratory). The analysis of the autism

trios described here was conducted on the Amazon Web Services public

cloud. Investigators wishing to run the CGES software will require a local

server capable of parallelization and analysis, or access to cloud computing

space such as that offered by Amazon, Digital Ocean or Azure.

3 RESULTS

3.1 CGES-QC results

QC analysis and descriptive statistics of the consensus dataset

showed that the highest quality call set was obtained by using

overlap of all callers together. Using the parameters for single

callers described in the Supplementary Materials, we found that,
as expected, the strict consensus of all calls made by CGES

yielded the fewest total variant calls (NCGES=129�706; Table 1,

Fig. 2). CGES calls resulted in the highest Ts/Tv ratio (3.02)

(Table 1, Fig. 3). CGES calls resulted in the lowest gMER

Fig. 2. Venn diagram of variant sites and their overlap between constitu-

ent call sets. We report both SNVs (top) and indels (bottom). CGES

variants can be produced from the intersection of any two- or three-

constituent sets, or from the union of all calls

Table 1. Set-based QC results

Call set Number

of

variants

gMER

(%)

Ts/Tv EVS

rediscovery

(%)

1KG

rediscovery

(%)

GiaB

(%)

PPV

(%)

CGES 139897 0.0282 3.02 89.3 84.1 16.9 96.1

Atlas-SNP2 214149 0.245 2.12 72.7 69.0 11.8 92.3

FreeBayes 149 230 0.474 2.67 80.4 76.8 12.4 94.7

GATKv2.8 149 230 0.271 2.95 88.0 84.1 16.1 93.1

SAMtools 193 945 0.802 2.57 80.6 77.2 13.1 89.2
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(0.028%) (Table 1, Fig. 4) across all genotypes and the lowest

vMER (0.92%) (Supplementary Table S2, Fig. 4). CGES results

contained a total count of 18 466 404 genotypes representing

139 897 variant sites across 132 individuals, with 667 020 discord-

ant genotypes resulting in CGES, a discordance rate of 3.61%.

We also evaluated the distribution of calls across the minor

allele frequency (MAF) spectrum. We show spectra as empirical

cumulative distributions to facilitate comparisons between

CGES and the constituent branches (Supplementary Fig. S3).

We found that 89.3% of CGES consensus results were previ-

ously identified in the EVS project, and 84.1% of CGES consen-

sus results were previously indentified in the 1KG project and

16.9% of results were identified in the GiaB project (Table 1,

Supplementary Fig. S6). CGES calls exhibited the highest pro-

portion of variant rediscovery out of the total number of calls

compared with any single caller dataset. Finally, we examined

Ts/Tv ratios as a function of MAF (Supplementary Fig. S5),

finding that within the CGES full consensus calls, the Ts/Tv

ratio was consistently43.0 regardless of MAF. CGES generated

a set of identical consensus indels by requiring that the indel

match exactly by start position and alternative allele present.

The identical consensus set included 2122 indels called by all

four programs (Fig. 2).
In addition, we observed a small number of variant positions

(N=369) for which the calls were either homozygous reference

or discordant, meaning that at these positions the callers never

agreed on a variant genotype in any sample. These highly unre-

liable variant positions have been included in the Supplementary

Materials as a potential black list of exome sequencing variants

(Supplementary Table S2).

Lastly, we generated a set of variants for more liberal levels of

agreement among algorithms: variants observed in three of four

callers, two of four callers and a union of all observed variation.

The observed Ts/Tv ratios ranged from 3.02 for the consensus set

to 2.00 for the union set (Fig. 5, Supplementary Table S5). The

observed gMER ranged from 0.0282% for the consensus set to

0.466% for the union set.
During the course of our analyses, we identified a sample with

extreme deviation on the F-statistic (FCGES5� 1:0) suggesting
that this sample showed extreme heterozygosity. On review of

the branch call sets, we found that the same sample deviated

significantly from the rest of the samples according to every al-

gorithm and showed evidence of extreme heterozygosity

(Supplementary Fig. S4). A review of laboratory records

showed that this sample had been previously noted as possibly

contaminated, and contamination was subsequently confirmed

using microsatellite markers. The contaminated sample was

removed for the remainder of the analyses provided here, but

is retained in Supplementary Figure S4 to illustrate the usefulness

of the F-statistic as a QC measure.

3.2 Comparison of CGES predicted and laboratory vali-

dated de novo calls

A Sanger sequencing validated set of de novo true positives and

false positives was used to test the PPV of the CGES algorithm

and its constituent branches. CGES demonstrated the highest

PPV (96.1%), which was an improvement over constituent call

sets (Table 1).

Fig. 4. The variant site Mendelian error rate (vMER). The vMER is

calculated as the total number of MEs in a VCF file divided by the

total number of genotypes with the potential for Mendelian inconsistency

(i.e. offspring genotypes with parental genotypes known) in a VCF file.

This measure describes the proportion of all offspring genotypes that are

inconsistent with parental genotypes present in the VCF

Fig. 3. Transition/transversion mutation ratio for different call sets. This

ratio has been observed to lie between 2.6 and 3.3 for coding regions in

the human genome (DePristo et al., 2011). The Ts/Tv ratio was 3.02 for

the CGES calling algorithm compared with 2.95 for GATK, 2.67 for

FreeBayes, 2.57 for SAMtools and 2.12 for Atlas-SNP2
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4 DISCUSSION

We have presented a novel variant-calling approach based on an

ensemble of variant-calling algorithms, which we call CGES.

CGES uses a two-stage voting scheme among four algorithm

implementations to identify variant sites and determine geno-

types. In addition to presenting the consensus approach, we

have described its application to real-world exome data collected

on a sample of autism trios and singletons. We provide project-

based, sample-based and variant-based quality metrics across all

algorithms, as well as an estimate of the PPV of each algorithm

and CGES. Finally, we provide a Galaxy-based implementation

of CGES and its constituent parts. Taken together, the results

show that Galaxy-CGES provides a robust, flexible and user-

friendly approach to exome sequence variant calling.

Additionally, these results provide a strong rationale for further

development of ensemble methodology in the analysis of NGS

data. CGES is not limited to exome data and could in principle

be used for whole-genome sequencing, although this application

has not yet been tested.
The full CGES consensus-calling algorithm produced the high-

est quality output but the smallest number of genotypes: 139 897

SNVs in total in our example data. Leveraging the strengths of

all callers produced a dataset with the highest Ts/Tv ratio (3.02),

the lowest vMER (0.92%), the lowest gMER (0.028%), the high-

est EVS rediscovery percentage (89.3%), the highest 1KG redis-

covery percentage (84.1%), the highest GiaB rediscovery rate

(16.9%) and the highest de novo PPV (96.1%).
Consensus approaches for NGS variant detection can be

particularly useful when the downstream analysis (i.e. rare vari-

ant transmission distortion test (TDT), pathway analysis or de

novo filtering) is reliant on a low false-positive rate. However,
there may be scenarios in which the preferred strategy is to maxi-
mize the rate of true positives even at the expense of a higher

false-positive rate: for example, when performing segregation
analysis in large extended families. In that case, it may be
more fruitful to use the union of all calls from all branches.

Additionally, when identifying de novo variants one may wish
to use the consensus of all calls in probands and the union of
all calls in parents as an added stringency filter to reduce false
positives. It is important to stress that there is no ‘one size fits all’

approach to sequencing analysis. The shift in the balance be-
tween type I and type II errors is inherent in the stringency
with which a consensus dataset is created. Therefore, investiga-

tors are given the option of requiring any level of caller overlap
(i.e. union of all calls, two-caller consensus, three-caller consen-
sus or full consensus) simultaneously providing the lowest pos-

sible false-positive and lowest possible false-negative datasets.
The best approach for variant calling depends entirely on the
type of data and the downstream analytic plans. As new methods

are continually being developed, it is our hope that this report, in
conjunction with other consensus efforts (Zook et al., 2013), will
help set the tone for an open discussion on the importance of

unifying different approaches.
It is important to note the limitations of the analyses presented

here. One important limitation is that the quality metrics from

each branch are not directly comparable, as their optimization
strategies differed. We optimized calling for each branch of
CGES to reflect reasonable real-world parameter decisions and

not for the sake of a comparison among methods, which has
been recently published (O’Rawe et al., 2013). For example,
FreeBayes allowed us to set many parameters (Supplementary

Methods) based on the raw data descriptive statistics and our
previous sequencing experience. Atlas-SNP2, on the other hand,
offered relatively fewer parameter options (Supplementary

Methods). As best practices have been published for
GATKv2.8, we used these guidelines verbatim. Ultimately, the
performance of each branch can differ dramatically based on

parameters set by the user. Of course, the better the branch
calls, the higher quality the final consensus calls will be.
Additionally, it may be possible to use concordance between

callers as a guiding metric when iterating to the optimal param-
eters for each branch.
In addition to providing the description of the pipeline and the

resultant data, we have provided multiple accessibility modal-

ities. The code for the CGES and CGES-QC algorithms is
open source and available through GitHub (Supplementary
Table S4). For investigators who do not wish to invoke the com-

mand line, we have provided CGES and its constituent branches
in a user-friendly Galaxy environment. Finally, for researchers
without institutional computational infrastructure, or simply for

those who wish to outsource the computing but retain control
over the scientific aspects of analysis, the pipeline is available and
will be sustained through Globus Genomics (http://www.globus.

org/genomics/).
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