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ABSTRACT

Motivation: RNA-seq has become a routine technique in differential

expression (DE) identification. Scientists face a number of experimen-

tal design decisions, including the sample size. The power for detect-

ing differential expression is affected by several factors, including the

fraction of DE genes, distribution of the magnitude of DE, distribution

of gene expression level, sequencing coverage and the choice of type

I error control. The complexity and flexibility of RNA-seq experiments,

the high-throughput nature of transcriptome-wide expression meas-

urements and the unique characteristics of RNA-seq data make the

power assessment particularly challenging.

Results: We propose prospective power assessment instead of a

direct sample size calculation by making assumptions on all of these

factors. Our power assessment tool includes two components: (i) a

semi-parametric simulation that generates data based on actual RNA-

seq experiments with flexible choices on baseline expressions, biolo-

gical variations and patterns of DE; and (ii) a power assessment com-

ponent that provides a comprehensive view of power. We introduce

the concepts of stratified power and false discovery cost, and dem-

onstrate the usefulness of our method in experimental design (such as

sample size and sequencing depth), as well as analysis plan (gene

filtering).

Availability: The proposed method is implemented in a freely available

R software package PROPER.

Contact: hao.wu@emory.edu, zhijin_wu@brown.edu.

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

RNA-sequencing has become a routine technique to study the

whole transcriptome (Mortazavi et al., 2008). In addition to the

initial excitements of the extraordinary power of the technology
such as being able to detect novel transcripts and alternative

splicing patterns (Djebali et al., 2012), more and more re-
searchers use RNA-seq as a replacement of gene expression

microarrays to quantify and compare expression levels under
distinct biological contexts, for example, to identify differentially

expressed (DE) genes. It has been well recognized now that tech-

nology improvements do not eliminate biological variability

(Hansen et al., 2011), thus replication is still necessary in estab-

lishing statistical significance in the identification of DE.

However, the number of replicates needed in RNA-seq, a key

issue in experimental design, remains a challenge owing to the

complexities of the experiment and the nature of RNA-seq data.
In classical sample size determination involving a single-hy-

pothesis test, one typically starts with a few quantities that one

can make reasonable assumptions on: the minimum effect size,

which is scientifically meaningful, the variance (which can be

estimated from historical data), an acceptable type I error rate,

usually in the form of P-value, etc. The statistical power also has

a clear definition: the probability of rejecting the null hypothesis

under the alternative model. Based on these assumptions, one

can then study the relationship between the statistical power and

the sample size.
In high-throughput experiments (such as identifying DE genes

from microarray or RNA-seq) where many statistical tests are

performed simultaneously, several factors complicate the sample

size calculation. The first one is the need to deal with multiple

testing. False discovery rate (FDR) is often a preferred control of

type I error over family-wise error rate. For microarray studies,

several sample size calculation methods have been proposed

based on controlling FDR. For example, Liu and Hwang

(2007) built a connection between FDR and power, and derived

algorithms for power calculation based on t- or F-test.
Second, we note that the power analysis for RNA-seq is even

more complicated than that in microarray data. The baseline

expression level is not of interest in microarray data, and can

often be assumed to be zero without loss of generality, as it does

not affect type I or II error in the DE detection. This is because

the preprocessed expression values can be modeled as Gaussian

distribution, where the mean and variance are unrelated. Thus,

the baseline expression level does not affect the test statistics in

microarray data. However, in RNA-seq, gene expressions are

measured as counts and often modeled as Poisson or negative

binomial distributions (Anders and Huber, 2010; Robinson

et al., 2010; Wu et al., 2013). The variation in gene expression

measurements comes from both the biological variation and the

sequencing counting error. The relative importance of the count-

ing error depends on the expression level: for genes with low

counts, the variation owing to the counting process dominates

the variance, whereas for genes with high counts, it is negligible.

As a result, the power in DE detection is affected by expression

level. For example, there is power bias toward longer genes*To whom correspondence should be addressed.
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because more reads are generated from longer transcripts
(Oshlack and Wakefield, 2009). Further, as coverage depends
on sequencing efficiency as well as expression level, genes with

modest counts are not necessarily expressed at low levels. Thus,
these may still be of interest even if we want to focus on genes
that are above a certain level of expression.

Another issue often overlooked in existing methods of sample
size determination for DE experiments is the wide application of
empirical Bayes approach in DE detection (Anders and Huber,

2010; Robinson et al., 2010; Smyth, 2004; Tusher et al., 2001; Wu
et al., 2013). Because of the limited sample size in many experi-
ments, the gene-specific biological variance is often estimated

with some shrinkage by borrowing strength across genes. This
helps stabilizing the variance estimates and leads to better rank-
ing of true DE genes, but in the meantime also creates

dependency among genes, which affects the validity of some
error-control procedures in multiple testing. Though all methods
report type I error (either as P-value, FDR/q-value or both), the

type I error may be computed from a parametric test of which
assumptions are not all met, and the reported FDR is often
obtained via simple conversion from nominal P-values using

Benjamini–Hochberg methods (Anders and Huber, 2010;
Robinson et al., 2010). The resulting nominal error rate can be
rather different from actual error rate (Wu et al., 2013).

Finally, the flexibility of sequencing experiments gives scien-
tists more freedom in experimental design: for the same amount
of sequencing, one may choose to seek deeper coverage of a small

collection of samples, or to obtain more samples with modest
coverage. This is an additional factor not encountered in
microarrays.

There are several methods for calculating the sample size for
RNA-seq data in recent literature. These include methods for
single-gene differential expression analysis based on likelihood

ratio or Wald test (Fang and Cui, 2011), or on score test from
negative binomial model (Hart et al., 2013). These methods,
however, are not directly applicable to simultaneously testing

thousands of genes profiled from one RNA-seq experiment be-
cause they do not come with a procedure that deals with multiple
comparisons. Li et al. (2013b) proposed an analytical method

based on Poisson model to determine sample size for both
single gene and multiple gene comparisons with adjustment for
FDR. This method has been further extended to negative bino-

mial model in Li et al. (2013a). However, to make calculations
attainable, the authors suggested setting a common value for
parameters including fold change, dispersion, and average read

count for all the genes. In reality, these parameters vary a lot
between genes, and this method is not flexible enough to fully
capture the complex characteristics of RNA-seq data. Although

one can choose common conservative values for these param-
eters, it will overestimate the sample size and increase the cost of
the experiments.

We argue, because of the complexities of RNA-seq experi-
ments, it is no longer feasible to rely on one simple power
versus sample size curve while treating all other factors as fixed

input and holding strong assumptions such as exchangeability
between genes and equating nominal error rate as actual error
rate. We advocate prospective power evaluation in the context of

RNA-seq, i.e. evaluating power in a comprehensive manner
under various scenarios of sample size and sequencing depth.

We use the word ‘prospective’ to emphasize our choice to
assess and visualize power in multiple forms and maintain its

high-dimensional nature, instead of specifying a fixed level of
one particular form of power to determine the sample size. We

demonstrate that, in addition to the sample size and the other

usual suspects in power analysis (namely, effect size and within-
group variance), there are other factors (such as the distribution

of mean expression level) and other choices (such as sequencing
depth and gene filtering) that influence the power of DE detec-

tion. We propose a simulation-based power evaluation, as the

accumulation of RNA-seq data allows us to construct in silico
datasets that well resemble real RNA-seq data, and the increas-

ing computing efficiency allows us to evaluate actual error rate.
Moreover, we demonstrate that conditional power, i.e. power

stratified by coverage or biological variation, is more informative

than overall (marginal) power in both experimental design and
analysis plan.

2 METHODS

We propose to evaluate how experimental design affects power com-

pletely based on simulation. Our proposed method consists of two sep-

arate components. First, we provide a flexible semi-parametric simulation

module that generates count tables resembling actual RNA-seq data in

many aspects: marginal distribution of average expression, marginal dis-

tribution of biological dispersion, conditional relationship between dis-

persion and expression level, etc. Then, in a separate component, we

evaluate power and error rates on the simulated dataset, emphasizing

the concepts of stratified power and false discovery cost (FDC). We

keep these two components separate so a user may choose an entirely

different simulation scheme and still apply the same power assessment

tools.

2.1 Data generation

We provide a negative binomial model-based simulation scheme, for

using the power evaluation part of our method. The negative binomial

model is the most widely used model for RNA-seq count data for its

simplicity, flexibility and interpretability. It can be seen as a gamma-

Poisson mixture, with the gamma layer capturing biological variation

conditioning on covariates, and the Poisson distribution capturing the

sequencing counting error. Let Ygi be the observed count for gene g,

replicate i, we assume that Ygi�NBðsi�g; �gÞ. Here, �g and �g represent

the mean and dispersion for gene g, respectively. si represents the normal-

izing factor, such as the library size. We begin by simulating a baseline

expression level �g for each gene. This can be drawn from a parametric

distribution, or re-sampled non-parametrically using the empirical aver-

age expressions estimated from an existing dataset. Unless there is a good

justification for the choice of a parametric distribution of a transcrip-

tome, we recommend re-sampling, as coverage is important in detecting

DE and the dynamic range for RNA-seq is rather wide. This is one major

difference from microarray, where often the mean expression (in log

scale) can be simulated as 0 without loss of generality, as it does not

affect DE detection.

Next we simulate a dispersion parameter �g that captures a gene’s

biological variation. This dispersion parameter, referred to as the squared

biological coefficient of variance (Anders and Huber, 2010; McCarthy

et al., 2012), is closely related to the standard deviation in log transformed

microarray data, which represents the biological variation of gene expres-

sion between replicates (Wu et al., 2013). Again, the parameter �g can be

drawn from a parametric distribution or re-sampled based on empirical

sample dispersions from a real dataset of the user’s choice. An important

option here is provided: �g can be drawn independently, or a functional
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relationship between �g and �g can be preserved as suggested by previous

data. Though there is no simple biological explanation for the depend-

ence between biological variation and mean expression, this trend has

been reported in many studies (Anders and Huber, 2010; Robinson

et al., 2010).

In the third step, we set the effect sizes. This is the most difficult as-

sumption to make, as we rarely know the amount of differential expres-

sion that is biologically relevant, nor do we know the proportion of genes

with that level of difference. In the literature, several settings have been

used. The first is a mixture: let zg be the indicator that gene g is differ-

entially expressed, the proportion of gene with DE is Pðzg=1Þ=�1. We

have the effect size �g satisfying �gjzg=0=0 and �gjzg=1�Nð0; �
2Þ. As

there is a point mass at zero, i.e. Pð�g=0Þ=1� �1, we refer to this

as a zero-inflated normal distribution for �g. Another option is to

allow �gjzg=1 be uniform over a user-defined range. Moreover, we can

also choose to investigate the power of detecting specific effect sizes, by

setting �g at multiple constant levels with the greatest point mass at 0,

reflecting the general assumption that DE is present in only a small subset

of genes in most experiments.

Many genes with zg=1 are by definition differentially expressed, but

may not be biologically interesting, as j�gj is small or even essentially 0.

We should expect little power detecting these genes. Thus, we may be

interested in defining DE of interest—an indicator z�g=1 if j�gj4" or

j�gj=
ffiffiffiffiffi
�g

p
4", and investigate the power of detecting these genes. We let

the user decide the ‘meaningful effect size’. The user can also simply

provide a vector of �, with paring indicators whether each �g is con-

sidered a true positive.

2.2 DE detection

After generating the simulated read counts, existing software developed

for count-based RNA-seq is applied to detect DE genes. We implemented

interface for calling edgeR (Robinson et al., 2010), DESeq (Anders and

Huber, 2010) and DSS (Wu et al., 2013). Users can define other DE

detection methods and plug into the procedure. Each method reports

test statistics, P-values and FDR for all genes. These results are used

for downstream power assessment. The simulations (data generation

and DE detection) are performed under different sample sizes (number

of replicates in each biological condition). Each simulation is repeated for

a number of times, and the power assessments are averaged to provide the

final results.

2.3 Power assessment and visualization

We consider genes that can potentially fall into three categories: (i) non-

DE where the null hypothesis �g=0 is true; (ii) with low DE that is not

biologically relevant; and (iii) with DE high enough that we are most

interested in identifying. The total number of genes in each categories

are represented by G0;G1a and G1b, respectively. Let Dg be the decision on

gene g (g=1; . . . ;G), with Dg=1 declaring DE (discovery) and Dg=0

declaring non-DE, we summarize the decisions in Table 1, where V rep-

resents the total number of type I errors. Though any gene with �g 6¼ 0 is

differentially expressed, thus failing to discover it is a type II error, we

argue that we care less about a gene with low DE that does not achieve

a user-defined relevance level. The power we care about is the ability of

detecting genes in the third category, i.e. power associated with Sb. We

call it the targeted power. In the rest of this article, we will focus on the

assessment of the targeted power. In the software, we provide options to

define biologically interesting genes by j�gj or j�gj=
ffiffiffiffiffi
�g

p
. For illustration

purpose, we focus only on results from the former definition throughout

this manuscript.

The family-wise type I error rate is PðV40Þ, and the FDR is E½V=R�.

We introduce a concept that we referred to as FDC, defined as E½V=Sb�.

The interpretation is straightforward: for every discovery that we care

about (z�g=1 when Dg=1), the expected number of false discoveries.

Thus, FDC represents the cost of false discoveries we expect to identify

each true discovery we aim for. We are still testing the null �g=0. If we

called a gene with 05j�gj � " as DE, it is not a false discovery, but

simply that we would not mind as much if we fail to discover it.

Statistical power in gene expression experiments has complex mean-

ings. The ‘family-wise power’, that is the probability of detecting all true

DE genes, can be small in most studies, especially when many DE genes

have small magnitude of differences or low baseline expression levels.

This means that Pð
P

g zgDg=
P

g zgÞ=PðSb=G1b&Sa=G1aÞ is often

small. However, it is rarely the goal to detect every single DE gene in

an RNA-seq experiment. We may be interested in the proportion of true

DE genes detected: when there are a small set of true DE genes, we may

wish to detect the majority of these. If the tests for DE are independent,

the expected proportion is the same as average power:

E½
P

g zgDg=
P

g zg�=E½ðSa+SbÞ=ðG1a+G1bÞ�.

In other cases, especially in hypothesis-generating experiments, we may

simply aim for a number of leads, even if that is a small proportion of all

DE genes. That is, the power of interest is E½
P

g zgDg�, or the expected

number (as opposed to proportion) of true discoveries. Finally, as men-

tioned above, regardless of proportion or absolute number of discoveries,

we may only care about the power of detecting DE of a certain size, i.e. of

a medical or a biological relevance.

With these considerations, we advocate comprehensive power evalu-

ation by visualizing its relationship with a number of factors, including

but not limited to sample size, instead of pre-specifying a desired power

level, as we recognize that power in a high-throughput setting could have

more than one definition. We refer to this as prospective power evaluation,

in contrast to sample size determination with preselected power definition

and level. We compute the following quantities from each simulation

when discoveries are made with a user-defined type I error control (at

a nominal P-value or FDR/q-value) and a user-defined magnitude of

relevant effect size ". We report the averages of these quantities from a

number of simulations as our empirical values for error rates and power.

� Empirical marginal type I error rate:

X
g

Dgð1� zgÞ
.
ðG�

X
g

zgÞ=V=G0

� Empirical marginal FDR:
P

g Dgð1� zgÞP
g Dg

=V=R

� Empirical marginal targeted power: the proportion of biologically

meaningful DE genes detected at the nominal type I error

X
g

Dgz
�
g

.X
g

z�g

If one is interested in detecting DE of any size, defining "=0 will reduce

the targeted power to the classical definition of average power.

Table 1. DE detection and potential errors

zg z�g Discovery? Total

(Dg=1) (Dg=0)

�g=0 0 0 V G0 � V G0

05j�gj � " 1 0 Sa G1a � Sa G1a

j�gj4" 1 1 Sb G1b � Sb G1b

Total R G� R G
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� Empirical marginal FDC:

X
g

Dgð1� z�gÞ
.X

g

Dgz
�
g

� Empirical stratified targeted power by coverage: for genes with aver-

age coverage: (Yg=
P

i Ygi=N) in the stratum ðaj; aj+1�

X
g:aj5Yg�aj+1

Dgz
�
g

. X
g:aj5Yg�aj+1

z�g

� Empirical stratified targeted power by dispersion: for genes with dis-

persions in the stratum ðbj; bj+1�

X
g:bj5�̂g�bj+1

Dgz
�
g

. X
g:bj5�̂g�bj+1

z�g

� Empirical stratified FDC, FDR and type I error rate by coverage or

dispersion: similar to the definition of the stratified targeted power.

For experimental design, we provide a comprehensive view of the stat-

istical power as a function of not only sample size, but also coverage,

biological dispersion, proportion and magnitude of DE. We also provide

the empirical error rates to alert the user that the nominal type I error,

either in the form of raw P-value or FDR, may not be valid. Our stra-

tified view of both type I error and power shows the gain and loss in

different subsets of a transcriptome, aiding the investigators in both ex-

perimental design (choosing number of samples and sequencing depth,

for example) and analysis plan (setting filters and choosing a reasonable

control for error rate).

2.4 Power reassessment

One challenge in the sample size determination in high-throughput ex-

periment is the choice of type I error control. Classical sample size cal-

culation often assumes a valid test is available, which is often the case

when asymptotic properties can be assumed in large samples. In high-

throughput experiments with multiple testing, FDR is often a preferred

choice over family-wise type I error for its balance between false positive

and power. However, we face a 2-fold difficulty here. First, there is no

conventional guidance for FDR cutoff, as the level of acceptable FDR

often depends on the number of discoveries. With 10 total discoveries, a

20% FDR may be reasonable, but this may be considered too high if the

total discoveries reach 100. Second, many DE analysis methods report an

FDR that is a rough estimate and relies on assumptions such as inde-

pendence and exchangeability. Thus, the reported FDR may not reflect

the actual FDR. Therefore, we often want to evaluate power at several

nominal FDR levels, and assess the power as well as the validity of error

control.

For each simulation study, we thus keep all settings for data gener-

ation, and save the necessary simulation results, including the nominal P-

value, reported FDR and observed average expression and dispersion.

When we would like to reassess the power under a different choice of type

I error control, desired effect size, or choose a different stratification of

genes, we do not need to rerun the entire simulation. That greatly reduces

the computational burden.

2.5 Implementation

We implemented the proposed methods in an open-source R package

PROPER, standing for PROspective Power Evaluation for RNAseq.

The software is currently available at

http://web1.sph.emory.edu/users/hwu30/PROPER.html, and being pre-

pared to submit to Bioconductor (Gentleman et al., 2004). A vignette is

distributed with the package, which contains detailed instruction and

examples of using the package, interpreting the results and an example

of sample size justification for grant proposal.

The computational efficiency of PROPER depends on the DE detec-

tion software and the scale of the simulation. For the ones presented in

Section 3 (50 000 genes, five different sample sizes and using edgeR), each

simulation takes around 10 s on a MacPro laptop with 2.7Ghz i7 CPU

and 16G RAM, which translates to 17min for 100 simulations.

3 RESULTS

3.1 Simulation setup

To illustrate the power evaluation in various forms, we generated

results using two public datasets as our basis for simulation. The

Cheung data (Cheung et al., 2010) quantifies the expressions of

lymphoblastoid cell lines from 41 CEU individuals in
International HapMap Project (The International HapMap

Consortium, 2003). The samples are from unrelated individuals,

and the expressions show large biological variations overall. The

Bottomly data (Bottomly et al., 2011) includes 21 striatum sam-

ples from two strains of inbred mice (C57BL/6J and DBA/2J).

The expressions in this dataset show much smaller biological

variations. These two datasets, one involving a random sample

from a human population and the other involving animals from

model organisms, represent experiments with large and small

biological variations. Most of the other datasets we examined,

including almost all datasets on reCount (Frazee et al., 2011) and

80% of experiments in Barcode (McCall et al., 2011), have bio-
logical variation that falls between these two examples.

In all simulations, we use 50 000 genes and assume 5% of them

are DE. For each simulation, the read counts are generated ac-

cording to the steps described in Section 2. To be specific, the
baseline expression level �g and the dispersion parameter �g are

resampled independently from the real data. The effect size is set

to be 0 for non-DE genes, and is randomly sampled from normal

distribution Nð0; 1:52Þ for DE genes. This choice of the effect size

is only for illustration purpose. The software provides an option

for user-defined effect sizes. In practice, we recommend users

obtain effect sizes from historical data under similar biological

context.
Under each simulation scenario, we evaluate power at repli-

cate numbers 2, 3, 5, 7 and 10. We apply edgeR for DE detection

to identify DE genes, then compare the results with the truth to

evaluate both type I error control and various metrics of power.

The results presented below are averaged4100 simulations. The

aim of our method is not to compare performance of different

DE analysis methods, which often depends on simulation setting.

We choose edgeR as the illustrative method for its popularity and
speed. For all results presented below, we use "=0:5 to define

biologically meaningful DE genes.

3.2 Simulation results with independent mean and

dispersion

As an overall summary, we present a table that compares the

marginal targeted power as well as the actual type I error rate at

the user-specified control of nominal type I error. The measure-

ment of power in the form of the proportion of true DE genes

identified and the average number of DE genes identified are

both provided.
Table 2A is an example using Cheung data as the source for

simulation, at a nominal FDR at 0.1. As expected, the targeted
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power increases with sample size. In a classical multiple testing

situation with exchangeable tests, one would expect that a valid

control of FDR would mean that the ratio of true and false

discoveries is maintained as sample size increases, and the in-

crease in targeted power results from more true discoveries.

However, Table 2 shows that the actual FDR is quite different

from the nominal FDR. Under the same nominal FDR control,

we obtain less false discoveries and more true discoveries as

sample size increases, thus the actual FDR decreases. Overall,

the nominal FDR mostly underestimates the true FDR in our

simulation settings. The FDC also decreases with larger sample

size, meaning that it is cheaper to detect DE genes when there are

more replicates. Table 2B shows the result from a similar simu-

lation based on Bottomly data, which are from inbred animals

with much smaller biological variances. Results show that the

DE detection is easier in these data: the powers are considerably

higher and the FDCs are lower under the same sample size.

These imply that compared with the Cheung data, it would re-

quire less replicates here to achieve the same level of power.
FDR is often a preferred measure of type I error over the raw

P-value, owing to concerns of excessive multiple testing and the

over-conservativeness of Bonferroni correction. However, there

is no conventional cutoff of FDR as the classical significance

level of 0.05/0.01 for P-values. An acceptable FDR may

depend on the number of discoveries. Thus, we let the user

reevaluate the targeted power at a different nominal FDR

level. The summary tables for nominal FDR at 0.2 are provided

in the Supplementary Table S1.
At the first glance, the targeted power from the Cheung data-

based simulation appears rather low: only 0.58, when there are

10 replicates in each group. This is disappointing especially when

we observe that the actual FDR can be higher than the nominal

FDR. However, we strongly recommend viewing the stratified

targeted power as shown in Figure 1. Here the genes are stratified

by the average counts. Clearly larger sample size leads to better

power at all strata, as expected. But for all sample sizes, including

n=10, there is little power for the genes with low coverage

(average counts up to 10). This is not surprising because even

if there is true DE, when the expression level is so low (that is, at

current sequencing depth, only a few reads from the gene are

sequenced), the Poisson counting error shadows the real biolo-

gical difference and we do not have high probabilities of detect-

ing these DE genes while controlling for FDR. When the average

counts become moderately large (average counts greater than

10), the gain of targeted power is significant with increased

sample size. For example, the stratified targeted power for

genes with read counts between 10 and 20 increases from 0.33

to 0.73 when the number of replicates increases from 3 to 10.

Moreover, for this simulation, the stratified targeted power in-

creases sharply past the first stratum, but further increases are

modest after the average count goes beyond 20.
When the average targeted power is the goal and the stratified

targeted power varies a lot as seen in Figure 1, we may decide to

simply filter out genes with low counts: we give up the possibility

of detecting DE in this stratum knowing there is little power, but

at the same time we avoid making any false discovery as well.

For the rest of the genes, we can achieve a much higher marginal

power, as seen in Figure 2. It shows that if one discards genes

with510 average counts, the marginal targeted power will in-

crease to 0.8 (from 0.58) when the sample size is 10, using FDR

50.1 to define DE genes. The significant gains in power after

filtering are achieved from two sources: (i) reduced size of the
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Fig. 1. Top: Histogram of genes stratified by average counts. Open histo-

gram is for total number of genes and blue histogram is the counts of DE

genes. Bottom: Targeted power stratified by average counts, under

different sample sizes. Results are averaged from 100 simulations based

on Cheung data. n: the number of replicates in each group in a two-class

comparison

Table 2. Marginal targeted power analysis results from simulations when

DE are declared with nominal FDR 0.1

N FDRn FDRo power nTD nFD FDC

Cheung data

2 0.10 0.59 0.17 66.02 95.93 1.45

3 0.10 0.48 0.27 107.00 100.75 0.94

5 0.10 0.31 0.41 165.26 73.73 0.45

7 0.10 0.22 0.49 205.10 58.19 0.28

10 0.10 0.15 0.58 244.62 45.06 0.18

Bottomly data

2 0.10 0.28 0.53 343.70 136.64 0.40

3 0.10 0.24 0.62 407.79 130.35 0.32

5 0.10 0.15 0.72 482.79 85.16 0.18

7 0.10 0.11 0.77 519.17 67.61 0.13

10 0.10 0.08 0.80 547.04 53.71 0.10

N: number of replicates in each group. FDRn: nominal FDR. FDRo: observed

FDR. nTD: average number of true discoveries. nFD: average number of false

discoveries.
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true positive set, and (ii) reduced number of simultaneous tests.

These simulation results demonstrate that filtering genes with

low counts make it easier to achieve significance for the remain-

ing genes. The software package allows users to specify strata.

Additional results from using a different set of strata are pro-

vided in the Supplementary Section S6 and Supplementary

Figure S7. We recommend users explore the results under differ-

ent strata to choose proper stratification and filtering strategy.
To maximize our gain, that is, to obtain the most true discov-

eries with the same cost of false discovery, we recommend view-

ing ‘false discovery cost’ plot (Fig. 3) for the choice of filtering.

The FDC has a simple interpretation: at the current cutoff for

declaring DE, the expected number of false discovery (cost) for

each true discovery. For example, Figure 3 shows that when

there are three replicates in each group, to detect every true posi-

tive gene with average counts between 0–10, one can expect to

detect 1.3 false–positive findings. Overall, these results show that

using more replicates will decrease FDC for all strata, and genes

with greater expression levels have lower associated FDC (so it is

‘cheaper’ to detect the highly expressed DE genes).
The stratified visualization of targeted power, as seen in

Figures 1 and 3 above, sends a rather different message than

the marginal targeted power. This demonstrates that we should

not consider power as a single numeric value. We recommend

viewing several other figures simultaneously, especially when

the power we target is not the average power. For example,

in hypothesis-generating studies, our goal may be identifying a

number of leads for further study. In this case, the number of

discoveries, rather than the proportion of discoveries, is more

important. We show the average number of true discoveries in

each stratum of average gene counts in Figure 4. Results based

on the two different targeted power definitions, as seen in Figures

1 and 4, are seemingly contradictory at the first glance. This is

because genes are not evenly distributed across the strata. The

actual number of discoveries is a product of the total number of

true DE genes and the average power, thus a higher value in

either quantity can increase the number of discoveries. Though

the sensitivity of a DE detection is low in certain strata, a small

fraction of a big collection of genes can still yield a considerable

number. For example, in Figure 1, genes in the first stratum has

power several folds lower than other strata, but there are44000

genes in this stratum, 200 of which have DE. Thus a small sen-

sitivity at �25% can still lead to440 discoveries when n=10, as

shown in Figure 4. RNA-seq data reflect the wide dynamic range

of expression levels across the transcriptome, and often a large

fraction of genes are covered with modest counts. Thus, it is

common that power in absolute number of discoveries versus

power in fraction of true DEs discovered may send different

messages. Whether one should focus on the fraction of true

DE genes (Figure 1) or the actual number of true DE genes

detected (Fig. 4) depends on the purpose of the experiment. If

one aims to recover most of the transcriptomic response to a

treatment, the average power is a better guide. If one aims to

identify a number of hits in a hypothesis generating exercise to
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Fig. 2. Marginal targeted power versus sample sizes, with and without

filtering out genes with average counts lower than 10, averaged from 100

simulations based on Cheung data
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lead further study, the actual number of true DE genes identified

is more useful. We leave this judgement to the users.

Realizing that genes with low coverage have low power of DE

detection and high FDC, we may consider increasing the sequen-

cing depth as an alternative to increasing the sample size. Using

the same amount of resources (total number of sequencing

reads), which choice benefits us more? We provide a table that

compares the targeted power at various sequencing depth, so the

user can decide on a desirable combination of sequencing depth

and sample size. Table 3 shows the result based on Cheung data

at deeper and shallower sequencing. In this example, increasing

the sequencing depth does not help as much as increasing the

number of replicates. Specifically, using five replicates in each

group and double the coverage depth in Cheung data produces

marginal targeted power of 0.45. Using the same number of total

reads, one can double the sample size (to 10 replicates per

group), and use the same coverage depth as in Cheung data.

That will provide a marginal targeted power of 0.58, greatly im-

proved compared with the other strategy. These results agree

with the conclusion in Liu et al. (2014), i.e. using more replicate

is more beneficial than sequencing deeper. In real applications,

we suggest the users reproduce the table based on their simula-

tion choices, especially when the simulation is based on a differ-

ent dataset, as both the baseline expression level and the

distribution of DE magnitudes can have strong impact on stat-

istical power.

All figures presented above are based on the Cheung data. The

same set of figures for the Bottomly data is provided in the

Supplementary Materials (Supplementary Fig. S2). Owing to

smaller biological variations in inbred animals, the DE detection

is easier in Bottomly data under similar effect sizes and sequen-

cing depths. We observe, as expected, higher powers and lower

FDCs for DE detection in Bottomly data. The general conclu-

sions from the analyses are otherwise consistent with the Cheung

data.
For all results presented above, we use "=0:5 to define bio-

logically meaningful DE genes. Users may choose different "

values to define DE genes. We present a set of results from

using "=1 in Supplementary Materials (Supplementary Table

S2, Supplementary Figs S3 and S4). As expected, greater values

of " lead to better targeted power because the effect sizes are

larger. On the other hand, this also leads to decreased number of

true discoveries, which could be undesirable if the primary goal

of DE detection is to generate a set of target genes. It is advisable

for users to try different options based on these simulation results

and select proper experimental design and analysis plan.
We also provide functionality for computing the power-related

metrics stratified by biological coefficient of variation (through

dispersion). Those results are provided in the Supplementary

materials (Supplementary Figs S5 and S6). In general, genes

with greater dispersion have lower power and higher FDC,

and larger sample size helps DE detection.
Furthermore, we compared the power assessment results from

PROPER and ssize.fdr, the R package based on method by

Liu and Hwang (2007) for microarray data. In general, we found

that ssize.fdr over-estimates power (Supplementary Section

7 and Supplementary Fig. S8). That is because ssize.fdr does

not take into account the sequencing depth information, and

assumes that the power of detecting DE genes only depends on

the effect sizes. The comparison demonstrate that power calcu-

lation method developed for microarray data is not applicable

for RNA-seq data and may lead to erroneous results.

3.3 Simulation results with dispersion–mean dependency

Although its biological explanation remains elusive, dependency

between �g and �g has been reported in many studies (Anders

and Huber, 2010; Robinson et al., 2010), with low expression

genes often associated with higher dispersion. We performed

simulation when the dependence of dispersion and mean expres-

sion is preserved based on the Cheung data. To be specific, we

first estimate �g and �g for all genes, then sample �g and �g in

pairs, thus their correlation is preserved in simulation. There is a

strong negative correlation between �g and �g, e.g. genes with

higher expressions show lower biological variations.
Figure 5 shows the power analysis results. Both targeted

power and FDC increase sharply as average count increases.

Compared with the results in Section 3.2, the dependence of

targeted power and FDC on average count is stronger: the

sharp increase retains even after the average count goes

beyond 20. This is because genes with lower counts now suffer
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Fig. 5. Simulation results based on the Cheung data, with dispersion–

mean dependency

Table 3. Effect of changing sequencing depth on marginal targeted power

in simulations based on Cheung data at nominal FDR 0.1

Relative coverage 2 reps 3 reps 5 reps 7 reps 10 reps

0.2 0.13 0.22 0.34 0.43 0.51

0.5 0.15 0.25 0.38 0.47 0.56

1 0.17 0.27 0.42 0.49 0.58

2 0.19 0.30 0.45 0.54 0.62

5 0.22 0.34 0.49 0.58 0.66

10 0.24 0.36 0.52 0.61 0.69
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from higher dispersion, in addition to under higher influence of
Poisson counting error. In contrast, highly expressed genes bene-
fit from lower dispersion. In situations like these, filtering out

genes with low counts may provide even more benefit. Moreover,
in the presence of dispersion–mean dependence, it will be even
more difficult to derive a sample size formula analytically, so the

proposed method will be more important and practically useful.

4 DISCUSSION

Statistical power and sample size determination are the
most common questions we face in experimental design.

In high-throughput experiments that involve a large number of
in-exchangeable tests, statistical power is not as tractable as in
classical hypothesis testing. We demonstrate that in a RNA-seq

study, more factors affect the sample size determination in add-
ition to the effect size and variance, including the distribution of
the baseline expression level (what proportion of genes have high

coverage in the sequencing), the distribution of the biological
variation and the proportion of genes having DE. Asking a
biologist to provide specific numbers for all the above factors,

and/or to confirm that a particular parametric distribution is
reasonable for some parameter, seems unrealistic. On the other
hand, assuming the overall behavior of a factor to resemble that

in some existing dataset eases the communication. Thus, we
prefer semi-parametric simulation settings as described in

Section 2.
The definition of power itself can vary in RNA-seq experi-

ments: we may be interested in average marginal power as the

proportion of all DE genes identified, or targeted power as the
proportion of DE genes identified from a subset of genes, or we
may be interested in the number instead of proportion of DE

genes identified. For these reasons, we advocate sample size de-
cision based on a comprehensive evaluation of statistical power
as well as actual type I error, over a range of sample sizes, based

on simulation studies. We refer to this as prospective power
evaluation, as compared with fixing one set of assumptions on
effect sizes/type I error control/expression level/sequencing depth

and then compute a minimum sample size to achieve a certain
level of power, for a particular type of power. The user visualizes
the relationship between various types of power and sample size,

expression level and biological variation, and understands the
cost of false discovery in different strata of genes. The power

evaluation thus assist the decision on sequencing depth, analysis
plan (filtering or not, choice of nominal error rate), and then
based on these decisions, the user can select a sample size that

provides acceptable power.
Filtering certainly comes with sacrifice: we discard the power

completely on the genes we filter out. But the power evaluation

allows us an informative decision: we would know how much
power we give up, and make this decision before real data are
analyzed, so we reduce the number of tests, hence not having to

adjust for the tests never performed.
The fact that statistical power depends on the baseline expres-

sion level and the dispersion level has several consequences. The

first consequence is that power for "=0 (i.e., j�gj40) is often
biased toward highly expressed genes. Sometimes it may be bene-
ficial to filter out genes with counts too low, as discussed above.

The second consequence is that simulation results based on one

RNA-seq dataset may not be generalizable to experiments invol-
ving another tissue/cell type with a different expression distribu-
tion across genes. For this reason we provide options using

several public RNA-seq datasets as simulation sources. We
also let the user substitute with their choice of baseline
expression.

One way of increasing power is to increase sequencing depth.
This is apparent from the stratified power plot: when we se-
quence deeper, genes with average counts in lower strata will

move to higher strata and be associated with higher sensitivity
at the same type I error control. However, based on Figure 1,
there is a sharp increase of power when the genes average count

goes410, but remains relatively flat thereafter. If there are many
genes whose expression level is lower than but near 10, increasing
the sequencing depth may help, but there is little gain on DE

detection sensitivity for those genes that already have high
power. Thus, the impact of sequencing depth also depends on
the expression pattern of the transcriptome under study. If the

transcriptome consists of a smaller fraction of the genes with
similar level of expression, then with modest depth, most of
the genes may already reside in middle expression strata with

acceptable power.
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