
Vol. 31 no. 2 2015, pages 268–270
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu630

Sequence analysis Advance Access publication September 30, 2014

A Python package for parsing, validating, mapping and formatting

sequence variants using HGVS nomenclature
Reece K. Hart1,2,*, Rudolph Rico1, Emily Hare1, John Garcia1, Jody Westbrook1 and
Vincent A. Fusaro1

1Invitae Inc., San Francisco, CA 94107 and 223andMe Inc., Mountain View, CA 94043, USA

Associate Editor: John Hancock

ABSTRACT

Summary: Biological sequence variants are commonly represented in

scientific literature, clinical reports and databases of variation using the

mutation nomenclature guidelines endorsed by the Human Genome

Variation Society (HGVS). Despite the widespread use of the standard,

no freely available and comprehensive programming libraries are avail-

able. Here we report an open-source and easy-to-use Python library

that facilitates the parsing, manipulation, formatting and validation of

variants according to the HGVS specification. The current implemen-

tation focuses on the subset of the HGVS recommendations that pre-

cisely describe sequence-level variation relevant to the application of

high-throughput sequencing to clinical diagnostics.

Availability and implementation: The package is released under the

Apache 2.0 open-source license. Source code, documentation and

issue tracking are available at http://bitbucket.org/hgvs/hgvs/.

Python packages are available at PyPI (https://pypi.python.org/pypi/

hgvs).

Contact: reecehart@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on June 26, 2014; revised on August 29, 2014; accepted on

September 17, 2014

1 INTRODUCTION

As high-throughput sequencing becomes commonplace in the

investigation and diagnosis of disease, it is essential that commu-

nicating variants from sequencing projects to the scientific com-

munity and from diagnostic laboratories to health-care providers

is easy and accurate. The Human Genome Variation Society

(HGVS) mutation nomenclature recommendations (Taschner

and den Dunnen, 2011) are widely endorsed by professional or-

ganizations, mandated by numerous journals and displayed by

databases and tools. The HGVS recommendations—originally

devised to standardize the representation of variants discovered

before the advent of high-throughput sequencing—are now

approved by the HGVS and continue to evolve under the aus-

pices of the Human Variome Project. The continual evolution of

HGVS guidelines makes the nomenclature difficult to under-

stand and to use for experts and non-experts alike, often result-

ing in incorrect usage and potential clinical interpretation errors.

We sought a software library for manipulating HGVS variants

that was appropriate for clinical diagnostics. Specifically, we

required the following functionality: (i) We must be able to pro-

cess patient variants locally (i.e. not sent to a remote site); (ii) we

must be able to audit, extend and control updates of the source

code and data; (iii) we must be able to map variants in regions of

genome-transcript discrepancies, particularly indels. Mutalyzer

(Wildeman et al., 2008) provides a Web interface and Web

services for constructing, validating and transforming sequence

variants, but is not available for local installation. Another

Python library (https://github.com/counsyl/hgvs), similar in

spirit to the one we present here, uses a regular expression-

based parser and relies on exon structures derived from BLAT

alignments (Kent, 2002). Although other packages accept or

generate HGVS-formatted variants, such as snpEff (Cingolani

et al., 2012) and VEP (Mclaren et al., 2010), they are not

intended for use as a software library.
Here we present an open-source Python library for parsing,

mapping, validating and formatting sequence variation accord-

ing to the HGVS guidelines. The library features a parser based

on a Parsing Expression Grammar and a variant mapper that

accommodates insertion/deletion discrepancies between refer-

ence genomic sequences and transcripts that confound most

existing tools.

2 PACKAGE OVERVIEW

The hgvs Python package comprises six key components: (i)

object models for representing components of HGVS-formatted

variants; (ii) a parser that generates an object representation

from an HGVS-formatted string; (iii) formatting tools that gen-

erate an HGVS-formatted string from an object representation;

(iv) mapping classes that transform variants between genomic,

CDS and protein representations; (v) validation tools that ensure

conformance to HGVS guidelines; (vi) an interface for defining

external data sources required for validation and mapping.
The core of the hgvs package is a set of object models that

provide a foundation for developers to reference any component

or property of the HGVS syntax. For example, a

SequenceVariant consists of a sequence accession, a sequence

type and PosEdits, which represent a set of individual changes

to a sequence. A PosEdit is composed of positions, such as a

BaseOffsetPosition for a CDS (c.) SequenceVariant with intronic

variants, and an Edit for Single Nucleotide Variant (SNV), del,

ins, delins, duplications and repeats. Figure 1a shows an example*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bitbucket.org/hgvs/hgvs/
https://pypi.python.org/pypi/hgvs
https://pypi.python.org/pypi/hgvs
mailto:reecehart@gmail.com
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu630/-/DC1
&NoBreak;
,
 -- 
 -- 
1
,
2
,
 and
,
3
&NoBreak;
,
https://github.com/counsyl/hgvs
&NoBreak;
While
&NoBreak;
&NoBreak;
,
 is
d
of 
1
2
3
4
,
5
 and
6
,
,
http://creativecommons.org/licenses/by/4.0/


object representation. For a full list of object classes, readers

should consult the source code.

The HGVS parser presented here is based on a parsing

expression grammar and was inspired by previous work

(Laros et al., 2011). There are 127 parsing rules to cover DNA,

RNA, CDS and protein parsing. Any rule may be invoked to

parse components of valid HGVS strings into an appropriate

type. For example, the c_edit rule may be used to parse an

Fig. 1. Using the hgvs package to project a variant in MCL1 from one transcript to another via GRCh37 chromosome 1. (a) An object representation of

the result of parsing ‘NM_182763.2:c.688+403C4T’. Selected attributes are shown beneath. (b) A diagram of the MCL1 locus with five representations

of a single variant. (c) Python code that demonstrates parsing, mapping between sequences, formatting and validating. Gray outline boxes enclose input,

and the results appear immediately beneath. Circled numbers indicate a correspondence between the variants in (a) and code in (c). An SNVe, originally

reported in literature as NM_182763.2:c.688+403C4T (rs201430561), is projected onto chromosome 1 as variant g, and then projected to an alternative

transcript as variant. The inferred proteinh changes of variants e andh are shown as protein variantsf and i. The results are formatted by ‘stringifying’

them using standard Python printing commands. Validation for a valid variant (281C4T; no error generated) and an error for an invalid variant

(281A4T) are shown

269

Python hgvs package

&NoBreak;
,
in order 


HGVS substring such as ‘c.688+403C4T’. Following Python
conventions, formatting is implemented using the str() method
of each class.
The hgvs package requires sequence data and exon structures

to map variants between the genome and transcript coordinates,
to infer protein sequence changes from transcripts and to valid-
ate variants. The data provider interface declares seven methods

required to support hgvs functionality; developers may imple-
ment a subclass of the abstract interface to use data from
other sources. The hgvs package includes a concrete implemen-

tation based on the publicly available Universal Transcript
Archive (information about UTA is available with package
documentation).

In addition to the syntactic validation provided during par-
sing, the hgvs package includes validation tools to ensure that a
SequenceVariant object conforms to the HGVS guidelines and to
catch common errors. For performance reasons, the Validator

distinguishes intrinsic and extrinsic validation: intrinsic validation
asserts internal correctness of the object, such as requiring that
the start position is less than or equal to the end position or that

the length of the location range specified for an insertion is one,
and extrinsic validation invokes external data for validation,
such as verifying that the reference sequence specified in the vari-

ant matches that from a source database.
The hgvs package provides tools to transform (‘map’) variants

between genomic (g.), mRNA (r.), CDS (c.) and protein (p.)
variants. Of particular note is the implementation of an indel

aware mapper that correctly accounts for insertions and dele-
tions in transcripts with respect to a genomic reference. These
discrepancies occur owing to natural polymorphisms and

sequencing errors, and occur in �1.6% of current RefSeq tran-
scripts (Garla et al., 2011). The package also includes a transcript
liftover tool to migrate variants between different transcripts.

When used in conjunction with UTA, liftover may also be per-
formed between the same RefSeq transcript aligned to a genomic
reference by Splign (Kapustin et al., 2008) and BLAT (Kent,

2002). Splign and BLAT provide substantially different exon
structures for �2.7% of RefSeq transcripts.

3 TESTING, VALIDATION AND LIMITATIONS

Reliable and robust variant manipulation is an essential goal of
this work. The hgvs package implements extensive automated
tests that are run on every commit made to the hgvs code, and
the test results are publicly accessible. Unit tests, which validate

low-level functionality, are available for nearly all code in the
package. Functional tests, which verify parsing, formatting,
transformation and validation, are extensive. In particular, 163

manually curated mappings between g., c. and p. representations
in problematic genes were developed by geneticists and curators.
Additional functional tests include420 000 intronic and exonic

single nucleotide variants,42000 deletions, insertions and dele-
tion-insertions variants and 11 duplications in 54 genes that ex-
ercise a variety of transcript features, such as strand, CDS start

not in exon 1 and genome-transcript indels.
In addition to the above automated tests, a comparison of

genome-to-transcript transformations generated by the hgvs

package and Mutalyzer’s batch positionConverter tool using

110 125 genomic variants in 57 ACMG ‘Must Report’ genes

(Green et al., 2013) showed 499.9% concordance

(Supplementary data). Mismatches occurred only in transcripts

that have indels in the genome-transcript alignment. Because hgvs

uses an indel aware mapper and Mutalyzer does not (Peter

Taschner, personal communication), these differences are ex-

pected and highlight an advantage of the library presented here.
Like the HGVS recommendations, the hgvs package presented

here is a work in progress. The package does not yet implement

the full recommendations: important limitations, which are de-

tailed in the issue tracker, include lack of variant canonicaliza-

tion, the inability to represent compound, mosaic and chimeric

variants and lack of support for inversions. Patches and pull

requests are welcome.

4 AVAILABILITY, INSTALLATION AND USE

The hgvs source code, comprehensive documentation, examples,

installation instructions, issue tracking, test results and mailing

list are available via the BitBucket repository. In addition, the

package is also available at PyPI; with modern versions of

Python, installation involves simply typing ‘pip install hgvs’.
Figure 1 illustrates the four primary functions provided by the

hgvs package—parsing, formatting, mapping and validating. A

variant in MCL1, NM_182763.2:c.688+403C4T (rs201430561),

is parsed into a variant object that exposes variant components

as Python properties. The variant is then projected onto

NM_001197320.1 via GRCh37 and a splign-based exon align-

ment. A validation error is demonstrated with NM_

001197320.1:c.281A4T, which specifies an incorrect reference

nucleotide.

Conflict of interest: All authors are employed by and have equity

in the company that sponsored this work.

REFERENCES

Cingolani,P. et al. (2012) A program for annotating and predicting the effects of

single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila

melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6, 80–92.

Garla,V. et al. (2011) MU2A—reconciling the genome and transcriptome to deter-

mine the effects of base substitutions. Bioinformatics, 27, 416–418.

Green,R.C. et al. (2013) ACMG recommendations for reporting of incidental find-

ings in clinical exome and genome sequencing. Genet. Med., 15, 565–574.

Kapustin,Y. et al. (2008) Splign: algorithms for computing spliced alignments with

identification of paralogs. Biol. Direct, 3, 20.

Kent,W.J. (2002) BLAT—the BLAST-like alignment tool. Genome Res., 12,

656–664.

Laros,J.F.J. et al. (2011) A formalized description of the standard human variant

nomenclature in Extended Backus-Naur Form. BMC Bioinformatics, 12

(Suppl 4), S5.

Mclaren,W. et al. (2010) Deriving the consequences of genomic variants with the

Ensembl API and SNP Effect Predictor. Bioinformatics, 26, 1–2.

Taschner,P.E.M. and den Dunnen,J.T. (2011) Describing structural changes by ex-

tending HGVS sequence variation nomenclature. Hum. Mutat., 32, 507–511.

Wildeman,M. et al. (2008) Improving sequence variant descriptions in mutation

databases and literature using the mutalyzer sequence variation nomenclature

checker. Hum. Mutat., 29, 6–13.

270

R.K.Hart et al.

``
''
 in order
,
 in order
``
''
,
-
due
approximately 
&NoBreak;
&NoBreak;&NoBreak;
approximately 
,
,
as
over 
,
over 
,
,
,
,
'
,
``
''
&NoBreak;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu630/-/DC1
-
,
,
,
``
''
 -- 
,
s

