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Abstract

With a globally aging population, the burden of care of cognitively impaired older adults is 

becoming increasingly concerning. Instances of Alzheimer’s disease and other forms of dementia 

are becoming ever more frequent. Earlier detection of cognitive impairment offers significant 

benefits, but remains difficult to do in practice. In this paper, we develop statistical models of the 

behavior of older adults within their homes using sensor data in order to detect the early onset of 

cognitive decline. Specifically, we use inhomogenous Poisson processes to model the presence of 

subjects within different rooms throughout the day in the home using unobtrusive sensing 

technologies. We compare the distributions learned from cognitively intact and impaired subjects 

using information theoretic tools and observe statistical differences between the two populations 

which we believe can be used to help detect the onset of cognitive decline.
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I. INTRODUCTION

Alzheimer’s disease is the sixth leading cause of death in North America [1]. Statistics show 

that one in nine Americans, and one in eleven Canadians, aged 65 and older have 

Alzheimer’s disease [2]. As the “baby boomer” generation ages, both the proportion and 

number of older adults with dementia is projected to increase dramatically, thus greatly 

increasing the burden of care. Early detection of the cognitive decline that precedes 
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dementia is considered to be of great significance for many reasons. For subjects with 

remediable causes such as nutritional deficiencies or complications resulting from taking 

medication, early detection of cognitive decline can significantly increase the chances of 

recovery and prevent further decline. For subjects with irreversible conditions, early 

detection of cognitive decline still provides them and their families with an opportunity to 

proactively plan for their future by seeking the appropriate interventions that can enhance 

their daily functioning and reduce any emotional stress or fear [3].

Early stage cognitive decline is challenging to detect in the context of traditional doctor 

visits, as many of the subtle clues are difficult to spot. However, recent studies have shown 

that early changes in motor capabilities precede and may be indicative of a cognitive 

impairment [4], and that subjects with mild cognitive impairment exhibit a more variable 

and less consistent pattern of activity throughout the day [5]. Accordingly, and with the 

advancement in technology and the proliferation of smart systems, a good alternative to the 

traditional clinical paradigm is to bring assessment into the daily activity of a person in their 

home environment via unobtrusive sensors and smart systems.

Numerous smart systems have been developed to monitor the health and well-being of older 

adults and support their independence [6] [7]. However, these systems monitor the general 

health of the inhabitants and are not designed to detect cognitive changes. Other systems, 

such as [8], have been designed to monitor cognitive changes using a number of predefined 

measures extracted from sensors. However, this approach has been demonstrated to 

generalize poorly to new subjects and instead focuses on idiosyncratic nuances of the 

individual subjects [9].

To address this main issue, in this paper we develop statistical models of the subjects’ 

general activity in their homes by modeling the distribution of their arrival times at each 

room as independent inhomogenous Poisson processes. The resulting generalized linear 

models provide an intuitive statistical analysis and are hypothesized to generalize better to 

unseen subjects. We develop these models using sensor and clinical data pertaining to 68 

subjects, that we received from the ORegon Center for Aging and TECHnology 

(ORCATECH). We take an information theoretic approach and use the kl-divergence 

measure to compare models pertaining to cognitively intact and impaired subjects. 

Intuitively, we postulate that there is a statistical difference in the distribution of arrival 

times between cognitively intact and impaired subjects.

The rest of the paper is organized as follows: Section II explains the data and how it was 

acquired. Section III describes our approach in building generalized linear models of home 

activity. Section IV presents and discusses preliminary results. Section V proposes potential 

future work and Section VI concludes the paper.

II. DATA ACQUISITION & LABELING

All data acquisition was done by ORCATECH who deployed sensing technologies in the 

homes of at least 300 subjects and monitored them unobtrusively for an average period of 3 

years.

Akl et al. Page 2

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2015 January 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



A. Participants and Data Acquisition

Participants were recruited from the Portland, Oregon, metropolitan area. The eligibility 

criteria included:

1. being a man or woman aged 80 years or older;

2. living independently in a larger than one-room “studio” apartment;

3. cognitively healthy (Clinical Dementia Rating (CDR) score < 0.5; Mini-Mental 

State Examination (MMSE) score > 24); and,

4. in average health for age (well-controlled chronic diseases and comorbidities or 

none at all).

Data were acquired by installing sensing technologies in the homes of the recruited subjects. 

In order to detect movement and general activity, passive infra-red motion sensors were 

installed in rooms frequently visited by the participating subjects. Visitors and absences 

from the home were tracked through wireless contact switches placed on the exit doors of 

the home. All sensor firings were sent wirelessly to a transceiver, time-stamped and 

recorded. For full details on data acquisition, the reader is referred to [10].

B. Labeling of Data

Participants were assessed in-home at baseline, and during annual in-home visits by research 

personnel who administered a standardized battery of tests, including the Mini-Mental State 

Examination (MMSE) and the Clinical Dementia Rating (CDR). CDR served as our ground 

truth and was used to determine if subjects were cognitively impaired or intact. A score of 0 

on the CDR scale indicated cognitive intactness whereas a score of 0.5 on the CDR scale 

indicated mild cognitive impairment (MCI). Since subjects were assessed annually, data 

labeling fell into three categories:

1. cognitively intact (CIN),

2. in-flux or transitioning (IF), and

3. transitioned to mild cognitive impairment (MCI).

The labeling protocol that we implemented in assigning labels to the data is summarized in 

the example depicted by Fig. 1, which represents a subject who was monitored for at least 3 

years and was administered three annual assessments besides baseline. The subject scored 0 

on CDR scale at baseline, but scored 0.5 on the 2nd and 3rd year assessments. Therefore, the 

data from baseline up to the 1st year assessment were assigned the label ‘CIN’ and the data 

from the 2nd year assessment onward were assigned the label ‘MCI’. The data between the 

1st year and the 2nd year assessments were assigned the label ‘IF’. This is because the 

conversion to cognitive impairment is not an instantaneous event but a very gradual process. 

Accordingly, the subject’s cognitive status would be in flux between years 1 and 2 and 

would belong to neither cognitive intactness nor MCI.
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III. PROBLEM SETUP

In this section, we represent variables by lower case letters, e.g. u, vectors by bold lower 

case letters, e.g. u, and matrices by bold upper case letters, e.g. U. Suppose that a database 

consists of N subjects, each subject residing in a living unit with n rooms, and we are 

interested in building statistical models for each subject that would estimate the probability 

of the subject being present in a room within a fixed time interval throughout the day. 

Accordingly, the problem can be well-modeled as a Poission process, because a Poisson 

distribution models the number of occurrences of an event in a fixed period of time. In our 

case, the event is being present in a room. By defining a binary variable, y, that indicates 

absence (y = 0) or presence (y = 1) in a room, the probability of a subject arriving at a room 

can be given by

(1)

where λ is the Poisson distribution parameter.

However, note that in this problem, parameter λ would most likely vary throughout the day 

as the presence in each room is highly time dependent, and therefore an inhomogenous 

Poisson process would be a better model. To address the inhomogeneity, we divide a day 

into k intervals and define a λi for each interval where 1≤i≤k. Therefore, a day represented 

by a matrix X would look like the following:

(2)

where,

(3)

In other words, X takes the form of an identity matrix of size k×k, where each column 

represents a time interval, and each interval is associated with a λi. Consequently, if a 

subject was monitored for 900 days for example, then the subject’s input space would 

consist of a total number of m = 900×k vectors. Each vector would have a corresponding 

label y indicating whether the subject was present in the room during this time interval or 

not.

Accordingly, the problem becomes that of estimating the probability of a subject being 

present in a room given a time interval x(i) as an input. To do that, we need to find the λi’s 

corresponding to each interval, which we will represent by the vector λ. Accordingly, each 

room will be associated with a λ vector. Therefore, given a data set of m time intervals along 

with the corresponding labels represented by the vector , the goal is to find λ 

that would maximize the likelihood function L(y|λ),
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(4)

However, maximizing (4) is equivalent to maximizing its log. Therefore,

(5)

As has been demonstrated and proven in [11], to estimate λ originating from an 

inhomogenous Poisson process, λ should be defined as a function that is monotonic, grows 

at least linearly, decays exponentially, and has a derivative. λi of the form ex(i)Tw
 meets these 

constraints, and consequently, the problem of finding λ turns into the problem of finding the 

weight vector w. Substituting this definition of λi in (5), we get

(6)

But since y(i) is binary, then y(i)! is always equal to 1 which in turn means that log(y(i)!) is 

always equal to 0. Accordingly, (6) becomes

(7)

Maximizing (7) is equivalent to minimizing the negative of it, i.e., minimizing

(8)

whose derivative is given by

(9)

Once w is found, λ is computed as λ = ew. Therefore, for a subject residing in a living unit 

with 5 rooms for example, who transitioned to MCI during the study, we would need to 

approximate 15 λ vectors, one for each room for when the subject is cognitively intact, when 

the subject’s cognition is in flux, and when the subject is cognitively impaired.
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IV. PRELIMINARY RESULTS

Of the 68 subjects, 7 were males and 61 were females. Of the male subjects, 2 transitioned 

to MCI during the monitoring period, and of the female subjects, 13 transitioned to MCI 

during the monitoring period. In this section, we report preliminary results by building 

generalized linear models corresponding to four rooms: bedroom, bathroom, kitchen, and 

living room since these rooms exist in all houses and living units of any size. Accordingly, 

for each subject we estimated four Poisson distributions (λbdr, λbr, λk, and λlr) for each stage 

of cognition (cognitive intactness, in-flux or transitioning, and MCI). According to (1), for y 

= 1 the probability is directly proportional to λ. Therefore, a high λ is equivalent to a high 

probability.

Initially, we developed these models for a number of subjects in order to determine the best 

k, the number of time intervals per day. Fig. 2a) shows the bedroom distribution for a 

cognitively intact subject using hourly intervals (k = 24) whereas Fig. 2b) shows the 

distribution using 30-minute intervals (k = 48). As Fig. 2 shows, the distribution estimated 

using 30-minute intervals appears smoother that the distribution estimated using hourly 

intervals. Intuitively, the shorter the interval length the smoother the distribution, but the 

higher the computational cost. However, the smoothness portrayed by Fig. 2b) was 

satisfactory and therefore, the rest of the results are based on k = 48 intervals.

Fig. 3 depicts the bedroom distributions pertaining to a subject who transitioned to MCI 

during the monitoring period, where Fig. 3a) shows the distribution corresponding to the 

stage of cognitive intactness, Fig. 3b) shows the distribution corresponding to the stage of 

transitioning to MCI, and Fig. 3c) shows the distribution corresponding to the stage of MCI. 

From these distributions, we are able to visualize how likely the subject is to be present in 

the bedroom throughout the day. Furthermore, using these distributions, and distributions 

pertaining to other subjects who transitioned to MCI, we were able to extract important 

differences among the three distributions. One main observation was the distributions 

pertaining to the cognitive intactness stage were smoother than the distributions pertaining 

to the transitioning and the MCI stages. This is apparent in Fig. 3.

Another important observation was that we were able to extract few MCI symptoms such as 

disturbed sleep patterns which is clearly portrayed by the distributions in Fig. 3. Because the 

motion sensors utilized in this study were passive infra-red sensors, then they would fire 

only when the subject is actively present. Sleeping would not be detected by these sensors 

and that explains the low probability from 11PM – 7AM when the subject was cognitively 

intact. However, as the subject started transitioning to MCI, the probability of being present 

in the bedroom from 11PM – 7AM increased, and increased the most when the subject 

transitioned to MCI. This increase in probability of presence was potentially due to 

movements and activity related to disturbed sleep patterns which have been proven to be 

associated with MCI [12].

Finally, by taking an information theoretic approach, we computed the kl-divergence 

measure, which is a measure of difference, between the cognitive intactness and the 

transitioning distributions, between the cognitive intactness and MCI distributions, and 
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between transitioning and MCI distributions for all subjects as depicted in Fig. 4. As shown 

in Fig. 4, an increasing trend is portrayed as we move from cognitive intactness to 

transitioning to MCI which implies that when subjects are transitioning, they exhibit 

behaviors and patterns closer to MCI than cognitive intactness.

V. FUTURE WORK

Based on these promising results, for future work, we plan to further explore this approach 

by eliciting differences between cognitively intact models and cognitively impaired models 

using other metrics, such as entropy. Furthermore, since the clinical field is not a bastion of 

clarity on the definition of MCI [13], we plan to experiment with a set of 

neuropsychological assessments as our ground truth instead of CDR and compare the 

results. Finally, we also plan to explore augmenting these models with other features such 

subjects’ age, gender, and the number of times a subject visits a room instead of a binary 

presence or absence.

VI. CONCLUSION

In this paper we presented an alternative approach to that of existing studies on smart 

systems developed to monitor cognitive decline. Our simple approach is more generalizable 

than existing approaches which tend to overfit the data from individual subjects. We 

developed a statistical model of the presence of a subject within a room as an 

inhomogeneous Poisson process. We built generalized linear models for four rooms - 

bedroom, bathroom, kitchen, and living room - using data from 68 subjects, 15 of which 

transitioned to MCI during the monitoring period. Most importantly, using the learned 

models, were were able to observe statistical differences between the behavior of cognitively 

impaired and intact subjects that could potentially assist in the early detection of cognitive 

impairment and dementia.

References

1. Hoyert DL, Xu J. Deaths: Preliminary data for 2011. National Vital Statistics Report. 2012; 61(6):1–
52.

2. Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2013 alzheimers disease facts and figures. 
Alzheimer’s Association. 2013; 9(2):1–71.

3. Boise L, Camicioli R, Morgan DL, Rose JH, Congleton L. Diagnosing dementia: Perspectives of 
primary care physicians. The Gerontologist. 1999; 39(4):457–464. [PubMed: 10495584] 

4. Camicioli R, Howieson D, Oken B, Sexton G, Kaye J. Motor slowing precedes cognitive 
impairment in the oldest old. Neurology. 1998; 50(5):1496–1498. [PubMed: 9596020] 

5. Hayes TL, Abendroth F, Adami A, Pavel M, Zitzelberger TA, Kaye JA. Unobtrusive assessment of 
activity patterns associated with mild cognitive impairment. Alzheimer’s and Dementia. 2008; 4(6):
395–405.

6. Ohta S, Nakamoto H, Shinagawa Y, Tanikawa T. A health monitoring system for elderly people 
living alone. Journal of Telemedicine and Telecare. 2002; 8(3):151–156. [PubMed: 12097176] 

7. Sixsmith AJ. An evaluation of an intelligent home monitoring system. Journal of Telemedicine and 
Telecare. 2000; 6(2):63–72. [PubMed: 10824373] 

8. Dawadi P, Cook D, Schmitter-Edgecombe M. Automated cognitive health assessment using smart 
home monitoring of complex tasks. Systems, IEEE Transactions on Systems, Man, and Cybernetics. 
Nov; 2013 43(6):1302–1313.

Akl et al. Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2015 January 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



9. Akl A, Taati B, Mihailidis A. Autonomous unobtrusive detection of mild cognitive impairment in 
older adults. submitted to the IEEE Transactions on Biomedical Engineering. 2014

10. Kaye JA, Maxwell SA, Mattek N, Hayes TL, Dodge H, Pavel M, Jimison HB, Wild K, Boise L, 
Zitzelberger TA. Intelligent systems for assessing aging changes: Home-based, unobtrusive, and 
continuous assessment of aging. The Journals of Gerontology Series B: Psychological Sciences 
and Social Sciences. 2011; 66B(suppl 1):i180–i190.

11. Paninski L. Maximum likelihood estimation of cascade point-process neural encoding models. 
Network: Computation in Neural Systems. 2004; 15(4):243–262.

12. Hita-Yañez E, Atienza M, Gil-Neciga E, Cantero JS. Disturbed sleep patterns in elders with mild 
cognitive impairment: The role of memory decline and apoe ε4 genotype. Current Alzheimer 
Research. 2012; 9(3):290–297. [PubMed: 22211488] 

13. Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine. 2004; 
256(3):183–194. [PubMed: 15324362] 

Akl et al. Page 8

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2015 January 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Example of a subject who scored 0.5 on CDR scale on the 2nd year assessment onward.
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Fig. 2. 
a) Bedroom distribution for a subject estimated using hourly intervals. b) Bedroom 

distribution for the same subject estimated using 30-minute intervals.
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Fig. 3. 
a) Bedroom distribution for a subject when cognitively intact. b) Bedroom distribution for 

the same subject when transitioning or in-flux. c) Bedroom distribution for the subject when 

cognitively impaired.
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Fig. 4. 
Distributions of kl-divergence measures between a) cognitive intactness and transitioning 

distributions, b) cognitive intactness and MCI distributions, and c) transitioning and MCI 

distributions.
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