
Prediction as a Humanitarian and Pragmatic Contribution from 
Human Cognitive Neuroscience

John D.E. Gabrieli1,2,3, Satrajit S. Ghosh1, and Susan Whitfield-Gabrieli1

1Poitras Center for Affective Disorders Research at the McGovern Institute for Brain Research, 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 
Cambridge, MA 02139, USA

3Institute for Medical, Engineering & Science, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA

Abstract

Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain 

and its variation across individuals (neurodiversity) in both health and disease. Such progress has 

not yet, however, propelled changes in educational or medical practices that improve people’s 

lives. We review neuroimaging findings in which initial brain measures (neuromarkers) are 

correlated with or predict future (1) education, learning, and performance in children and adults; 

(2) criminality; (3) health-related behaviors; and (4) responses to pharmacological or behavioral 

treatments. Neuromarkers often provide better predictions (neuroprognosis), alone or in 

combination with other measures, than traditional behavioral measures. With further advances in 

study designs and analyses, neuromarkers may offer opportunities to personalize educational and 

clinical practices that lead to better outcomes for people.
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Noninvasive neuroimaging has provided remarkable new insights into human brain structure 

and function in both health and disease. For over a century, understanding the human brain 

depended upon naturally occurring brain injuries or unexpected consequences of 

neurosurgeries. From clinical cases such as Leborgne, Phineas Gage, H.M., and 

commissurotomy patients, we gleaned insights, respectively, into the roles of left prefrontal 

cortex in language (Broca, 1861), ventral prefrontal cortex in decision-making and social 

behavior (Harlow, 1868/1974), the medial temporal lobe in memory (Scoville and Milner, 
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1957), and functional asymmetries between the cerebral hemispheres (Gazzaniga, 1970). 

Noninvasive neuroimaging has permitted a second wave of discoveries about the brain that 

has expanded the horizon of human neuroscience, with examination of typical functions 

across many domains of the human mind, from perception and cognition to emotion, social 

and moral thought, and economic decision-making. Further, such imaging has offered the 

first compelling evidence that neuropsychiatric and neurodevelopmental disorders reflect 

fundamental differences in brain structure and function. Uniquely, neuroimaging has 

revealed not only universal principles of functional brain organization, but also 

neurodiversity: how such brain functions vary across people in relation to age, sex, 

personality, culture, and genetics. Here, we review progress in a novel application of 

neuroimaging, the use of such measureable neurodiversity to predict future human behavior. 

Such prediction may constitute a humanitarian and pragmatic contribution of human 

cognitive neuroscience to society, but this contribution will require rigorous science and also 

ethical considerations.

Neuroscientists, psychologists, and physicians are contemplating how human neuroimaging 

may inform basic and clinical research. For basic research, there is discussion about whether 

neuroimaging has informed cognitive theories beyond the mapping of psychological 

functions to neural networks (e.g., Mather et al., 2013). For clinical research, it is 

noteworthy that the 2013 revision of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5), the defining document of diagnosis from the American Psychiatric 

Association, was little, if at all, influenced by the over 15,000 magnetic resonance imaging 

(MRI) studies of psychiatric disorders listed in PubMed (and this does not include studies 

using other methods, such as electroencephalography (EEG), magnetoencephalography 

(MEG), or positron emission tomography (PET)). Remarkable advances in genetics have 

also had little practical influence as yet on diagnosis or treatment of psychiatric disorders. 

Because psychiatric disorders are known to be heritable, and because these disorders must 

have a brain basis, it is likely that progress in genetics and neuroimaging will illuminate 

such disorders in the long run. Here, we will consider how neuroimaging may contribute to 

helping people in the nearer future.

This review focuses on structural and functional neuroimaging and considers findings in 

which an initial brain measure (a neuromarker) is associated with a future behavioral 

outcome. Some studies relate neuromarkers to individual differences in later perceptual or 

cognitive performance among typical or healthy people, and have relevance for education 

and training. Other studies relate neuromarkers to individual differences among patients 

with a given diagnosis to future clinical status or response to treatment (neuroprognosis), 

and have relevance for neuropsychiatric disorders.

Such correlational or predictive studies differ from other kinds of studies in two main ways. 

First, in the case of group studies (e.g., comparison of patient and control groups), 

neuroimaging differences are most pronounced when there is greater homogeneity of a brain 

measure within each group, so that groups are statistically separable. Conversely, greater 

heterogeneity of a brain measure within a group is more likely to yield neuromarkers that 

correlate with variable outcomes. Second, for studies that examine response to treatment, 

individual differences may delineate not the neural systems most affected by the disorder, 
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but rather heterogeneity among patients in the neural systems that are most important and 

variable for how a treatment yields benefits. For example, if a behavioral therapy helps a 

patient with a disorder to learn how to regulate thoughts or emotions, then the neuromarkers 

associated with treatment response may be in neural networks that support such learning 

rather than in networks related to the etiology or progression of the disorder.

Neuroimaging Measures

Noninvasive neuroimaging measures provide indices of human brain structure and function 

that vary in their strengths and limitations. This review focuses on measures that maximize 

spatial information, specifically MRI-derived measures. Brain structure can be quantified by 

measuring volumes, thickness, or density (voxel-based morphometry or VBM). 

Microstructural properties of white-matter pathways can be characterized by diffusion tensor 

imaging (DTI). Brain functions can be quantified via functional MRI (fMRI) by activation 

studies that correlate experimental conditions or behavioral performance with neural activity 

as indexed by changes in blood oxygenation-level dependent (BOLD) signals. During a 

resting state, with no task or stimuli, there are spontaneous fluctuations in functionally 

related brain regions that correlate with one another, and the patterns of these correlations 

may reveal intrinsic functional relations of brain regions (Biswal et al., 1995). Resting-state 

fMRI, EEG, and MEG can elucidate these networks. Because it measures hemodynamic 

response, fMRI is inherently poor in temporal resolution, whereas EEG and MEG provide 

high temporal resolution (at the loss of spatial resolution).

For applications in education or medicine, there is a trade-off between measures that are 

task-dependent (activation fMRI, MEG, and EEG) versus measures that are task-

independent (structural MRI and DTI, and fMRI, MEG, and EEG resting-state). On the one 

hand, tasks can selectively invoke brain responses to salient stimuli (e.g., to print in children 

with reading difficulty, or to sad facial expressions in depression). The advantage of this 

approach is that tasks and stimuli can be tailored to specifically assay salient mental 

operations. On the other hand, such tasks demand participant performance that can result in 

behavioral confounds, vary in design from study to study, and have not typically been 

developed to maximize reliability of measurement. In contrast, structural and resting-state 

measures can be acquired in a consistent fashion, have promise for reliability (e.g., Shehzad 

et al., 2009; Wonderlick et al., 2009; Vollmar et al., 2010), can accommodate a broad range 

of participants (including infants), and are independent of task performance in the scanner.

Analytic Approaches: From Correlation to Individualized Prediction

An ultimate goal of the use of neuromarkers for neuroprognosis is to perform individualized 

predictions of educational or health outcomes. Most studies to date have related variation in 

baseline brain measures to variation in subsequent outcomes. Given that such analyses hinge 

on knowledge of the outcomes, such analyses could be described more as postdiction than 

prediction (Whelan and Garavan, 2013). Yet, if neuromarkers are to become useful in 

practice, they must predict outcomes for new individuals based on models developed 

previously with other individuals. A cognitive neuroscience of prediction, therefore, needs 
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to build on theory and methods that allow for effective creation, evaluation, and selection of 

prediction models (Pereira et al., 2009).

The term prediction is used in three different ways in relevant research. First, prediction can 

refer to a correlation between two contemporaneous values, such as height predicting 

weight. Second, prediction can refer to the correlation of one variable in a group at an initial 

time-point to another variable in the same group at a future time-point (an in-sample 

correlation). Third, prediction can refer to a generalizable model that applies to out-of-

sample individuals. All studies reviewed here relate an initial brain measure to a future 

behavioral outcome, and the term correlation refers to in-sample findings, and the term 

prediction refers to out-of-sample generalizations.

Such research can be conceptualized as comprising three stages beginning with within-

sample correlations to discover relations of interest, progressing to predictive analyses in 

which predictions for individuals are derived from data from other in-sample individuals, 

and culminating in predictive analyses in which a model from one sample is used to predict 

outcomes in an independent sample (Figure 1). Each stage requires more participants, so that 

prior stages may justify larger-scale studies. The vast majority of findings to date are 

correlational (61 of the 72 reviewed here), but some studies reported predictive analyses 

(with only one study having fully independent samples) (Table).

The major limitation with correlational analyses reporting the significance of the overall fit 

of linear or multiple regression models to a dataset is that findings are tied to the outcome 

for a particular group. From a predictive modeling standpoint, the error from this fit is 

typically termed the training error, while the error on an unseen dataset would be called the 

test or generalization or prediction error. Training error is always an underestimate of the 

test error. The quality of a model can be evaluated by measuring its test error; minimizing 

this error is the goal of building prediction models. One way to decompose test error is to 

describe it as a sum of training error and optimism (Efron, 2004). Optimism is the difference 

between the test error, which is always higher, and the training error.

The most common approach for reducing optimism is to use a validation set in which some 

data are set aside to estimate the test error. In many studies of brain imaging, this limits the 

amount of data available for training because of small sample sizes. A common approach is 

to use cross-validation in which one divides a dataset into a number of folds. One fold is 

held aside as a test set and data from the remaining folds (training data) are used to train the 

model. This model is then applied to the test set and the model error is calculated. This 

procedure is repeated by considering each fold as a test set. The average error across the test 

folds is reported as the generalization error. If the number of folds equal the number of data 

points, then only one data point is held out for testing and this is known as Leave One Out 

Cross-Validation. In general, this approach is unbiased but typically has high variance in 

prediction error (Kohavi, 1995; Rao et al., 2008).

Another practical approach is to randomly split data into training and test sets (e.g., 10% of 

the data are in the test set). The splitting is repeated several times. On each iteration, a model 

is fit on the training data and tested on the test data. This results in a distribution of 
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prediction errors that can provide a confidence interval for a given application. However, 

such procedures can still lead to increased optimism if models are chosen or their parameters 

are tuned after peeking at the test results (Koban et al., 2013). Selecting models and their 

parameters from cross-validation on the training data can reduce such optimism. The 

training data itself can be subjected to cross-validation and subdivided into training and test 

sets to determine which model is best suited for the training data. This procedure is called 

“nested cross-validation”. Because different models may be selected for each cross-

validation split, the most selected model might be considered to be the “best” model. A 

variety of learning models coupled with cross-validation has been used in brain imaging. 

These range from linear, multiple, and logistic regression models to approaches such as 

support vector machines (SVM, Vapnik, 1999; or LASSO, Tibshirani, 1996), relevance 

vector machines (RVM, Bishop and Tipping, 2000), and Random Forests (Breiman, 2001).

The difference between the amount of variability accounted for by within-sample 

correlations and out-of-sample predictions is rarely reported. Two within-sample 

correlational studies (Aharoni et al., 2013; Demos et al., 2012) were re-analyzed by a 

different investigator (Poldrack, personal communication), and the outcome variance 

accounted for by the generalizable model was far smaller than that for the within-sample 

correlation (but see Aharoni et al., 2014). Although in most cases the predictive model 

results in a more conservative outcome than the correlational model, the difference varies 

across datasets. In all cases, however, predictive analyses will be necessary to translate 

correlational observations into educational or clinical practice.

Future Learning and Cognitive Performance in Adults

Variation in initial neuromarkers has been associated with subsequent learning or cognitive 

performance, and in most cases these variations occurred in the neural networks associated 

with the kind of learning. Larger volumes of the striatum correlated with superior video 

game skill learning (Erickson et al., 2010). This correlation was specific to the dorsal 

striatum volume, did not extend to the hippocampus or ventral striatum, and accounted for 

23% of the variance in learning. The importance of the striatum for such skill learning is 

consistent with evidence that lesions of the striatum impair skill learning (e.g., Heindel et al., 

1989). Superior word learning correlated with DTI measures of the left arcuate fasciculus, a 

white-matter pathway connecting major left-hemisphere language regions (Lopez-Barroso et 

al., 2013).

Brain differences in language-related neural systems have also been related to variation in 

learning novel speech distinctions not present in a person’s native language. Superior 

learning was associated with anatomical differences, specifically greater asymmetry (left > 

right) in parietal-lobe volumes and higher white-matter density in left Heschl’s gyrus 

(Golestani et al., 2002, 2007). Larger anatomical structures in the language-dominant left 

hemisphere may support the rapid temporal processing needed to learn novel auditory 

distinctions that occur critically in the first 30–50 ms of nonnative language sounds. 

Resting-state functional connectivity has also been associated with variation in auditory 

language learning. Better learners of a nonnative speech contrast exhibited greater functional 

connectivity (correlation) than poor learners between inferior frontal and parietal regions 

Gabrieli et al. Page 5

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



thought to be major components of the left-hemisphere language system (Ventura-Campos 

et al., 2013; other related studies reviewed in Zatorre, 2013).

Neuromarkers have also correlated with musical and visual learning. For auditory learning 

of microtonal pitch discrimination (with intervals smaller than typically used in musical 

scales), individuals who at baseline exhibited higher slopes of fMRI activation in bilateral 

auditory cortex to pitch-interval size exhibited greater learning over a two-week training 

period (Zatorre et al., 2012). The higher slope of activation may reflect a finer-grained 

cortical encoding of pitch information that potentiates more rapid learning during training. 

People who were better at learning to make fine visual discriminations had, at baseline, 

stronger functional connectivity within portions of visual cortex and between visual cortex 

and prefrontal association areas (Baldassarre et al., 2012). These regions were also a subset 

of the regions that were activated by the discrimination task itself, suggesting that initial 

individual differences within the task-evoked neural networks encouraged or discouraged 

effective learning.

The above studies examined variation in learning across individuals, but individuals also 

vary across time in their performance and learning. Two fMRI studies exploited natural 

fluctuations in resting-state BOLD signals in an attempt to distinguish brain states within an 

individual that were associated with superior or inferior performance on vigilance and 

learning tasks. In both studies, stimulus presentation was triggered via real-time fMRI when 

BOLD signals in relevant brain regions were hypothesized to be in optimal or suboptimal 

states. In the vigilance task, an individual had better vigilance (faster reaction times) for the 

appearance of an unpredictable visual target when, before the appearance of the target, 

BOLD signal was high in the supplementary motor area (a region associated with motor 

planning) and low in components of the default-mode network (a network that is more 

active during rest than most tasks and that has been associated with internal self-reflection 

rather than external perceptual attention) (Hinds et al., 2013). In the memory task, an 

individual exhibited superior learning of scenes when BOLD signals were lower before the 

appearance of a scene in the posterior parahippocampal cortex, a region that is selectively 

responsive to scenes (Yoo et al., 2012). Thus, brain states could be identified that predicted 

whether an individual was ready to be vigilant or ready to learn.

Future Learning and Education in Children

Reading and mathematics are the two foundations of education, and accordingly the focus of 

school curriculum from elementary school through high school. The first major education 

experience for children is learning to read in early school years, after which they use those 

reading skills to learn all other subjects. Some children (5–17%) have developmental 

dyslexia, which is a persistent difficulty in learning to read that is not explained by sensory, 

cognitive, or motivational factors or lack of adequate reading instruction (Shaywitz, 1998) 

and that is highly heritable (Pennington et al., 1996). The best understood psychological 

cause of dyslexia is a weakness in phonological awareness, the understanding that spoken 

words are composed of discrete sounds (phonemes) that can be mapped onto letters or 

syllables (graphemes) (Bradley and Bryant, 1978), although several other putative causes 

have been identified (reviewed in Gabrieli, 2009).
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Brain measures in infants have correlated with future success or failure in language and 

reading years before explicit reading instruction. Event-related potentials (ERPs), which are 

time-locked changes in electrical activity measured with EEG scalp electrodes, have 

revealed risk for future language and reading difficulties in newborns within hours or days 

of birth. These studies typically involve infants from families with a history of language or 

reading difficulty so as to increase the proportion of infants who will progress to language 

and reading difficulty. ERP responses to speech sounds within 36 hours of birth 

discriminated with over 81% accuracy those infants who would go on to become dyslexic at 

age 8 (Molfese, 2000). Newborns, tested within a week of birth, had ERP’s in response to 

speech sounds that correlated with language scores at ages 2.5, 3.5, and 5 years of age 

(Guttorm et al., 2005).

Some studies have reported that neuroimaging measures enhance or outperform traditional 

behavioral measures in forecasting children’s reading abilities in future months and years. 

One study examined how children ages 8–12, identified by their teachers as struggling 

readers, fared from the beginning to the end of a school year in single-word decoding skills 

(the ability to read aloud pseudowords on the basis of phoneme-grapheme mapping rules) 

(Hoeft et al., 2007). At the beginning of the school year, these children were evaluated with 

over a dozen behavioral measures of reading and reading-related skills, an fMRI task 

requiring rhyme judgments for pairs of printed words, and a voxel-based morphometry 

(VBM) analysis of anatomic grey and white matter densities. The beginning-of-the-year 

behavioral measures accounted for 65% of the variance in end-of-year scores, and the brain 

measures accounted for 57% of that variance. The combination of behavioral and brain 

measures accounted for a significantly better 81% of the variance, demonstrating enhanced 

forecasting of student reading skills across a school year.

Among children with dyslexia, there is considerable variation in the degree to which 

individual children do or do not compensate for their reading difficulty by closing the gap 

between their actual and age-expected reading skills. A longitudinal study of older children 

(mean age of 14 years) examined how behavioral measures (17 tests of reading and reading-

related skills), fMRI activation for a word-rhyming task, and DTI indices of white-matter 

organization predicted which children, over the next 2.5 years, would compensate or persist 

in their reading difficulty (Hoeft et al., 2011). None of the standard behavioral measures 

correlated with future reading gains, but the brain measures did yield such correlations 

(Figure 2). In combination, greater activation in right prefrontal cortex (a region not 

typically engaged for reading single words at this age) and greater white-matter organization 

of the right superior longitudinal fasciculus predicted with 72% accuracy whether a child 

would be in the compensated or persistent group. Multivoxel pattern analysis (MVPA) of 

whole-brain fMRI activation, a data-driven pattern classification analysis, yielded over 90% 

accuracy in classifying whether a dyslexic child at baseline would belong to the 

compensating or persistent group 2.5 years later.

Longitudinal studies have also found neuromarkers associated with future reading skills in 

children who were not selected on the basis of family history or reading difficulty. In a 5-

year longitudinal study, an auditory ERP measure (hemispheric lateralization of late 

mismatch negativity) in pre-reading kindergartners significantly improved the forecasting of 
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future reading performance in 2nd, 3rd, and 5th grades in combination with pre-reading skills 

(Maurer et al., 2009). Only the ERP measure (and not any behavioral measure) correlated 

with future reading performance in 5th grade. A visual ERP study with pre-reading 

kindergartners also reported that the combination of behavioral measures and both ERP and 

fMRI responses to print explained up to 88% of the variance in 2nd grade reading ability 

(Bach et al., 2013). These studies suggest that neuromarkers in pre-reading kindergartners 

may enhance the identification of children who will struggle to read even before reading 

instruction begins in school. This is important because current reading interventions are 

most effective in young, beginning readers, and effective intervention prior to reading 

failure may not only be more effective, but also spare children the sense of failure that often 

accompanies early struggles in reading.

In older typical readers ages 9–15, fMRI activations in response to a word-rhyming task was 

associated with nonword reading skill up to 6 years in the future, with the specific locations 

of activations depending upon the child’s age (McNorgan et al., 2011). In younger children, 

greater activation in brain regions associated with phonological recoding (e.g., inferior 

frontal gyrus) was associated with greater future reading skill, whereas for older children, 

greater activation in brain regions associated with orthographic analysis of print (e.g., 

fusiform gyrus) was associated with lesser future gains. These findings underscore how 

different developmental stages of learning to read, perhaps transitioning from a younger 

gaining of skill in single word decoding (print-to-sound correspondence) to an older 

mastering of fluent visual analysis of connected print, may invoke relatively different 

components of the brain’s reading circuitry.

There is also considerable variation in how well children can learn a second language. For 

native Chinese speakers around age 10, greater activation in response to English words and 

nonwords in left fusiform gyrus and left caudate correlated with superior English word 

reading levels a year later (Tan et al., 2011). The putative visual word form area (VWFA), 

which is highly responsive to learned print, is located in the left fusiform gyrus (Dehaene 

and Cohen, 2011). The leftward lateralization of neuromarkers may have been related to 

properties of alphabetic languages such as English, because there is evidence that variation 

in microstructural properties of right-hemisphere white-matter pathways correlated with 

initial learning of Mandarin Chinese in young adults (Qi et al., 2014). The rightward 

lateralization of neuromarkers in native English speakers associated with future successful 

initial language learning may reflect the tonal and visuo-spatial properties, respectively, of 

spoken and written Mandarin Chinese. Thus, neuromarkers correlated with second-language 

learning may vary depending on the kinds of mental resources needed to learn different 

kinds of languages.

Mathematical problem solving skills are the foundations of later performance in science and 

engineering. Academic skill in arithmetic relies on multiple cognitive processes, including 

working memory, the mental processes that support the maintenance and manipulation of 

goal-relevant information over brief time periods (reviewed in Raghubar et al., 2010). In a 

longitudinal study, children ages 6–16 underwent behavioral testing (working memory, 

reasoning, and arithmetical abilities) and fMRI while performing a visuospatial working 

memory task (Dumontheil and Klingberg, 2012). Neuroimaging analyses focused on the 
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intra-parietal sulcus (IPS), a brain region associated with both visuospatial working memory 

and numerical representation. The working memory and reasoning measures were 

independent predictors of arithmetical performance two years later. The magnitude of 

visuospatial working-memory activation in left IPS also predicted future arithmetical 

performance. Combining the neuroimaging and behavioral data more than doubled the 

accuracy of predicting future mathematical ability compared to use of only behavioral data.

The future growth of working memory ability in the same age range has also been better 

predicted by a combination of neuroimaging and behavioral measures than behavioral 

measures alone (Ullman et al., 2014). Interestingly, whereas current working memory 

capacity correlated with activation in frontal and parietal regions, future capacity was best 

predicted by structural and functional measures of the basal ganglia and thalamus. 

Specifically, greater activation in the caudate and thalamus and greater fractional anisotropy 

(FA) of surrounding white matter as measured by DTI predicted future growth in working 

memory over the next two years.

There is increasing interest in improving the effectiveness of learning through teaching that 

takes into account variation among students. One study examined whether neuromarkers 

could identify which children would benefit from a math-tutoring program for 3rd graders 

(ages 8–9) that encouraged students to shift from counting to fact retrieval as a basis for 

arithmetic problem-solving strategy (Supekar et al., 2013). Individual differences in how 

much students benefitted from the tutoring program did not correlate with baseline 

behavioral scores on tests of intelligence (IQ), working memory, or mathematical abilities. 

Conversely, at baseline, greater right hippocampal volume and resting-state intrinsic 

functional connectivity between right hippocampus and prefrontal and striatal regions 

correlated with future performance improvements (Figure 2).

Future Criminality

The criminal justice system is rife with demands for predictions of future behaviors as 

judgments are made about bail, sentencing, and parole. The demonstrated inaccuracy of 

expert clinical judgments (Monahan, 1981) has motivated the use of an actuarial approach 

that estimates risk for future antisocial behavior based on characteristics such as age, sex, 

criminal history, and drug use (e.g. Yang et al., 2010). Building on evidence that impulsivity 

(behavioral disinhibition) is a major risk factor for recidivism, brain activations to an 

impulse-control task (go/no-go task) were examined in 96 male offenders who were then 

followed longitudinally (Aharoni et al., 2013). The likelihood that an offender would be 

rearrested over a 4-year period doubled if at baseline the offender had low activation in the 

anterior cingulate cortex, a region associated with cognitive control and especially the 

resolution of cognitive conflict. Whereas the correlation between baseline brain activation 

and future rearrest was significant, there was no or weaker correlations for other predictors 

(age, scores on a psychopathy checklist, lifetime substance abuse, or behavioral error rate on 

the scanner task).
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Future Health

Studies have examined whether neuromarkers are related to future health-related behaviors, 

such as alcohol abuse, drug abuse, or unhealthy eating. Alcohol use by underage drinkers is 

an important public health problem because such use in adolescents is risky and also 

associated with life-long alcoholism. Heavy or binge drinking is the primary source of 

preventable morbidity and mortality for the more than 6 million American college students 

(Wechsler et al., 2002). Early onset of alcohol use by age 12 is associated with numerous 

undesirable outcomes in adolescence (Gruber et al., 1996), and initiation of drinking before 

age 15, versus after age 20, quadruples the likelihood of alcoholism (Grant and Dawson, 

1997).

In a longitudinal study, 12–14 year-olds with little or no history of substance abuse 

performed a go/no-go task of response inhibition while undergoing fMRI (Norman et al., 

2011). About four years later, these adolescents were divided into two groups who did or did 

not transition to heavy use of alcohol. Widespread reductions in baseline activation, 

including in prefrontal and anterior cingulate cortices, were found in adolescents who later 

transitioned to heavy alcohol use relative to those who did not. Among adolescents ages 16–

19 with an ongoing history of substance use disorders, those who exhibited less prefrontal 

and greater parietal activation on the same task had higher levels of substance use over the 

following 18 months (Mahmood et al., 2013). Overall, the findings suggest that a relative 

weakness in the recruitment of anterior brain regions that are most associated with cognitive 

control of behavior may be a predisposition for early alcohol use or sustained substance 

abuse.

Adolescents who exhibited greater activation in response to monetary rewards in the basal 

ganglia were more likely to engage in substance use (alcohol and drugs) a year later (Stice et 

al., 2013). In contrast, those who were already using substances at baseline exhibited lesser 

activation in the basal ganglia at baseline. These findings indicate that reward systems of the 

basal ganglia are also involved in substance abuse, but that brain measures of future risk for 

substance use may be quite different than brain measures reflecting the consequence of 

current use of substances.

The largest study of future adolescent misuse of alcohol followed nearly 700 adolescents 

and collected detailed histories, personality measures, genetic information, structural and 

functional MRI data, and cognitive performance measures (Whelan et al., 2014). FMRI 

tasks examined inhibitory control, reward processing, and facial expressions of emotion. In 

271 of these adolescents, a multi-domain analysis was used to predict future binge drinking. 

The most robust brain predictors of future binge drinking came from right precentral and 

bilateral superior frontal gyri, with contributions from several structural (gray matter 

volume) and functional (inhibitory control and reward outcome) features. In the predictive 

model, these brain measures were coupled with life events, personality measures, and an 

anxiety sensitivity subscale of the substance-use risk profile scale. Any one feature in 

isolation had only a modest influence on prediction, and many of the features predicting 

future misuse were different from the features dissociating groups of binge drinkers and 

non-binge drinkers. Such a study highlights the multiple causal factors for substance abuse, 
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as well as the scale of data needed to predict the future unfolding of such multifaceted 

processes.

Healthy eating so as to avoid or reduce obesity is also a major public health concern. 

Neuroimaging studies have reported that fMRI activations in response to food-related 

pictures forecast future changes in body mass index (BMI) over the next six months to one 

year. Two studies examined the relation between baseline fMRI activations and weight gain 

over the following year in girls identified as having body image concerns. Activations in 

response to palatable food occurred in brain regions associated with reward anticipation 

(e.g., regions of basal ganglia) or reward valuation (e.g., orbitofrontal cortex). In one case, 

dopamine-related genetic variation interacted with blunted brain activation to correlate with 

elevated risk for future weight gain (Stice et al., 2010). In another case, lateral orbitofrontal 

cortical activation during initial orientation to appetizing food cues correlated with future 

increases in BMI over a 1-year period (but behavioral patterns of response did not correlate 

with BMI increases) (Yokum et al., 2011).

Another study demonstrated the specificity of brain activations to food cues in relation to 

future weight gain (Demos et al., 2012). Women arriving at college saw pictures of food, 

sexual scenes, and control pictures during fMRI. At baseline and again towards the end of 

the school year, the women’s weights and self-reports of sexual behavior were measured. 

Greater initial response in the reward-responsive nucleus accumbens for food pictures 

correlated with greater BMI gains 6 months later, whereas greater initial response to sexual 

scenes correlated with greater sexual desire and more sexual experiences 6 months later.

In a related study, college age-women participated in an fMRI study of brain responses to 

pictures of foods and for response inhibition on a go/no-go task, followed by experience 

sampling via smartphone. Over the course of one week, they were periodically asked to 

report their desire to eat food, attempts to resist the temptation to eat, and whether or not and 

how much they actually ate (Lopez et al., 2014). Greater nucleus accumbens activation to 

food pictures correlated with greater desires for food, more likelihood to give in to the 

temptation to eat, and larger amounts eaten. Greater activation of the inferior frontal gyrus 

during response inhibition was associated with reduced surrender to temptation and less 

eating. Overall, these studies suggest that an interplay between response to food cues that 

occurs in reward-sensitive striatal and orbitofrontal regions and response in cognitive control 

regions of the lateral prefrontal cortex contributes to future healthy or unhealthy eating 

patterns.

Another health-related behavior is the use of sunscreens for protection against sunburn and 

some forms of skin cancer. In one study, participants saw slides communicating the 

importance and proper application of sunscreen (Falk et al., 2010). Participants also reported 

recent use of, intentions to use, and attitudes toward sunscreen. Greater activation in medial 

prefrontal cortex, a brain region associated with self-reference, correlated with changes in 

the use of sunscreen as measured by an unexpected self-report one week later. Brain 

measures accounted for about 25% of the change in use of sunscreen above and beyond self-

reported changes in attitudes and intentions following presentation of the health information 

during scanning. Activation in medial prefrontal cortex may broadly represent value, 

Gabrieli et al. Page 11

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



because the magnitude of activation in that brain region (and the striatum) in response to 

individual consumer goods was associated with subsequent preferences for choosing those 

goods (Levy et al., 2011).

Some studies have examined how brain function at one point in time correlates with mental 

health outcomes at future time points, independent of treatment. For example, greater 

amygdala activation to emotional facial expressions among patients with depression 

correlated with reduced symptoms of depression 6 month later, controlling for initial 

depression severity and medication status (Canli et al., 2005). In a memory paradigm with 

negative pictures, greater baseline activation for successfully recalled pictures in posterior 

cingulate cortex and medial prefrontal cortex correlated with greater improvement in 

depressive symptoms 18 months later (Foland-Ross et al., 2014).

Future Response to Treatment

Biomarkers in general, and neuromarkers in particular, are not used currently to predict 

treatment response for neuropsychiatric disorders despite considerable evidence that any 

specific pharmacological or behavioral treatment is likely to be effective for some patients 

but ineffective for a considerable number of other patients. Measurement of treatment 

efficacy varies, but it typically involves a patient report or clinician observation, often via a 

structured interview or questionnaire. A highly effective treatment results in remission, the 

absence of symptoms, or in a substantial response, defined as an outcome in which the 

patient remains somewhat symptomatic but is much improved (Frank et al., 1991).

Across many neuropsychiatric diagnoses, remission or substantial response occurs in about 

50% of patients for a given therapy. For depression, cognitive behavioral therapy (CBT) is 

effective in 40–60% of patients (Hollon et al., 2002) and selective serotonin reuptake 

inhibitors are effective in 40–60% of patients, although many patients who fail to respond to 

an initial treatment will respond to another treatment or combination of treatments (Souery 

et al., 2006). Similar 40–60% success rates for a given pharmacological or behavioral 

treatment have been reported for generalized anxiety (Pollack et al., 2003), social anxiety 

disorder (Otto et al., 2000), and ADHD (Wender, 1998; Biederman et al., 2010). This 

variability in treatment response, which is not understood and not simply a consequence of 

disease severity, suggests that there are clinically important neurobiological differences 

among patients sharing a diagnostic label such that a specific treatment will be effective for 

some but not other patients.

To a remarkable degree, there is an absence of evidence about which treatment is likely to 

be effective for a particular patient. Although patients often do benefit from a second or 

third sort of attempted treatment, there is considerable human and economic cost for 

delaying effective treatment for patients and families who are often in crisis. The idea of 

personalized medicine, that people vary in their response to treatments and that more 

effective medicine can be practiced by knowing which treatment is most likely to benefit a 

particular patient, has been associated often with genetics. It seem plausible, however, that 

quantitative brain measures may also reveal variation among patients that provides an 
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evidence-based rationale for what treatment is most likely to help a particular patient among 

currently available treatments.

Future Response to Pharmacological Treatment

Over 20 studies of depression have reported that pre-treatment neuroimaging measures can 

correlate with or predict clinical improvement following pharmacological treatment 

(reviewed in Pizzagalli et al., 2011, Fu et al., 2013). In one study, prior to treatment there 

was reduced subgenual anterior cingulate cortex (ACC) metabolism measured by PET in 

patients who subsequently responded poorly to medicine relative to either healthy controls 

or patients who responded well to medication and who exhibited greater-than-normal 

metabolism (Mayberg et al., 1997). No clinical measure, such as depression severity, or 

behavioral measure, such as cognitive performance, distinguished the patients who would or 

would not respond to treatment. The subgenual ACC (Brodmann area 25) is especially 

salient for depression because it has been shown to be functionally and structurally atypical 

in depression (Drevets et al., 1997), and been a target for deep brain stimulation treatment of 

depression (Mayberg et al., 2005).

A meta-analysis of 20 studies on depression supported the conclusion that increased baseline 

activation of ACC, extending into orbitofrontal cortex, was associated with better treatment 

response, but that decreased activation of insula and striatum was also associated with better 

treatment response (Fu et al., 2013). In an fMRI activation study in which patients viewed 

faces with sad facial expressions of varying intensity, a machine learning approach (SVM 

and leave-one-out cross-validation) identified patients who would have remission with 71% 

sensitivity/86% specificity (Costafreda et al., 2009). There is also evidence that structural 

brain measures at baseline were associated with treatment outcome. Across studies, worse 

response to treatment has been associated with decreased grey matter volume in left 

dorsolateral prefrontal cortex and also in right hippocampus (Fu et al., 2013). Finally, 

repetitive transcranial magnetic stimulation (rTMS) is a less common treatment for 

depression, but resting-state functional connectivity measures have been associated with 

clinical response to such treatment (Salomons et al., 2013). Higher cortico-cortical 

connectivity and lower cortico-thalamic, cortico-striatal, and cortico-limbic connectivity at 

baseline were associated with better treatment response.

In an open-label study examining the efficacy of treating generalized anxiety disorder with 

venlafaxine, patients viewed faces with fearful or neutral expressions. Greater activations for 

fearful relative to neutral faces in rostral ACC and lesser activations for fearful relative to 

neutral faces in left amygdala both correlated with greater clinical improvement (Whalen et 

al., 2008). These correlations occurred despite no activation differences in the rostral ACC 

or amygdala either between patients and controls or between pre-treatment and post-

treatment in the patients, who did improve clinically in response to treatment. Such a finding 

underscores the idea that neuromarkers that are associated with treatment response need not 

reflect the same functions as those related to etiology.
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Future Response to Behavioral Treatment

Perhaps the best validated kind of behavioral treatment for neuropsychiatric disorders is 

cognitive behavioral therapy (CBT), which meta-analyses indicate to be effective for many 

disorders, including depression, generalized anxiety disorder, panic disorder, and social 

anxiety disorder (e.g., Butler et al., 2006; Hofmann et al., 2012). Multiple studies have 

reported that CBT is similarly effective as pharmacological treatments for depression 

(DeRubeis et al., 2005), generalized anxiety disorder (Mitte, 2005), pediatric anxiety 

(Walkup et al., 2008), and social anxiety disorder (Heimberg et al., 1998). For disorders that 

are treated primarily with medications, CBT has been shown to enhance clinical outcome 

relative to other augmentations for obsessive-compulsive disorder (OCD) (Simpson et al., 

2013) and schizophrenia (Grant et al., 2012).

Several neuroimaging studies have reported that pre-treatment neuroimaging measures 

correlate with or predict the magnitude of clinical improvement following CBT in unipolar 

major depression, schizophrenia, and social anxiety disorder. The initial study relating pre-

treatment brain function to clinical efficacy of CBT occurred in 14 unmedicated patients 

with depression who viewed emotionally negative words prior to treatment. Both less 

sustained activation in subgenual ACC and more sustained activation in amygdala were 

associated with greater improvement in response to CBT (Siegle et al., 2006). The finding 

that less sustained activation in subgenual ACC was associated with better future response to 

CBT was replicated and extended in a larger study of patients with depression (Siegle et al., 

2012). This study is noteworthy in its use of a model generated from one cohort being used 

to predict the outcomes of an independent cohort.

For patients with schizophrenia being treated pharmacologically, about half respond 

beneficially to additional CBT treatment (e.g., Wykes et al., 2008). In one set of overlapping 

studies, patients receiving CBT exhibited clinical improvements relative to patients who did 

not receive CBT (Kumari et al., 2009; Premkumar, et al., 2009; Kumari et al., 2011). The 

magnitude of clinical benefit among the patients receiving 6–8 months of CBT correlated 

with both baseline functional and structural measures. Patients who exhibited stronger 

activation in dorsolateral prefrontal cortex (DLPFC) during performance of a working 

memory task, and who exhibited stronger DLPFC-cerebellar functional connectivity in the 

most demanding condition of the task, derived greater benefit from CBT (Kumari et al., 

2009). In another fMRI study, patients read aloud single words, heard either their own or 

another person’s voice that was or was not distorted, and then judged whether they had 

heard their own voice or that of another (Kumari et al., 2010). Across several contrasts, 

greater activation in left inferior frontal gyrus and lesser inferior parietal and medial 

prefrontal deactivation were associated with greater CBT benefit. Greater engagement of 

prefrontal regions in patients who benefitted more from CBT may be related to regulatory 

processes that can support effective CBT. There has also been some evidence for separable 

neuromarkers related to CBT response for positive symptoms (excess or distorted normal 

functions such as hallucinations or delusions) versus negative symptoms (diminished normal 

functions such as apathy or withdrawal) (Premkumar et al., 2009). Importantly, baseline 

symptom severity did not correlate with CBT response, so that the neuromarkers provided 

measures associated with future CBT benefit that were not clinically evident at baseline.
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Current behavioral measures poorly predict treatment outcome in social anxiety disorder, 

another disorder often treated with CBT. Prior to CBT, patients viewed angry versus neutral 

faces or negative versus neutral scenes during fMRI (Doehrmann et al., 2013). Consistent 

with the social nature of this anxiety disorder, activations in response to scenes were not 

associated with treatment outcome, but activations to angry relative to neutral faces were 

associated with CBT outcome. Greater activations in higher-order visual cortices were 

predictive of superior treatment outcome (Figure 3). Initial greater clinical severity 

accounted for about 12% of the variance in treatment outcome, whereas the combination of 

baseline neuroimaging and clinical severity accounted for about 40% of the outcome 

variance. Similar findings were observed at a less conservative statistical threshold in 

prefrontal cortices, and it is possible that the relations between prefrontal and higher-order 

visuo-perceptual cortices may support or constrain the self-regulatory processes that are 

taught in CBT (i.e., that these results revealed variation in the neural mechanisms that 

support CBT response, rather than those of social anxiety disorder).

A study of patients with generalized anxiety disorder or panic disorder aimed to develop 

measures that might be sensitive to single-subject responses to treatment (Ball et al., 2013). 

Patients saw negative scenes and either maintained or reduced (via reappraisal) their 

emotional response to the scenes. A random forest classification was used to identify brain 

regions in which activations best predicted treatment outcome; there were greater activations 

for responders than non-responders in hippocampus during the maintenance of negative 

images, and in anterior insula, superior temporal, supramarginal, and superior frontal gyri 

during reappraisal of negative images. The neuroimaging measures yielded superior 

accuracy, sensitivity, and specificity in identifying individual patients as future responders 

or non-responders to treatment than did clinical or demographic variables. This study 

provides an example of data-driven analyses that are predictive even though the specific 

patterns of activation are not readily interpretable in a cognitive neuroscience framework.

For OCD, structural measures at baseline have been associated with variability in response 

to exposure therapy (Fullana et al., 2014). Thinner cortex in left rostral ACC at baseline was 

associated with better responses to therapy. This same region was thinner overall in patients 

than controls, so greater differences from controls were associated with better outcomes. 

The neuroanatomical locus is similar to that observed often in studies of depression 

outcomes, which raises the possibility that similar neural mechanisms may support 

behavioral therapies across diagnoses.

The above studies examined the relations between pre-treatment neuromarkers and one kind 

of treatment, such as CBT, or a medication, or rTMS. The relevant choice that must be made 

by a patient or physician, however, is not whether to pursue one kind of treatment, but rather 

to select among alternative treatments. Therefore, an important and practical goal is to 

examine whether there are differential predictors of effectiveness for alternative treatments. 

One study employed PET imaging prior to patients being randomly assigned to a medication 

(escitalopram oxalate) or CBT to treat their depression (McGrath et al., 2013b). Six limbic 

and cortical regions showed a differential response to the two treatments, with right anterior 

insula hypometabolism correlating with future remission to CBT (and poor medication 

response), and right anterior insula hypermetabolism correlating with future remission to 
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medication (but a poor response to CBT) (Figure 4). Subgenual ACC metabolism was 

higher in patients who failed to respond to either treatment than in patients who remitted 

from depression (McGrath et al., 2013a).

Another study with a small number of pediatric patients with generalized anxiety also found 

correlations between pretreatment brain functions and treatment outcomes, but did not find 

differences between behavioral (CBT) and pharmacological (fluoxetine) treatments. Greater 

baseline activation of the amygdala to negative facial expressions was associated with better 

symptom improvement regardless of treatment type (McClure et al., 2007).

Future Relapse for Alcohol, Drug Addiction, Smoking, and Diet

Alcoholism, drug addiction, smoking, and obesity are major public health problems that 

share a similar treatment aim, namely abstinence from a substance that is harmful to the 

brain and body. Several studies have examined relations between neuromarkers and whether 

individuals abstain successfully or relapse into their health problems. Generally, these 

studies examined patients who recently became abstinent at the initiation or termination of a 

treatment program, and then followed these patients over weeks or months to learn which 

patients continued to abstain versus those who relapsed. Improved identification of risk for 

relapse could support individualized treatment approaches that vary for those at minimal or 

maximal risk for relapse.

At least 60% of patients who seek treatment for an alcohol-use disorder relapse within 6 

months following treatment (Maisto et al., 2006; Udo et al., 2009), and there have been 

several studies in which baseline brain measures are associated with future abstinence versus 

relapse. In two studies of recently abstinent patients, greater activation of the basal ganglia 

(putamen), ACC, and medial prefrontal cortex in response to alcohol-associated visual 

stimuli was associated with greater likelihood of relapse 3 weeks or 3 months later (Braus et 

al., 2001; Grusser et al., 2004). Other measures, such as self-reported intensity of craving, 

history of intake, or duration of abstinence before scanning, were not associated with 

likelihood of relapse. Both anatomic (Rando et al., 2011) and regional cerebral blood flow 

(Noel et al., 2002) studies reported that baseline measures of the medial prefrontal cortex 

were associated with likelihood of relapse. Similarly, patients who relapsed exhibited 

reduced volumes of medial and/or lateral prefrontal cortex (Durazzo et al., 2011; Cardenas 

et al., 2011) and reduced white-matter FA in frontal regions (Sorg et al., 2012) relative to 

patients who sustained abstinence. Broadly, greater reward response to alcohol-related 

stimuli and lesser strength in cognitive control regions were related to relapse.

Relapse after treatment occurs at an estimated 50% rate within a year among individuals 

with stimulant dependence who seek treatment (Miller, 1996). Several neuroimaging studies 

have reported that neuromarkers can contribute to identification of future abstinence or 

relapse. One group of patients with methamphetamine dependence underwent fMRI 3 or 4 

weeks after cessation of drug use and near completion of a 28-day inpatient program, and 

were followed for about a year at which point about half of the patients had relapsed (Paulus 

et al., 2005). During fMRI, participants attempted to either predict where a stimulus would 

appear or to simply note that a stimulus had appeared. None of multiple sociodemographic, 

baseline symptom, or use characteristics predicted relapse, but those patients who would 
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later relapse exhibited greater activation than those who would not relapse in multiple brain 

regions, including prefrontal, parietal, and insular cortices. A pattern of activation across 

right insular, posterior cingulate, and temporal regions correctly identified 20 of 22 patients 

who did not relapse, and 17 of 18 patients who did relapse. Other studies have reported 

correlations between baseline fMRI activations and future relapse for cocaine use after 1 

week (Prisciandaro et al., 2013), after a 10-week outpatient program (and a better predictor 

than subjective reports of craving) (Kosten et al., 2006), and after an 8-week outpatient 

program (Brewer et al., 2008; Jia et al., 2011). Specific locations of activations that 

correlated with future relapse varied across these studies, perhaps reflecting differences in 

experimental paradigms, analyses, or participants.

Tobacco smoking is the leading preventable cause of death in the developed world, with one 

billion tobacco-related deaths projected for the 21st century (World Health Organization, 

2008). Identifying smokers at high-risk for relapse could influence the design of cessation 

programs to fit with individual risk profiles. In one study, adult nicotine-dependent women 

underwent fMRI while viewing smoking-related and unrelated pictures before quitting 

smoking (Janes et al., 2010). The women then made an attempt to quit smoking, and pre-quit 

measures were related to subsequent success or failure in smoking cessation. Greater 

baseline activation to smoking-related pictures in the insula correlated with likelihood of 

future relapse. The identification of insula reactivity as a correlate of future relapse is of 

interest because lesions to the insula in smokers were associated with reduced smoking that 

was immediate and without relapse (Naqvi et al., 2007). Smokers who did not quit 

successfully also exhibited reduced functional connectivity between an insula-containing 

network and dorsolateral prefrontal cortex and dorsal ACC, suggesting a weakness in 

interactions between brain regions associated with smoking desires with regions associated 

with cognitive control. A combination of brain functional data and a behavioral task resulted 

in 79% accuracy in identifying smokers who would or would not abstain from smoking. 

Future success in quitting smoking has also been associated with grey-matter volumes in 

cortical and subcortical regions (Froeliger et al., 2010).

Brain measures may also help identify what sort of information presented to people aiming 

to quit smoking are likely to be effective. Ads aimed at encouraging people about to try to 

quit smoking were presented during fMRI, and relapse was followed for a month (Falk et 

al., 2011). Greater activation in medial prefrontal cortex at baseline was associated with 

successful quitting. The addition of the brain measures to other measures (self-reported 

intentions, self-efficacy, and ability to relate to the ads), more than doubled the accuracy of a 

model accounting for changes in smoking behavior. In another study with a large number of 

smokers, increased activation in brain regions associated with self reference, especially the 

medial prefrontal cortex, in response to individually tailored smoking cessation messages 

was associated with the probability of quitting 4 months later (Chua et al., 2011).

Healthy eating is a goal for individuals with obesity, and there is evidence that brain 

measures at baseline are associated with short- and long-term outcomes in a weight-loss 

program (Murdaugh et al., 2012). Obese individuals viewed high-calorie food versus control 

pictures before and after a 12-week weight-loss program, with a 9-month follow-up. Greater 

baseline activation in the nucleus accumbens, insula, and ACC in response to high-calorie 
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food pictures correlated with lesser weight loss after 12 weeks. Further, less successful 

weight maintenance at 9 months correlated with greater post-treatment activation in insula, 

ventral tegmental area, and other regions. The relevant regions are associated with 

interoception (insula), reward (nucleus accumbens, ventral tegmental area), and cognitive 

control (anterior cingulate), which are all processes related to dietary decisions.

Future Response to Placebos

Positive medical responses to placebo treatments are often powerful and can rival the 

effectiveness of active treatments, such as medicines for depression (e.g., Walsh et al., 

2002). Consequently, exploitation of placebo mechanisms may offer a safe therapeutic 

approach for some patients, but there is evidence for considerable variation in response to 

placebos (Walsh et al., 2002). Most studies of the brain basis of individual differences in 

placebo responses have focused on pain, in part because cortical and subcortical brain 

regions involved in pain have been relatively well characterized. Placebo analgesia (the 

positive influence of placebo on experienced pain) was related to a pattern of increased 

activation in several cortical control regions and decreased activation in somatosensory 

activation during the anticipation of pain, rather than activation during reported analgesia to 

pain itself (Wager et al., 2011). Patients with better future response to placebo treatments 

exhibited lesser resting-state functional connectivity between medial prefrontal cortex and 

insula during a pain-rating task (Hashmi et al., 2012). Furthermore, greater network 

efficiency during the resting-state was associated with better response to future 

psychologically mediated analgesia related to treatment for chronic knee pain (Hashmi et al., 

2014). A range of other findings also indicate that functional and structural brain measures 

may help identify individual patients most likely to benefit from placebo treatments 

(reviewed by Koban et al., 2013).

Predicting Individual Futures with Neuromarkers: Hopes and Challenges

As reviewed above, neuromarkers obtained from noninvasive brain imaging have shown 

great promise for identifying children and adults more likely to learn well or poorly in 

particular domains, more likely to progress to unhealthy (or even criminal) behaviors, and 

more likely to respond to particular pharmacological, behavioral, or placebo treatments for 

many neurodevelopmental and neuropsychiatric disorders. Although the amount of scientific 

evidence is modest in many areas (with reading and depression having perhaps the greatest 

concentrations of studies to date), there are also numerous studies reporting that predictive 

neuromarkers either outperform or significantly enhance traditional measures of individual 

variability, such as self-reports, clinical rating scales, or scores on educational or 

neuropsychological tests. It is these kinds of studies that express both a practical and 

humanitarian possibility of improving lives through recognizing individual differences in 

brain function and structure that greatly influence the diversity of educational and clinical 

outcomes, and using that recognition to individually optimize educational and clinical 

practices.

Because of these hopes, the challenges of translating cognitive neuroscience measures into 

better futures for people need to be carefully identified and thoughtfully overcome. First, 

many of the reviewed studies were performed with relatively small samples, and in 
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particular many of the older studies used statistical approaches that were overly liberal by 

current standards. Although such pioneering studies must often begin with modest resources 

because it is their outcomes that justify larger studies, the translation of such science to 

practical application now requires larger studies that can support more rigorous statistics. 

This is particularly true for studies of neurodiversity that focus on individual differences 

because there must be adequate sampling not only of a population as a whole, but also the 

diversity of individuals within that population. Second, studies must mature from 

correlations between baseline measures and clinical or educational outcomes to predictive 

models that apply the outcomes from one group (training set) to another group (test set) and 

finally to an individual. This is essential because use of such measures must operate with 

new individuals for whom a clinical or educational intervention is being planned. Third, few 

studies have integrated findings across multiple imaging modalities, even when the multiple 

brain measures could be made during a single MRI session. Combining multiple kinds of 

neuromarkers may enhance their predictive accuracy. Fourth, it will be important for future 

studies to involve plausible, alternative interventions (e.g., McGrath et al., 2013b) because 

the question is less often whether a person should receive help, but rather which kind of help 

is most likely to rapidly improve the person’s education, skills, or health.

Neuromarkers will be useful to the extent they outperform, alone or in combination with 

traditional measures, measures that are otherwise available. Indeed, multiple studies have 

reported such value from neuromarkers, but other studies have not examined whether the 

neuromarkers significantly improve predictions above and beyond readily available 

measures. All forms of brain and behavioral assessment improve over time, and perhaps a 

new behavioral assessment will outperform neuromarkers in the near or distant future. At 

the same time, behavioral assessments in many educational and clinical areas have been 

developed and maintained over many years, so it is unknown when breakthroughs might 

occur. Perhaps neuroimaging measures will be also useful tools in developing a new 

generation of brain-validated behavioral assessments that can be readily used in schools, 

hospitals, and medical offices. At the conceptual limit, there ought to be a strong relation 

between measures of mind and brain, such that a new generation of behavioral measures 

could capitalize on the novel insights of neuroimaging.

If neuroimaging remains necessary for optimal prediction, there could be concerns about 

cost and availability of MRIs or other measures. In this regard, the cost of MRI imaging in 

particular has raised concerns about its potential wider use. One solution for availability 

could be to use more transportable technologies, such as wireless EEG devices, with 

assessment paradigms developed through coupled MRI and EEG studies. Any economic 

analysis, however, ought to include the costs of current practices in which patients are often 

inadvertently directed to treatments that turn out to be ineffective for that patient (often 

around half of patients for a given treatment in many cases) or in which children must 

demonstrate academic failure before receiving educational intervention. The cost of a 

neuropsychological assessment and report for an individual child or adult, for example, 

often exceeds that of an MRI.

If neuromarkers are proven to enhance prediction, there will be ethical and societal issues to 

consider. Because of their biological nature, brain measures can be overly valued and 
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potentially divert public and scientific interest in behavioral and social factors (Kagan, 

2013). If neuromarkers become more useful, they will provoke questions about how to most 

ethically use predictive information to help people rather than simply select people most 

likely to succeed. This important concern, however, must be weighed against the 

questionable validity of many current practices, such as the finding that parole decisions 

made by experienced judges appear to be greatly influenced by the time of day and 

proximity to a meal at which a case is reviewed (Danziger et al., 2011), or that medical 

schools continue to conduct interviews for admissions despite evidence that decisions based 

on such interviews have no correlation with objective measures of medical school 

performance (DeVaul et al., 1987; Milstein et al., 1981). For in-patient treatments for 

substance abuse, there is little scientific justification for the prototypical 28-day treatment 

period. Even an imperfect predictive measure of relapse may lead to more rational treatment 

durations that are related to individual variation. Neuromarkers and neuroprognosis may 

offer practical and valuable contributions because so many current educational and medical 

decisions occur in the absence of scientific evidence that can guide those decisions.

The present review considered mostly studies with relatively short-term longitudinal 

educational and clinical outcomes, but future research may also attempt to predict longer-

term outcomes. Educational and medical practices often respond to crisis, such as failure in 

learning to read or in coping with depression. Longer-term research may examine whether 

neuromarkers can help identify children at early risk, with the hopes of diverting those 

children away from a trajectory towards failure and crisis (such as ongoing studies 

attempting to identify whether infants at familial risk for autism will or will not progress to 

autism over the next few years (Bosl et al., 2011; Wolff et al., 2012)). Such early predictions 

may require novel forms of intervention (e.g., language learning remediation in 2- or 3-year-

olds that minimizes their difficulty in learning to read as 5- and 6-year-olds) with the hope 

that such children never experience the crises as children or adults that now initiate 

intervention.

Acknowledgments

We thank Cynthia Gibbs, Sara Beach, Elizabeth Norton, Allyson Mackey, Jon Walters, and Maheen 
Shermohammed for help with the manuscript. Writing of this paper was supported by the Poitras Center for 
Affective Disorders Research at the McGovern Institute for Brain Research and NIH grant R01HD067312.

References

Aharoni E, Vincent GM, Harenski CL, Calhoun VD, Sinnott-Armstrong W, Gazzaniga MS, Kiehl KA. 
Neuroprediction of future rearrest. Proc Natl Acad Sci USA. 2013; 110:6223–6228. [PubMed: 
23536303] 

Aharoni E, Mallett J, Vincent GM, Harenski CL, Calhoun VD, Sinnott-Armstrong W, Gazzaniga MS, 
Kiehl KA. Predictive accuracy in the neuroprediction of rearrest. Soc Neurosci. 2014; 9:332–336. 
[PubMed: 24720689] 

Bach S, Richardson U, Brandeis D, Martin E, Brem S. Print-specific multimodal brain activation in 
kindergarten improves prediction of reading skills in second grade. Neuroimage. 2013; 82:605–615. 
[PubMed: 23727320] 

Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M. Individual variability 
in functional connectivity predicts performance of a perceptual task. Proc Natl Acad Sci USA. 
2012; 109:3516–3521. [PubMed: 22315406] 

Gabrieli et al. Page 20

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Ball TM, Stein MB, Ramsawh HJ, Campbell-Sills L, Paulus MP. Single-subject anxiety treatment 
outcome prediction using functional neuroimaging. Neuropsychopharmacology. 2013; 39:1254–
1261. [PubMed: 24270731] 

Biederman J, Mick E, Surman C, Doyle R, Hammerness P, Kotarski M, Spencer T. A randomized, 3-
phase, 34-week, double-blind, long-term efficacy study of osmotic-release oral system-
methylphenidate in adults with attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 
2010; 30:549–553. [PubMed: 20814332] 

Bishop, CM.; Tipping, ME. Variational Relevance Vector Machines. Proceedings of the Sixteenth 
Conference on Uncertainty in Artificial Intelligence; San Francisco, CA, USA: Morgan Kaufmann 
Publishers Inc; 2000. p. 46-53.

Biswal B, Yetkin FA, Houghton VM, Hyde JS. Functional connectivity in the motor cortex of resting 
human brain using echo-planar mri. Magn Reson Med Sci. 1995; 34:537–541.

Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum 
disorder risk. BMC Med. 2011; 9:18–34. [PubMed: 21342500] 

Bradley L, Bryant P. Difficulties in auditory organisation as a possible cause of reading backwardness. 
Nature. 1978; 271:746–747. [PubMed: 625341] 

Braus D, Wrase J, Grüsser S, Hermann D, Ruf M, Flor H, Mann K, Heinz A. Alcohol-associated 
stimuli activate the ventral striatum in abstinent alcoholics. J Neural Transm. 2001; 108:887–894. 
[PubMed: 11515754] 

Breiman L. Random Forests. Mach Learn. 2001; 45:5–32.

Brewer JA, Worhunsky PD, Carroll KM, Rounsaville BJ, Potenza MN. Pretreatment brain activation 
during stroop task is associated with outcomes in cocaine-dependent patients. Biol Psychiatry. 
2008; 64:998–1004. [PubMed: 18635157] 

Broca P. Remarks on the seat of the faculty of articulate language, followed by an observation of 
aphemia. Some papers on the cerebral cortex. 1861:49–72.

Butler AC, Chapman JE, Forman EM, Beck AT. The empirical status of cognitive-behavioral therapy: 
a review of meta-analyses. Clin Psychol Rev. 2006; 26:17–31. [PubMed: 16199119] 

Canli T, Cooney RE, Goldin P, Shah M, Sivers H, Thomason ME, Whitfield-Gabrieli S, Gabrieli JD, 
Gotlib IH. Amygdala reactivity to emotional faces predicts improvement in major depression. 
Neuroreport. 2005; 16:1267–1270. [PubMed: 16056122] 

Cardenas VA, Durazzo TC, Gazdzinski S, Mon A, Studholme C, Meyerhoff DJ. Brain morphology at 
entry into treatment for alcohol dependence is related to relapse propensity. Biol Psychiatry. 2011; 
70:561–567. [PubMed: 21601177] 

Chua HF, Ho SS, Jasinska AJ, Polk TA, Welsh RC, Liberzon I, Strecher VJ. Self-related neural 
response to tailored smoking-cessation messages predicts quitting. Nat Neurosci. 2011; 14:426–
427. [PubMed: 21358641] 

Costafreda SG, Khanna A, Mourao-Miranda J, Fu CH. Neural correlates of sad faces predict clinical 
remission to cognitive behavioural therapy in depression. Neuroreport. 2009; 20:637–641. 
[PubMed: 19339907] 

Danziger S, Levav J, Avnaim-Pesso L. Extraneous factors in judicial decisions. Proc Natl Acad Sci 
USA. 2011; 108:6889–6892. [PubMed: 21482790] 

Dehaene S, Cohen L. The unique role of the visual word form area in reading. Trends Cogn Sci. 2011; 
15:254–262. [PubMed: 21592844] 

Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food 
and sexual images predict weight gain and sexual behavior. J Neurosci. 2012; 32:5549–5552. 
[PubMed: 22514316] 

DeRubeis RJ, Hollon SD, Amsterdam JD, Shelton RC, Young PR, Salomon RM, O’Reardon JP, 
Lovett ML, Gladis MM, Brown LL. Cognitive therapy vs medications in the treatment of 
moderate to severe depression. Arch Gen Psychiatry. 2005; 62:409–416. [PubMed: 15809408] 

DeVaul RA, Jervey F, Chappell JA, Caver P, Short B, O’Keefe S. Medical school performance of 
initially rejected students. JAMA. 1987; 257:47–51. [PubMed: 3783902] 

Doehrmann O, Ghosh SS, Polli FE, Reynolds GO, Horn F, Keshavan A, Triantafyllou C, Saygin ZM, 
Whitfield-Gabrieli S, Hofmann SG. Predicting treatment response in social anxiety disorder from 
functional magnetic resonance imaging. JAMA Psychiatry. 2013; 70:87–97. [PubMed: 22945462] 

Gabrieli et al. Page 21

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME. Subgenual prefrontal 
cortex abnormalities in mood disorders. Nature. 1997; 386:824–827. [PubMed: 9126739] 

Dumontheil I, Klingberg T. Brain activity during a visuospatial working memory task predicts 
arithmetical performance 2 years later. Cereb Cortex. 2012; 22:1078–1085. [PubMed: 21768226] 

Durazzo TC, Tosun D, Buckley S, Gazdzinski S, Mon A, Fryer SL, Meyerhoff DJ. Cortical thickness, 
surface area, and volume of the brain reward system in alcohol dependence: relationships to 
relapse and extended abstinence. Alcohol Clin Exp Res. 2011; 35:1187–1200. [PubMed: 
21410483] 

Efron B. The estimation of prediction error. J Am Stat Assoc. 2004; 99:619–632.

Erickson KI, Boot WR, Basak C, Neider MB, Prakash RS, Voss MW, Graybiel AM, Simons DJ, 
Fabiani M, Gratton G, Kramer AF. Striatal volume predicts level of video game skill acquisition. 
Cereb Cortex. 2010; 20:2522–2530. [PubMed: 20089946] 

Falk EB, Berkman ET, Mann T, Harrison B, Lieberman MD. Predicting persuasion-induced behavior 
change from the brain. J Neurosci. 2010; 30:8421–8424. [PubMed: 20573889] 

Falk EB, Berkman ET, Whalen D, Lieberman MD. Neural activity during health messaging predicts 
reductions in smoking above and beyond self-report. Health Psych. 2011; 30:177–185.

Foland-Ross LC, Hamilton P, Sacchet MD, Furman DJ, Sherdell L, Gotlib IH. Activation of the 
medial prefrontal and posterior cingulate cortex during encoding of negative material predicts 
symptom worsening in major depression. NeuroReport. 2014; 25:324–329. [PubMed: 24356105] 

Frank E, Prien RF, Jarrett RB, Keller MB, Kupfer DJ, Lavori PW, Rush AJ, Weissman MM. 
Conceptualization and rationale for consensus definitions of terms in major depressive disorder. 
Remission, recovery, relapse, and recurrence. Arch Gen Psychiatry. 1991; 48:851–855. [PubMed: 
1929776] 

Froeliger B, Kozink RV, Rose JE, Behm FM, Salley AN, McClernon FJ. Hippocampal and striatal 
gray matter volume are associated with a smoking cessation treatment outcome: results of an 
exploratory voxel-based morphometric analysis. Psychopharmacology. 2010; 210:577–583. 
[PubMed: 20424827] 

Fu CH, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a 
meta-analysis of functional and structural neuroimaging studies of pharmacological and 
psychological therapies. Neurobiol Dis. 2013; 52:75–83. [PubMed: 22659303] 

Fullana MA, Cardoner N, Alonso P, Subirà M, López-Solà C, Pujol J, Segalàs C, Real E, Bossa M, 
Zacur E, et al. Brain regions related to fear extinction in obsessive-compulsive disorder and its 
relation to exposure therapy outcome: a morphometric study. Psychol Med. 2014; 44:845–856. 
[PubMed: 23773479] 

Gabrieli JD. Dyslexia: a new synergy between education and cognitive neuroscience. Science. 2009; 
325:280–283. [PubMed: 19608907] 

Gazzaniga, MS. The bisected brain. New York: Appleton-Century-Crofts; 1970. 

Golestani N, Paus T, Zatorre RJ. Anatomical correlates of learning novel speech sounds. Neuron. 
2002; 35:997–1010. [PubMed: 12372292] 

Golestani N, Molko N, Dehaene S, LeBihan D, Pallier C. Brain structure predicts the learning of 
foreign speech sounds. Cereb Cortex. 2007; 17:575–582. [PubMed: 16603709] 

Grant BF, Dawson DA. Age at onset of alcohol use and its association with DSM-IV alcohol abuse 
and dependence: results from the National Longitudinal Alcohol Epidemiologic Survey. J Subst 
Abuse. 1997; 9:103–110. [PubMed: 9494942] 

Grant PM, Huh GA, Perivoliotis D, Stolar NM, Beck AT. Randomized trial to evaluate the efficacy of 
cognitive therapy for low-functioning patients with schizophrenia. Arch Gen Psychiatry. 2012; 
69:121–127. [PubMed: 21969420] 

Gruber E, DiClemente RJ, Anderson MM, Lodico M. Early drinking onset and its association with 
alcohol use and problem behavior in late adolescence. Prev Med. 1996; 25:293–300. [PubMed: 
8781007] 

Grüsser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, Weber-Fahr W, Flor H, Mann K, 
Braus DF. Cue-induced activation of the striatum and medial prefrontal cortex is associated with 
subsequent relapse in abstinent alcoholics. Psychopharmacology. 2004; 175:296–302. [PubMed: 
15127179] 

Gabrieli et al. Page 22

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Guttorm TK, Leppänen PH, Poikkeus A, Eklund KM, Lyytinen P, Lyytinen H. Brain event-related 
potentials (ERPs) measured at birth predict later language development in children with and 
without familial risk for dyslexia. Cortex. 2005; 41:291–303. [PubMed: 15871595] 

Harlow, JM. Recovery after severe injury to the head. In: Van der Kloot, WG.; Walcott, C.; Dane, B., 
editors. Readings in Behavior. New York: Holt, Rinehart and Winston; 1974. p. 291-309.Original 
work published 1868

Hashmi JA, Baria AT, Baliki MN, Huang L, Schnitzer TJ, Apkarian AV. Brain networks predicting 
placebo analgesia in a clinical trial for chronic back pain. Pain. 2012; 153:2393–2402. [PubMed: 
22985900] 

Hashmi JA, Kong J, Spaeth R, Khan S, Kaptchuk TJ, Gollub RL. Functional network architecture 
predicts psychologically mediated analgesia related to treatment in chronic knee pain patients. J 
Neurosci. 2014; 34:3924–3936. [PubMed: 24623770] 

Heimberg RG, Liebowitz MR, Hope DA, Schneier FR, Holt CS, Welkowitz LA, Juster HR, Campeas 
R, Bruch MA, Cloitre M. Cognitive behavioral group therapy vs phenelzine therapy for social 
phobia: 12-week outcome. Arch Gen Psychiatry. 1998; 55:1133–1141. [PubMed: 9862558] 

Heindel WC, Salmon DP, Shults CW, Walicke PA, Butters N. Neuropsychological evidence for 
multiple implicit memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s 
disease patients. J Neurosci. 1989; 9:582–587. [PubMed: 2521896] 

Hinds O, Thompson TW, Ghosh S, Yoo JJ, Whitfield-Gabrieli S, Triantafyllou C, Gabrieli JD. Roles 
of default-mode network and supplementary motor area in human vigilance performance: evidence 
from real-time fMRI. J Neurophys. 2013; 109:1250–1258.

Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, Lyytinen H, Whitfield-
Gabrieli S, Glover GH, Reiss AL, Gabrieli JD. Neural systems predicting long-term outcome in 
dyslexia. Proc Natl Acad Sci USA. 2011; 108:361–366. [PubMed: 21173250] 

Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H, Martindale JL, McMillon G, Kolchugina G, 
Black JM, Faizi A, Deutsch GK, Siok WT, Reiss AL, Whitfield-Gabrieli S, Gabrieli JD. 
Functional and morphometric brain dissociation between dyslexia and reading ability. Proc Natl 
Acad Sci USA. 2007; 104:4234–4239. [PubMed: 17360506] 

Hofmann SG, Asnaani A, Vonk IJ, Sawyer AT, Fang A. The efficacy of cognitive behavioral therapy: 
A review of meta-analyses. Cognit Ther Res. 2012; 36:427–440.

Hollon SD, Thase ME, Markowitz JC. Treatment and prevention of depression. Psychol Sci Public 
Interest. 2002; 3:39–77.

Janes AC, Pizzagalli DA, Richardt S. Brain reactivity to smoking cues prior to smoking cessation 
predicts ability to maintain tobacco abstinence. Biol Psychiatry. 2010; 67:722–729. [PubMed: 
20172508] 

Jia Z, Worhunsky PD, Carroll KM, Rounsaville BJ, Stevens MC, Pearlson GD, Potenza MN. An initial 
study of neural responses to monetary incentives as related to treatment outcome in cocaine 
dependence. Biol Psychiatry. 2011; 70:553–560. [PubMed: 21704307] 

Kagan J. Equal time for psychological and biological contributions to human variation. Rev Gen 
Psychol. 2013; 17:351–357.

Koban, L.; Ruzic, L.; Wager, TD. Brain predictors of individual differences in placebo responding. In: 
Colloca, L.; Flaten, MA.; Meissner, K., editors. Placebo and Pain: From Bench to Bedside. San 
Diego: Elsevier/Academic Press; 2013. 

Kohavi, R. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection. 
Proceedings of the 14th International Joint Conference on Artificial Intelligence; San Francisco, 
CA, USA: Morgan Kaufmann Publishers Inc; 1995. p. 1137-1143.

Kosten TR, Scanley BE, Tucker KA, Oliveto A, Prince C, Sinha R, Potenza MN, Skudlarski P, Wexler 
BE. Cue-induced brain activity changes and relapse in cocaine-dependent patients. 
Neuropsychopharmacology. 2006; 31:644–650. [PubMed: 16123763] 

Kumari V, Peters ER, Fannon D, Antonova E, Premkumar P, Anilkumar AP, Williams SC, Kuipers E. 
Dorsolateral prefrontal cortex activity predicts responsiveness to cognitive–behavioral therapy in 
schizophrenia. Biol Psychiatry. 2009; 66:594–602. [PubMed: 19560121] 

Gabrieli et al. Page 23

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Kumari V, Antonova E, Fannon D, Peters ER, Ffytche DH, Premkumar P, Raveendran V, Andrew C, 
Johns LC, McGuire PA, et al. Beyond dopamine: functional MRI predictors of responsiveness to 
cognitive behaviour therapy for psychosis. Front Behav Neurosci. 2010; 4

Kumari V, Fannon D, Peters ER, Ffytche DH, Sumich AL, Premkumar P, Anilkumar AP, Andrew C, 
Phillips ML, Williams SC, et al. Neural changes following cognitive behaviour therapy for 
psychosis: a longitudinal study. Brain. 2011; 134:2396–2407. [PubMed: 21772062] 

Levy I, Lazzaro SC, Rutledge RB, Glimcher PW. Choice from non-choice: Predicting consumer 
preferences from blood oxygenation level-dependent signals obtained during passive viewing. J 
Neurosci. 2011; 31:118–125. [PubMed: 21209196] 

Lopez RB, Hofmann W, Wagner DD, Kelley WM, Heatherton TF. Neural predictors of giving in to 
temptation in daily life. Psychol Sci. 2014 in press. 

Lopez-Barroso D, Catani M, Ripolles P, Dell’Acqua F, Rodriguez-Fornells A, de Diego-Balaguer R. 
Word learning is mediated by the left arcuate fasciculus. Proc Natl Acad Sci USA. 2013; 
110:13168–13173. [PubMed: 23884655] 

Mahmood O, Goldenberg D, Thayer R, Migliorini R, Simmons A, Tapert S. Adolescents’ fMRI 
activation to a response inhibition task predicts future substance use. Addict Behav. 2013; 
38:1435–1441. [PubMed: 23006248] 

Maisto SA, Connors GJ. Relapse in the addictive behaviors: Integration and future directions. Clin 
Psychol Rev. 2006; 26:229–231. [PubMed: 16360255] 

Mather M, Cacioppo JT, Kanwisher N. Introduction to the special section 20 years of fMRI—What 
has it done for understanding cognition? Perspect Psychol Sci. 2013; 8:41–43.

Maurer U, Bucher K, Brem S, Benz R, Kranz F, Schulz E, van der Mark S, Steinhausen H, Brandeis 
D. Neurophysiology in preschool improves behavioral prediction of reading ability throughout 
primary school. Biol Psychiatry. 2009; 66:341–348. [PubMed: 19423082] 

Mayberg HS, Brannan SK, Mahurin RK, Jerabek PA, Brickman JS, Tekell JL, Silva JA, McGinnis S, 
Glass TG, Martin CC. Cingulate function in depression: a potential predictor of treatment 
response. Neuroreport. 1997; 8:1057–1061. [PubMed: 9141092] 

Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy 
SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005; 45:651–660. 
[PubMed: 15748841] 

McClure EB, Adler A, Monk CS, Cameron J, Smith S, Nelson EE, Leibenluft E, Ernst M, Pine DS. 
fMRI predicts treatment outcome in pediatric anxiety disorders. Psychopharmacology. 2007; 
191:97–105. [PubMed: 16972100] 

McGrath CL, Kelley ME, Dunlop BW, Holtzheimer PE III, Craighead WE, Mayberg HS. Pretreatment 
brain states identify likely failures to standard treatments for depression. Biol Psychiatry. 2013a in 
press. 

McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, Craddock RC, 
Mayberg HS. Toward a neuroimaging treatment selection biomarker for major depressive 
disorder. JAMA Psychiatry. 2013b; 70:821–829. [PubMed: 23760393] 

McNorgan C, Alvarez A, Bhullar A, Gayda J, Booth JR. Prediction of reading skill several years later 
depends on age and brain region: implications for developmental models of reading. J Neurosci. 
2011; 31:9641–9648. [PubMed: 21715629] 

Miller WR. What is a relapse? Fifty ways to leave the wagon. Addiction. 1996; 91:15–28.

Milstein RM, Wilkinson L, Burrow GN, Kessen W. Admission decisions and performance during 
medical school. J Med Educ. 1981; 56:77–82. [PubMed: 7463458] 

Mitte K. Meta-analysis of cognitive-behavioral treatments for generalized anxiety disorder: a 
comparison with pharmacotherapy. Psychol Bull. 2005; 131:785. [PubMed: 16187860] 

Molfese DL. Predicting dyslexia at 8 years of age using neonatal brain responses. Brain Lang. 2000; 
72:238–245. [PubMed: 10764519] 

Monahan, J. Predicting violent behavior: An assessment of clinical techniques. Beverly Hills, CA: 
Sage Publications; 1981. 

Murdaugh DL, Cox JE, Cook EW III, Weller RE. fMRI reactivity to high-calorie food pictures 
predicts short-and long-term outcome in a weight-loss program. Neuroimage. 2012; 59:2709–
2721. [PubMed: 22332246] 

Gabrieli et al. Page 24

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette 
smoking. Science. 2007; 315:531–534. [PubMed: 17255515] 

Noel X, Sferrazza R, Van Der Linden M, Paternot J, Verhas M, Hanak C, Pelc I, Verbanck P. 
Contribution of frontal cerebral blood flow measured by (99m)Tc-Bicisate spect and executive 
function deficits to predicting treatment outcome in alcohol-dependent patients. Alcohol Alcohol. 
2002; 37:347–354. [PubMed: 12107037] 

Norman AL, Pulido C, Squeglia LM, Spadoni AD, Paulus MP, Tapert SF. Neural activation during 
inhibition predicts initiation of substance use in adolescence. Drug Alcohol Depend. 2011; 
119:216–223. [PubMed: 21782354] 

Otto MW, Pollack MH, Gould RA, Worthington JJ III, McArdle ET, Rosenbaum JF, Heimberg RG. A 
comparison of the efficacy of clonazepam and cognitive-behavioral group therapy for the 
treatment of social phobia. J Anxiety Disord. 2000; 14:345–358. [PubMed: 11043885] 

Paulus MP, Tapert SF, Schuckit MA. Neural activation patterns of methamphetamine-dependent 
subjects during decision making predict relapse. Arch Gen Psychiatry. 2005; 62:761–768. 
[PubMed: 15997017] 

Pennington, BF.; Gilger, JW. How is dyslexia transmitted?. In: Chase, CH.; Rosen, GD.; Sherman, 
GF., editors. In developmental dyslexia: Neural, cognitive, and genetic mechanisms. Baltimore: 
York Press; 1996. p. 41-61.

Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. 
Neuroimage. 2009; 45:S199–209. [PubMed: 19070668] 

Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. 
Neuropsychopharmacology. 2011; 36:183–206. [PubMed: 20861828] 

Pollack MH, Meoni P, Otto MW, Hackett D. Predictors of outcome following venlafaxine extended-
release treatment of DSM-IV generalized anxiety disorder: a pooled analysis of short-and long-
term studies. J Clin Psychopharmacol. 2003; 23:250–259. [PubMed: 12826987] 

Premkumar P, Fannon D, Kuipers E, Peters ER, Anilkumar AP, Simmons A, Kumari V. Structural 
magnetic resonance imaging predictors of responsiveness to cognitive behaviour therapy in 
psychosis. Schizophr Res. 2009; 115:146–155. [PubMed: 19734016] 

Prisciandaro JJ, Myrick H, Henderson S, McRae-Clark AL, Brady KT. Prospective associations 
between brain activation to cocaine and no-go cues and cocaine relapse. Drug Alcohol Depend. 
2013; 131:44–49. [PubMed: 23683790] 

Qi Z, Han M, Garel K, Chen ES, Gabrieli JDE. White-matter structure in the right hemisphere predicts 
Mandarin Chinese learning success. J of Neurolinguistics. 2014 in press. 

Raghubar KP, Barnes MA, Hecht SA. Working memory and mathematics: A review of developmental, 
individual difference, and cognitive approaches. Learn Individ Differ. 2010; 20:110–122.

Rando K, Hong K, Bhagwagar Z, Li CR, Bergquist K, Guarnaccia J, Sinha R. Association of frontal 
and posterior cortical gray matter volume with time to alcohol relapse: a prospective study. Am J 
Psychiatry. 2011; 168:183–192. [PubMed: 21078704] 

Rao, R.; Fung, G.; Rosales, R. On the dangers of cross-validation. An experimental evaluation. 
Proceedings of the 2008 SIAM International Conference on Data Mining; 2008. p. 588-596.

Salomons TV, Dunlop K, Kennedy SH, Flint A, Geraci J, Giacobbe P, Downar J. Resting-state 
cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major 
depressive disorder. Neuropsychopharmacology. 2013 in press. 

Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol 
Neurosurg Psychiatry. 1957; 20:11–21. [PubMed: 13406589] 

Shaywitz SE. Dyslexia. N Engl J Med. 1998; 5:307–312. [PubMed: 9445412] 

Shehzad Z, Kelly AC, Reiss PT, Gee DG, Gotimer K, Uddin L, Lee SH, Margulies DS, Roy AK, 
Biswal BB, et al. The resting brain: unconstrained yet reliable. Cereb Cortex. 2009; 19:2209–
2229. [PubMed: 19221144] 

Siegle G, Carter C, Thase M. Use of FMRI to predict recovery from unipolar depression with 
cognitive behavior therapy. Am J Psychiatry. 2006; 163:735–738. [PubMed: 16585452] 

Siegle GJ, Thompson WK, Collier A, Berman SR, Feldmiller J, Thase ME, Friedman ES. Toward 
clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate 

Gabrieli et al. Page 25

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



activity for determining depression outcome in cognitive therapy across studies, scanners, and 
patient characteristics. Arch Gen Psychiatry. 2012; 69:913–924. [PubMed: 22945620] 

Simpson HB, Foa EB, Liebowitz MR, Huppert JD, Cahill S, Maher MJ, McLean CP, Bender J, 
Marcus SM, Williams MT. Cognitive-behavioral therapy vs risperidone for augmenting serotonin 
reuptake inhibitors in obsessive-compulsive disorder: a randomized clinical trial. JAMA 
Psychiatry. 2013; 70:1190–1199. [PubMed: 24026523] 

Sorg SF, Taylor MJ, Alhassoon OM, Gongvatana A, Theilmann RJ, Frank LR, Grant I. Frontal white 
matter integrity predictors of adult alcohol treatment outcome. Biol Psychiatry. 2012; 71:262–
268. [PubMed: 22047719] 

Souery D, Papakostas GI, Trivedi MH. Treatment-resistant depression. J Clin Psychiatry. 2006; 67:16. 
[PubMed: 16848672] 

Stice E, Yokum S, Bohon C, Marti N, Smolen A. Reward circuitry responsivity to food predicts future 
increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage. 2010; 50:1618–
1625. [PubMed: 20116437] 

Stice E, Yokum S, Burger KS. Elevated reward region responsivity predicts future substance use onset 
but not overweight/obesity onset. Biol Psychiatry. 2013; 73:869–876. [PubMed: 23312561] 

Supekar K, Swigart AG, Tenison C, Jolles DD, Rosenberg-Lee M, Fuchs L, Menon V. Neural 
predictors of individual differences in response to math tutoring in primary-grade school 
children. Proc Natl Acad Sci USA. 2013; 110:8230–8235. [PubMed: 23630286] 

Tan LH, Chen L, Yip V, Chan AH, Yang J, Gao JH, Sio WT. Activity levels in left hemisphere 
caudate-fusiform circuit predict how well a second language will be learned. Proc Natl Acad Sci 
USA. 2011; 108:2540–52544. [PubMed: 21262807] 

Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol. 
1996; 58:267–288.

Udo T, Clifford PR, Davis CM, Maisto SA. Alcohol use post AUD treatment initiation as a predictor 
of later functioning. Am J Drug Alcohol Abuse. 2009; 35:128–132. [PubMed: 19462295] 

Ullman H, Almeida R, Klingberg T. Structural maturation and brain activity predict future working 
memory capacity during childhood development. J Neurosci. 2014; 34:1592–1598. [PubMed: 
24478343] 

Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999; 10:988–999. 
[PubMed: 18252602] 

Ventura-Campos N, Sanjuan A, Gonzalez J, Palomar-Garcia MA, Rodriguez-Pujadas A, Sebastian-
Galles N, Deco G, Avila C. Spontaneous brain activity predicts learning ability of foreign 
sounds. J Neurosci. 2013; 33:9295–9305. [PubMed: 23719798] 

Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, 
Richardson MP, Koepp MJ. Identical, but not the same: intra-site and inter-site reproducibility of 
fractional anisotropy measures on two 3.0 T scanners. Neuroimage. 2010; 51:1384–1394. 
[PubMed: 20338248] 

Wager TD, Atlas LY, Leotti LA, Rilling JK. Predicting individual differences in placebo analgesia: 
contributions of brain activity during anticipation and pain experience. J Neurosci. 2011; 31:439–
452. [PubMed: 21228154] 

Walkup JT, Albano AM, Piacentini J, Birmaher B, Compton SN, Sherrill JT, Ginsburg GS, Rynn MA, 
McCracken J, Waslick B. Cognitive behavioral therapy, sertraline, or a combination in childhood 
anxiety. N Engl J Med. 2008; 359:2753–2766. [PubMed: 18974308] 

Walsh BT, Seidman SN, Sysko R, Gould M. Placebo response in studies of major depression: variable, 
substantial, and growing. JAMA. 2002; 287:1840–1847. [PubMed: 11939870] 

Wechsler H, Lee JE, Nelson TF, Kuo M. Underage college students’ drinking behavior, access to 
alcohol, and the influence of deterrence policies: Findings from the Harvard School of Public 
Health College Alcohol Study. J Am Coll Health. 2002; 50:223–236. [PubMed: 11990980] 

Wender PH. Pharmacotherapy of attention-deficit/hyperactivity disorder in adults. J Clin Psychiatry. 
1998; 59:76–79. [PubMed: 9680056] 

Whalen PJ, Johnstone T, Somerville LH, Nitschke JB, Polis S, Alexander AL, Davidson RJ, Kalin 
NH. A functional magnetic resonance imaging predictor of treatment response to venlafaxine in 
generalized anxiety disorder. Biol Psychiatry. 2008; 63:858–863. [PubMed: 17964548] 

Gabrieli et al. Page 26

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Whelan R, Garavan H. When optimism hurts: Inflated predictions in psychiatric neuroimaging. Biol 
Psychiatry. 2013 in press. 

Whelan R, Watts R, Orr CA, Althoff RA, Artiges E, Banaschewski T, Barker GJ, Bokde ALW, Buchel 
C, Carvalho FM, et al. Neuropsychosocial profiles of current and future adolescent alcohol 
misusers. Nature. 2014; 512:185–191. [PubMed: 25043041] 

Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, Botteron KN, Dager SR, Dawson G, Estes 
AM. Differences in white matter fiber tract development present from 6 to 24 months in infants 
with autism. Am J Psychiatry. 2012; 169:589–600. [PubMed: 22362397] 

Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, 
Triantafyllou C, Corkin S, Dickerson BC. Reliability of MRI-derived cortical and subcortical 
morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging. 
Neuroimage. 2009; 44:1324–1333. [PubMed: 19038349] 

World Health Organization. WHO report on the global tobacco epidemic. 2008. Retrieved 6/3/2014 
from http://www.who.int/tobacco/mpower/mpower_report_tobacco_crisis_2008.pdf

Wykes T, Steel C, Everitt B, Tarrier N. Cognitive behavior therapy for schizophrenia: effect sizes, 
clinical models, and methodological rigor. Schizophr Bull. 2008; 34:523–537. [PubMed: 
17962231] 

Yang M, Wong SC, Coid J. The efficacy of violence prediction: a meta-analytic comparison of nine 
risk assessment tools. Psychol Bull. 2010; 136:740. [PubMed: 20804235] 

Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future 
weight gain: an fMRI study. Obesity. 2011; 19:1775–1783. [PubMed: 21681221] 

Yoo JJ, Hinds O, Ofen N, Thompson TW, Whitfield-Gabrieli S, Triantafyllou C, Gabrieli JD. When 
the brain is prepared to learn: Enhancing human learning using real-time fMRI. Neuroimage. 
2012; 59:846–852. [PubMed: 21821136] 

Zatorre RJ, Delhommeau K, Zarate JM. Modulation of auditory cortex response to pitch variation 
following training with microtonal melodies. Front Psychol. 2012; 3

Zatorre RJ. Predispositions and plasticity in music and speech learning: neural correlates and 
implications. Science. 2013; 342:585–589. [PubMed: 24179219] 

Gabrieli et al. Page 27

Neuron. Author manuscript; available in PMC 2016 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.who.int/tobacco/mpower/mpower_report_tobacco_crisis_2008.pdf


Figure 1. Three stages of predictive model identification
1) Discovery Phase. Explore and evaluate associations between baseline neuromarkers and 

behavioral outcomes. 2) Cross-Validation Phase. A cross-validation routine is used to 

separate data into training and test sets. The model is built using training data and tested on 

out-of-sample test data. Upon successful evaluation of the performance of the model and 

features, all data are used to build a prediction model. 3) Generalization Phase. A prediction 

model built via cross-validation is applied to a new data set. The new data are then used to 

update the model.
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Figure 2. Functional and Structural Brain Measures Predicting Educational Outcomes
(A–B) fMRI predictor of reading gains in dyslexia. (A) Greater activation for a phonological 

task in right inferior frontal gyrus (Rt IFG) predicted (B) greater gains in reading 2.5 years 

later in dyslexic children; each red circle is an individual (based on Hoeft et al., 2011). (C–

D) MRI predictor of math tutoring gains in students. (C) Greater grey-matter volume of right 

(R) hippocampus predicted (D) greater performance gains in students after 8 weeks of 

tutoring; each blue circle is an individual (from Supekar, 2013).
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Figure 3. Functional Brain Measure Predicting A Clinical Outcome
Prior to treatment, patients with social anxiety disorder who exhibited greater posterior 

activation (left panel) for angry relative to neutral facial expressions had better clinical 

response to cognitive behavioral therapy (CBT) than patients who exhibited lesser activation 

(right panel) (based on Doehrmann et al., 2013).
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Figure 4. Treatment-Specific Biomarker Candidates for Treatment of Depression
Mean regional activity values for remitters and nonresponders segregated by treatment 

(either Escitalopram given as escitalopram oxalate or cognitive behavioral therapy (CBT)) 

are plotted for the 6 regions showing a significant treatment × outcome analysis of variance 

interaction effect. Regional metabolic activity values are displayed as region/whole-brain 

metabolism converted to z scores. From McGrath et al., 2013b.
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