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Antibodies play an important role in modern science and
medicine. They are essential in many biological assays
and have emerged as an important class of therapeutics.
Unfortunately, current methods for mapping antibody
epitopes require costly synthesis or enrichment steps,
and no low-cost universal platform exists. In order to
address this, we tested a random-sequence peptide mi-
croarray consisting of over 330,000 unique peptide se-
quences sampling 83% of all possible tetramers and 27%
of pentamers. It is a single, unbiased platform that can be
used in many different types of tests, it does not rely on
informatic selection of peptides for a particular proteome,
and it does not require iterative rounds of selection.

In order to optimize the platform, we developed an
algorithm that considers the significance of k-length pep-
tide subsequences (k-mers) within selected peptides that
come from the microarray. We tested eight monoclonal
antibodies and seven infectious disease cohorts. The
method correctly identified five of the eight monoclonal
epitopes and identified both reported and unreported
epitope candidates in the infectious disease cohorts. This
algorithm could greatly enhance the utility of random-
sequence peptide microarrays by enabling rapid epitope
mapping and antigen identification. Molecular & Cellu-
lar Proteomics 14: 10.1074/mcp.M114.043513, 136–147,
2015.

Antibodies play a central role in the immune system and in
modern health care and medical research. They are com-
monly used as affinity reagents in research and diagnostic
applications and have emerged as an important class of ther-
apeutics (1). When new affinity reagents are being generated,
it is useful to know the target sequence (epitope) bound by the
antibody in question. Many methods have been developed to
accomplish this, including peptide tiling and phage, bacteria,
and mRNA display (2–4). Especially for newly discovered
diseases, such as Middle East respiratory syndrome (5),
knowing the epitope(s) that elicits a humoral response en-
ables the production of diagnostics and vaccines. Large-scale

mapping of cohorts infected with the same disease may guide
the development of universal vaccines for flu and other infec-
tions. Crystal structure and B-cell sequencing provide the
most detailed information about antibody targeting, but in
practice these are cost prohibitive and rarely done. Library-
panning-type approaches use bacteria or phages to display
peptide sequences, avoiding costly crystallization or synthe-
sis steps, and are common approaches for linear epitope
mapping (3, 6). Recently, bacterial display methods have been
used to discover antigens in celiac disease (2). Tools for
probing the “memory” of the immune system could reveal a
wealth of information about an individual’s health status and
antibody repertoire. Although display techniques are effective
and result in highly accurate and specific linear epitope de-
termination (7, 8), they have hidden and poorly understood
biases regarding sequence populations (9–11) and rely on
selection steps that eliminate certain sequences in favor of
others. This creates issues with cost and reliability at scale,
and information is discarded as the selection process be-
comes increasingly stringent. As a rapid identification
method, panning is not optimal.

Peptide array technologies provide an alternative approach.
They are simple and reproducible, they provide information
about binders and non-binders, and they can be low cost if
mass produced, but they represent a smaller sequence library
than phage display and contain only linear sequences. This
might seem like a disadvantage, but in practice, linear
epitopes are actually quite common in nature, and even
mimotopes can provide useful, if indirect, information about
non-linear epitopes. Microarrays containing hundreds of
thousands of peptides are becoming more accessible, reduc-
ing the impact of smaller libraries. Additionally, microarrays
are capable of displaying interactions between antibodies and
peptides with short, gapped sequences containing four to six
anchor residues, which seem to cover a sizable class of
antibodies (12, 13).

To date the most common approach to designing peptide
microarrays has been to tile sequences from a known protein
or proteome of interest and find sequences that bind the
target (4, 14–17). Recently this technique has been scaled to
whole proteomes using arrays containing millions of se-
quences (14, 16). This approach is effective on a single-
protein scale, but problems arise when one is looking for
specific epitope sequences in the presence of millions of
other peptides. Cross-reactivity of antibodies to non-target

From *Arizona State University, Tempe, Arizona 85287
Received August 7, 2014, and in revised form, October 21, 2014
Published, MCP Papers in Press, November 3, 2014, DOI 10.1074/

mcp.M114.043513
Author contributions: J.R., S.A.J., and P.S. designed research; J.R.

performed research; J.R. contributed new reagents or analytic tools;
J.R. and P.S. analyzed data; J.R., S.A.J., and P.S. wrote the paper.

Research
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

136 Molecular & Cellular Proteomics 14.1



peptides often obscures the eliciting antigen (14). This might
be due in part to the fact that tiled peptides are fundamentally
different from folded proteins, and inaccessible parts of a
protein are likely to be exposed when linear pieces of it are
tiled. Additionally, there are many common n-mers across
apparently unrelated pathogens. It might be possible to ad-
dress this problem using motif-based discovery rather than
peptide-based discovery. Short motifs (4- to 5-mers) will likely
appear multiple times in a given peptide library. Longer se-
quences (6- to 12-mers) should appear more rarely. We pro-
pose that a platform for epitope discovery should focus on
representing as many unique short motifs as possible, rather
than providing longer, overlapping sequences from a partic-
ular set of proteins.

Previously our group used random-sequence peptide mi-
croarrays to diagnose disease using immunosignatures (18,
19). The immunosignaturing effect relies on the interaction of
serum antibodies with random-sequence peptides bound to a
microarray. When properly trained on well-validated cohorts,
this indirect information provides very discerning and predic-
tive information about disease states in blinded individuals
(18, 20–23). Although immunosignatures are sensitive and
specific as a diagnostic tool, a link has not been established
between immunosignature profiles and actual sequences of
signature peptides. This was attempted in a previous study by
our group in which we evaluated an array of 10,000 17-mer
peptides as a platform for epitope mapping. Although useful
for predicting linear sequences for some monoclonal antibod-
ies, it offered virtually no predictive power in serum samples
from mice immunized to a known antigen (24). Since then,
advances in in situ synthesis techniques have enabled our
group to produce microarrays containing several million pep-
tides per slide (25). These arrays contain �27% of possible
pentamers and 83% of possible tetramers. Although it lacks
the majority of pentamers, this is a fairly dense sampling of
short peptide sequences that might be useful for epitope
mapping.

Here we report on a general approach that uses random
sequence peptide arrays to map epitopes. We demonstrated
this by identifying epitope sequences from a set of monoclo-
nal antibodies. We then used the same technique with differ-
ent disease cohorts containing antibodies of unknown spec-
ificity, revealing both previously discovered and new epitopes.
The study described here is the first attempt at deciphering
a microarray with fixed but random peptide sequences for
epitopes that does not a priori assume a set of eliciting
proteins.

MATERIALS AND METHODS

Array Construction—Peptide microarrays were manufactured us-
ing in situ synthesis of 330,000 random-sequence peptides per each
1-cm2 region. Each 75 mm � 25 mm slide contained 24 subarrays,
each containing the 330,000 peptides. The average length of each
peptide was 11.2 amino acids with a standard deviation of �1.3,
normally distributed. The longest peptide was 22 amino acids long,

and the shortest was 1 amino acid, with 95% of peptides between 8
amino acids and 14 amino acids. Peptides were synthesized from the
C terminus to the N terminus, with the amine group farthest from the
array surface. Prior to assay, they were washed in 100% N,N-di-
methylformamide for one hour and then introduced to an incubation
buffer consisting of 3% BSA in PBS with 0.05% Tween 20 over a
period of six hours to allow the solvent phase to completely transition
to the aqueous phase. The arrays were then processed via incubation
in the presence of antibodies or serum and detected by fluorescent
antibody (see “Methods” in Ref. 25).

Binding of Antibodies to the Array—Residual N,N-dimethylform-
amide was removed by two 5-min washes in distilled water. Arrays
were equilibrated in PBS for 30 min and blocked in the incubation
buffer. Arrays were washed and briefly spun dry prior to being loaded
into the 24-well gasket (Array-It, Santa Clara, CA). Incubation buffer
was added to each well (100 �l), and 100 �l of 1:2500 diluted sera
was added for a final concentration of 1:5000. Arrays were incubated
for 1 h at 23 °C with rocking and then washed with incubation buffer
plus 1% BSA using a BioTek 405TS plate washer (Biotek, Winooski,
VT). Anti-human IgG-DyLight 549 (KPL, Gaithersburg, MD) was added
to a final concentration of 5.0 nM to detect the human primary IgG.
Unbound secondary antibody was then removed by washing in incu-
bation buffer followed by washing in distilled water (5 min each). The
arrays were removed from the gasket while submerged, dunked in
isopropanol, and centrifuged dry (800 � g, 5 min). Arrays were
scanned at 533 nm using an Innoscan 910 array scanner (Innopsys,
Carbonne, France). Features were aligned and extracted using
GenePix Pro 6.0 (Molecular Devices, Sunnyvale, CA).

Monoclonal Antibodies—Eight monoclonal antibodies were used in
this study: anti-human HA (Rockland Antibodies, Rockland, MD,
[YPYDVPDYA]), DM1A (anti-human tubulin, Invitrogen/Invitrogen,
[AALEKDYEEVGV]), Ab1 (anti-human TP53 antibodies, Clontech,
Palo Alto, CA, [TFRHSVVV]), FLAG (Invitrogen, Madison, WI,
[DYKDDDDK]), 4C1 (anti-human TSHR, Santa Cruz Biotechnology,
Dallas, TX, [QAFDSHY]), A10 (Acris Antibodies GmbH, Hiddenhausen,
Germany, [EEDFRV]), Ab8 (Anti-human P53, Thermo Fisher Scientific,
Waltham, MA, [TFSDLWKLLPE]), and 2C11 (Acris Antibodies GmbH,
[NAHYYVFFEEQE]).

Serum Samples—Sera from seven different disease cohorts and 10
pools of healthy persons (designated as Human Normal Pool) were
provided by Seracare Life Sciences (Milford, MA). An additional con-
trol group of 32 different non-infected volunteers was collected from
consenting individuals by the Center for Innovations in Medicine at
Arizona State University under IRB# 0905004024 (renewed April
2014). The eight cohorts used in this study included 32 healthy
(Normals), 9 dengue fever (DEN1 Flaviviridae), 8 Lyme disease (Bor-
relia burgdorferii), 7 syphilis (Treponema palladium), 13 malaria (Plas-
modium falciparum), 12 whooping cough (Bordetella pertussis), 15
hepatitis B virus (Hepadnavirus), and 10 mixed pools of normal sub-
jects (Healthy Normal Pool).

Analytical Methods—

Finding Antibody-specific Peptides—The goal of this study was to
find sequence motifs corresponding to an epitope. The first step was
to identify peptides that bind specifically to the sample of interest
without regard to the peptide sequence. First, arrays were normalized
to the median intensity value to account for small differences in serum
or dye concentrations. Then, the fold-change was calculated per
peptide across the sample of interest (numerator) versus the median
of control samples (denominator). The controls for the serum study
comprised the 32 healthy volunteers referred to as Normals. The
controls for the monoclonal antibody study were a mix of all mono-
clonal antibodies in this study. For each test, the top 500 peptides
were used as seed sequences for epitope discovery.
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Maximal Subsequence Algorithm—The algorithm used to find high
binding subsequences was designed to find short consensus motifs
within a large set of random peptides. It can be divided into two parts:
motif identification and significance testing. Seed sequences are
computationally divided into all possible subsequences within a cer-
tain range of lengths (three to seven amino acids). The sets of these
subsequences Sx are ranked and evaluated for significance in sub-
sequent steps. The input to the algorithm is a set of sequences S �
{s1, s2, . . ., sn} and associated preprocessed array intensity values
Q � {q1, q2, . . ., qn}. To find a set of significant subsequences, the
sequences in S are divided into all possible subsequences containing
between three and seven amino acids each. For example, the se-
quence AVHAD would be divided into the set {AVH, VHA, HAD, AVHA,
VHAD, AVHAD}.

All the subsequences in S constitute a new set, S�. Members in S�

have one or more associated values in Q corresponding to the
intensities from parent sequences containing that subsequence.
We define the function Qsub as S�3 Qm , where m is the number of
peptides excepting the top 500 seed peptides containing the input
subsequence. This gives all intensity values associated with a
subsequence.

Sequences si � Sx are ranked according to their associated values
ti � Qsub(si). A subsequence is considered only if it appears in at least
three peptides ( ti � 3). We term this value the support of the sub-
sequence. The ranking function considers the support and the me-
dian intensity value median(ti), such that the highest ranked subse-
quences have at least three appearances on the array and have high
median intensities. This criterion is not strictly necessary, but it sim-
plifies significance testing by throwing out non-significant, poorly
represented sequences. Once subsequences are filtered and ranked,
their significance can be established. This occurs for a given subse-
quence i using the following nonparametric procedure:

1. Draw ti values from Q at random. Call this vector t�i.
2. Compute median(t�i).
3. Repeat steps one and two 10,000 times, resulting in a nonpara-

metric estimate of a ti null distribution. Call this vector D.
4. A p value is computed for subsequence si according to pi �

[�k�DI(median(t�i) � k)]/�D�, where I is the indicator function.
5. Correct the p values for multiple hypotheses. We used the

following correction function: p�i � pi/[�si�Sx
�Qsub(si)�]. For exam-

ple, if 1000 subsequences are considered, � is 1/1000, resulting
in one expected false positive.

Calling Epitope Candidates—Significant subsequences were iden-
tified for each individual per disease cohort. In order to determine the
most likely epitope candidates, we ranked sequences in terms of the
number of subjects in which they were called significant. The se-
quences that appeared most often in different individuals within the
same group were deemed the most likely epitope candidates
(Fig. 4A).

Mapping Epitope Candidates to Pathogen Proteomes—The most
common significant subsequences (query sequences) were searched
against the pathogen proteome for 100% identity. We assessed the
probability of a match by searching randomly drawn array sequences
of the same length as the query sequence against the proteome and
comparing the expected number of matches to those observed with
the query.

Pathogen Identification—Our objective was to identify an unknown
pathogen based on array sequence information alone. The n signifi-
cant subsequences from the same cohort were pairwise aligned using
the BLOSUM62 substitution matrix, producing an (n � n) matrix of
alignment scores. This matrix was hierarchically clustered by single
linkage, producing a dendrogram of related subsequences. This anal-
ysis revealed peaks of central subsequences that were presumed to

be most closely related to the true epitope. These peak sequences
were searched against a database of 596 proteomes (hereinafter
called the Pathogen Proteome Database) from various strains of
pathogenic bacteria, viruses, and protists causing over 100 different
diseases. Those proteins and organisms matching all queried se-
quences with 100% or 80% identity were noted. We determined
probabilities by querying the database with randomly drawn se-
quences as above.

Minimum Required Sequence Information—In order to find the
point at which pathogen proteins could be resolved from a database
given fixed epitope information, we generated several sets of random
sequences ranging in length from four to seven amino acids. Pairs of
sequences with set lengths were drawn from this set and queried
against two databases: one containing 596 human pathogens, and
another containing over 5000 bacteria, viral, and eukaryotic pro-
teomes. These two databases helped establish the point at which
pathogens could be uniquely resolved. For example, any given trimer
sequence would be present in many pathogen proteins, but two
heptamer sequences are unlikely to appear in a given pathogen
protein by chance.

Sequence Logo Generation—Significant subsequences were col-
lected together into a FASTA-formatted list. Multiple alignments were
produced with ClustalW2 (26). A multiple-alignment text file was used
as input to WebLogo3 (27) using default settings, producing the motif
figure.

E-value Calculations—The reported E-values were calculated by
searching random re-orderings (with replacement) of the candidate
subsequence against the target proteome, using the mean number of
occurrences of 10,000 re-orderings as the E-value.

RESULTS

We first asked whether we could predicatively map
epitopes to well-characterized monoclonal antibodies. Eight
antibodies with reactivity to a known linear sequence were
chosen and analyzed.

Epitope Determination in Monoclonal Antibodies—Table I
lists peptides and binding intensities for the eight different
monoclonal antibodies. The linear epitope for each monoclo-
nal antibody was known and was used as the basis for algo-
rithm development and testing. In most cases, simply sorting
peptides by intensity per monoclonal antibody was insuffi-
cient to reveal epitope motifs among the highest binding
peptides. Variation in binding to a specific target comes in
part from the amount of non-cognate binding. Highly promis-
cuous antibodies such as anti-HA bind large numbers of
peptides with low similarity to the target, and this created a
lack of specificity in our datasets (Fig. 1, Table II). However,
transforming the data in terms of peptide subsequences re-
vealed highly specific and consistent motifs that corre-
sponded to epitope targets in five of the tested antibodies.
Motifs were similar to the exact eliciting peptide sequence.
Even when the exact sequence was not present on the array,
sequences very similar to the eliciting peptide predominated
(Figs. 1 and 2). Three of the tested antibodies did not generate
a specific response to the expected target sequence. In one
of these cases (P53Ab8), the epitope SDLWKL was bound,
but because of the high degree of cross-reactivity to non-
sequence-similar peptides, one would not expect to map the
epitope based on these results alone (Fig. 3A).
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The success rate in mapping linear epitopes on monoclonal
antibodies was encouraging in that it implied the possibility of
quickly mapping disease-associated epitopes in patient sera.

In order to test this hypothesis, we next performed similar
experiments using sera from patients infected with various
diseases.

TABLE I
Monoclonal antibodies used in this study

Epitope Ab name Immunogen Isotype pI GRAVY
Mean signal

intensity
Mapped

predicatively

EEDFRV A10 Human Pol II IgG2b 4.1 �1.3 4911 No
SDLWKL p53ab8 Human p53 IgG2b, IgG2a 5.6 �0.3 6243 No
QAFDSH 4C1 Human insulin receptor IgG2a 5.1 �1.1 971 Yes
RHSVV p53ab1 Human p53 IgG1 9.8 0 5074 Yes
DYKDDDDK FLAG FLAG peptide IgG1 4 �3.3 1167 Yes
AALEKD DM1A Human tubulin � IgG1� 4.7 �0.6 5798 Yes
YPYDVPDYA HA HA peptide IgG1 3.6 �0.9 905 Yes
NAHYYVFFEEQE 2C11 Human insulin receptor IgG1 4.5 �1 827 No

Monoclonal antibodies were used to test the motif search analysis algorithm. The highest rated subsequences were related to the true
epitope and to each other to an extent that ensured the emergence of a conserved motif with strong association to the epitope sequence. Ab,
antibody; GRAVY, grand average of hydropathicity index (25).

FIG. 1. Top binding subsequences and peptides for eight tested monoclonal antibodies. The bar plots show the top binding subsequences
(top panel) and subsequences (bottom panel) for each of the eight tested monoclonal antibodies. P53Ab1 (RHSVV), HA (DVPD), 4C1 (FDSH), and
FLAG (DYDDDK) each had on-target motifs that were identified within each of the top binding peptides, and these were enhanced through
subsequence analysis (shown in red). DM1A (ALEKD) had few on-target motifs in its top peptides, but subsequence analysis revealed the true
epitope. FLAG cross-reacted most strongly with the epitope from DM1A (ALEKDY), but subsequence analysis successfully removed this effect.
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Groupwise Epitope Determination in Patient Sera—Eight
cohorts representing seven different diseases and one group
of healthy volunteers were tested using the described meth-
ods. Several of the cohorts performed similarly to the mono-
clonal antibodies in that they identified a relatively small num-
ber of peptides with highly homogeneous sequence motifs
that were obvious and visible by simple text matching. These
cohorts produced a noticeably homogeneous list of peptide
sequences that deviated little from a single and readily appar-
ent motif. The multiple alignments of the top 10 sequences for
each of these disease cohorts are shown in Fig. 4B. Of the
seven disease cohorts tested, five revealed a clear consensus
sequence.

Consensus Sequences in Pathogen Proteomes—In order to
test whether the groupwise consensus motifs (Fig. 3) corre-
sponded with true epitopes, we searched the Immune Epitope
Database for exact substring matches to sequences from our
lists. Despite the small size of this database, the sequence
AVHAD from dengue was present in the database and indi-
cated as an epitope from the NS1 protein in two dengue
strains (E-value: 5 � 10�4). Further analysis of the other
cohorts revealed additional matches to antigenic proteins.
The sequence EDAK from Borrelia mapped to known antigen
OspF (E-value: 4.6), and DYAFG from syphilis mapped to a
lipoprotein in several strains of T. pallidum (E-value: 0.27).
Malaria contained sequences SNKQG and RLKEP (Fig. 6),
both of which mapped to the ring-infect erythrocyte surface
antigen (RESA)1 protein in P. falciparum 3D7 (E-value: 0.072),
and another sequence (DAFEY) mapping to one of the
pfEMP1 variants in P. falciparum (E-value: 3.5). The sequence
FKEG mapped to an MDR efflux protein in B. pertussis (E-
value: 3.5). These results are summarized in Table III. These
sequences were short as a result of platform limitations, and
the E-values for these matches varied based on the size of the

proteome. The dengue sequences are unlikely to arise by
chance, at least given the size of the initial peptide library, with
E-values 	 10�3. Likewise, the two matches to the RESA
protein in P. falciparum together had a low E-value of 0.072
corresponding to a p value of 0.067 (see Table IV).

Individual Epitope Determination in Patient Sera—In order
to test the heterogeneity within disease groups, we asked
which subsequences were differentially bound between indi-
viduals in disease cohorts and normal subjects. We found that
epitope sequences revealed in the groupwise analysis were
present in most of the individuals from that group. All nine
dengue samples contained AVHAD as a significant subse-
quence. To visualize the extent of this overlap, we calculated
the pairwise overlap of significant subsequences between
individuals across disease groups (Fig. 4B). Recall that the
feature selection process for the seed peptides requires that
antibodies be commonly expressed within a disease cohort.
Thus, the antibodies analyzed here displayed highly similar
sequences across all individuals within a cohort. These se-
quences were equally unlikely to appear in other disease
groups, also because of the feature selection requirements.
However, it should be noted that peptides (features) common
within a cohort demonstrated qualitatively greater fold-
changes relative to Normals than those with less common
sequences within a cohort.

Additional Library Complexity Reveals Additional Epitopes—
This assay relies on many simultaneous measurements of
antibody/peptide interactions. It is useful to know how
changes in library content affect results. As only 27% of
pentamers were represented on the original arrays, we hy-
pothesized that a different random library would result in
additional targets that were invisible to the original experi-
ments because they were not present. To test this, we created
another array with a different set of 330,000 sequences. We
then attempted to find epitopes using a dengue-infected se-
rum sample. This analysis revealed an additional epitope
(REGEK, Dengue 4, E-value: 8.3 � 10�4) that was previously
mapped in the Immune Epitope Database but not present on
the original array (Fig. 5). This result suggests that larger
arrays should reveal additional antibodies. This experiment
did not address specificity, however, and might not be the
final argument supporting larger peptide libraries. In order to
properly address that question, the second 330,000-pep-
tide library would have to be added to the first and 660,000
peptides would have to be exposed to the sera
simultaneously.

Mapping Epitope Information to a Database—Having dem-
onstrated that peptide microarrays are capable of resolving
epitopes, we wished to know whether these sequences could
predict the eliciting protein from a database of pathogen
protein sequences.

Resolving a pathogen in a database given a few short
sequences depends on both the size of the database and the
length of the consensus motif. We predict that when one is

1 The abbreviation used is: RESA, ring-infect erythrocyte surface
antigen.

TABLE II
On-target versus off-target binding

Total binders On target Fraction

AB1 42,386 466 1.10 � 10�2

HA 1608 53 3.30 � 10�2

4C1 2561 276 1.08 � 10�1

FLAG 7563 0 0
DM1A 44,821 207 4.62 � 10�3

A10 44,924 37 8.24 � 10�4

AB8 46,327 1 2.16 � 10�5

2C11 671 0 0

This table shows the number of peptides for each antibody that
yielded a signal greater than 5-fold above background (“total bind-
ers”) and how many of those had at least 80% sequence identity with
the true epitope (“on target”). See Table I for a list of true epitopes. A
very low percentage (	11%) of the binding peptides had strong
sequence similarity with the true epitope, in agreement with previous
studies (24).
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using pairs of randomly generated sequences of varying
lengths, a pair of pentamers, if known exactly, or a pair of
heptamers, if known within 80% identity, is sufficient for re-
solving a pathogen in the Pathogen Proteome Database
(Fig. 6).

Deciphering Eliciting Pathogen Proteins—To improve sen-
sitivity, we opted for a restrictive search, relying on exact or
near-exact (80%) identity and matches in the same protein to
multiple pentamer queries. Using significant subsequences
from malaria subjects, we found three epitope candidates
(SNKQG, RLKEP, SNKQG). Searching these candidates
against the Pathogen Proteome Database (multiple strains of

each pathogen) resulted in uniquely identified membrane pro-
teins from P. falciparum matching all three query sequences
with 80% identity (Fig. 7). Two of the query sequences
matched with 100% identity to a RESA-like protein, a known
antigen in Plasmodium infections. The probability of two ran-
domly drawn pentamers matching to one or more proteins
globally in this database of over 1 million sequences is 	0.01.

DISCUSSION

We first asked whether random-sequence peptide microar-
rays could resolve epitope sequences for well-characterized
monoclonal antibodies. We chose eight different monoclonal

FIG. 2. Monoclonal antibody motifs and their corresponding epitopes. A, the five motifs listed were revealed after we incubated
monoclonal antibodies on the peptide microarrays and performed subsequence analysis. Sequence logos were created using the top 10 most
highly ranked subsequences obtained from the peptide sequences. Weblogos suggested positional dependence with dominating anchor
residues and linking or non-anchor regions. “True epitope” is the sequence determined by the manufacturer. “Inter-alignment” is the expected
value of pairwise gapless alignment scores (BLOSUM62 matrix) between any two significant subsequences pulled from the arrays. “Fold
change” indicates the relative binding strength of the peptides making up the motif versus the median binding intensity for that peptide in the
other monoclonal antibodies tested. Antibodies for which consensus motifs could not be found were A10 (EEDFRV), p53Ab8 (SDLWKL), and
2C11 (NAHYYVFFEEQE). Additional information about these antibodies and their immunogens can be found in Table I. B, histograms of each
monoclonal antibody tested. The x-axis is the log10 normalized signal intensity, and the y-axis is the data density. Antibodies demonstrated
varied binding profiles, with monoclonals such as HA, 4C1, and FLAG showing a narrow distribution around low intensities, and others such
as AB1 and DM1A demonstrating a broader binding profile. See Table II for an analysis of on-target versus off-target binding.
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antibodies with well-characterized reactivity to linear epitopes
(Table I). The epitopes of five of the eight monoclonal anti-
bodies were readily resolved. After verifying our method with
monoclonal antibodies, we applied the technique to serum
from eight different human cohorts: healthy local controls,
pools of non-disease patients, Borrelia, Bordetella, hepatitis B
virus, malaria, syphilis, and dengue. These samples were
chosen to evaluate our ability to detect eptiopes across a
broad range of pathogens. Epitopes consistent with five of the
seven pathogens were identified. Given the ability to identify a
pathogen, we asked whether we could identify proteins from
these pathogen proteomes from a set of uncharacterized
sera.

The monoclonal antibody experiments were designed to
test whether 330,000 random-sequence peptides could cor-
rectly find a linear epitope. Peptide arrays are unique in that
they provide binding information as well as non-binding infor-
mation, giving an overall picture of antibody specificity. Five
monoclonal antibodies (HA, DM1A, 4C1, Ab1, and FLAG)
bound only peptides that were related to their targets.
P53Ab1 essentially bound a single sequence (RHSVV), did not
tolerate substitutions, and did not cross-react with other pep-
tides to any appreciable extent. HA, 4C1, FLAG, and DM1A
allowed substitutions in certain positions to varying degrees

depending on the sample. P53Ab8 bound sequences similar
to the epitope, but these were overshadowed by sequence-
dissimilar distracters (Fig. 3A). Two antibodies (A10 and 2C11)
bound nearly exclusively sequence-dissimilar peptides. These
differences in apparent binding might reflect true variation in
antibody cross-reactivity characteristics, or they could be a
side effect of choosing peptides randomly. Further studies
with additional antibodies are needed to determine the extent
to which the arrays can predict antibody specificity. Given the
importance of monoclonal antibodies in the therapeutic pipe-
line (28), a quick way to screen out undesirable cross-reac-
tions on a simple, high-throughput platform is desirable.

In agreement with previous studies using dense peptide
arrays (14, 15), monoclonal antibodies bound a variety of
sequences, many of which had little or no relationship with the
true epitope. This was the impetus for the subsequence ap-
proach, which was successful in filtering out these nonspe-
cific sequences in five of the tested monoclonal antibodies
(Fig. 1) and made the most significant binding motifs more
apparent.

These motifs, despite being pentamer sequences with only
three to five amino acids in common with the eliciting peptide,
bound very strongly to their targets, often �20-fold over
background (Fig. 2). This strong, specific binding suggests

FIG. 3. Sequence representation and predictive versus non-predictive subsequences. A, top 25 sequence motifs found for monoclonal
antibodies HA (left) and p53 (right). Red outlined regions indicate the closest match to the actual epitope for the given monoclonal antibody.
The black number is the average fold change of the peptides containing the indicated motif relative to the same peptides for all other
monoclonal antibodies. Although small differences occurred, there is a consensus pattern. In contrast, p53Ab1 (right) demonstrated high
overall binding to the true epitope but cross-reacted with many other sequence clusters, preventing good prediction and yielding low
fold-change values. B, the fraction of all possible k-mers present on the array as a function of k-mer length. The arrays represent 27% of all
possible 5-mers redundantly.
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that epitopes require a limited number of unchangeable res-
idues, a phenomenon also observed in previous studies (12,
13). There is likely an evolutionary optimization between sim-
plicity (low number of binding residues) and specificity (the
need to recognize a unique target). Given that the size of the
sequence space increases exponentially with the number of
residues, an antibody requires surprisingly few residues to
maintain specificity to a target. Substitutions may allow rec-
ognition of future variants of a pathogen to which the host was
once exposed.

Previously, we attempted epitope mapping on smaller ar-
rays with 10,000 peptides, with modest success for monoclo-
nal antibodies but no predictive power in the case of patient
sera (8). These data show that this was most likely due to a
too-sparse representation of peptide sequences, with only
0.5% of pentamers represented in triplicate. The arrays used
in this study provided a much denser sampling of this space,

with 27% of pentamers represented. This improved sampling
corresponded to improved resolution of epitopes in patient
sera.

Dengue samples in particular seemed to react strongly to a
particular epitope on the NS1 protein, shared by many strains
of the virus. Because this is shared among strains, this anti-
body likely is non-protective and serves to distract the im-
mune system. This explains why this was seen in all patients
tested when they were likely infected with different strains of
the virus. Training on cohorts composed of patients infected
by a single strain would enhance the ability to discern strain-
specific epitopes.

The malaria cohort was expected to suffer from a lack of
sensitivity due to the large proteome. However, commonly
across the malaria cohort, multiple sequences (SNKQG,
RLKEP) mapped to the RESA protein in P. falciparum. This
protein is associated with the membrane of newly invaded

FIG. 4. Top significant subsequences for disease cohorts. A, the top 10 most commonly appearing and significant subsequences in
serum samples from the indicated disease cohorts. The number of patients within that cohort for which that sequence was called significant
is shown in parentheses to the left. The y-axis is categorical and shows each subsequence; the x-axis is the maximum log10-normalized
intensity of the peptide binding on the array for each patient. The total number of samples in each cohort is given as a fraction at the top.
Subsequences with exact matches to proteins within the pathogen are indicated with vertical red bars. The top ranked sequences are listed
in Table III. B, the pairwise fractional overlap in significant subsequences. A colored, saturated cell represents a pair of patients in the same
cohort that shared at least 50% of their significant subsequences. Grayscale cells represent pairs of patients from different cohorts whose
immune systems see similar sequences. Individuals within the same disease cohort showed much more overlap between their significant
subsequences than those in different cohorts or the normal cohort, indicating an association between the discovered sequences and the
disease state. BPE, Bordetella pertussis; HNP, Human Normal Pools, a collection of pools of non-disease individuals.
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erythrocytes (36, 37), is an important virulence factor that
facilitates erythrocyte attachment to blood vessel epithelium,
and presents a tempting target for the immune system. The P.
falciparum proteome is so large that it would be almost im-
possible to map the eliciting protein from a single pentamer,
but in this case two peptides mapped to the RESA protein,
improving the likelihood of a true match. A further sequence
(DAFEY) was found in six samples and mapped to a PfEMP1
protein, one of a family of variant antigens associated with

infected erythrocytes and thought to be an important mech-
anism for immune system distraction and evasion (19). Ex-
pression of these proteins is dynamic so as to evade the host
immune response, and it is likely that more antibodies against
this family would be found in a larger study.

The syphilis and Bordetella cohorts also showed consensus
sequences that mapped to proteins, but the annotations on
these are less comprehensive, and it is unknown whether they
are antigenic. They do appear to be surface-associated pro-

FIG. 5. Motifs found in single patients. These motifs were associated with single patients within a disease cohort. The motif on the left was
found in a single dengue patient and maps to NS3 (34). It is a mapped epitope and was observable on the random-sequence peptide
microarrays. The motif on the right was present in a single Borrelia patient and maps to the OspF protein, known to be associated with an
immune response in dogs (31). FC, fold change between the individual serum sample and a cohort of normal samples; n, number of peptides
associated with that subsequence.

FIG. 6. Finding arbitrary sequences in a pathogen database. Plots show the distribution of hits to pairs of arbitrary sequences of fixed
lengths. Pairs of k-mers with specified lengths were drawn at random from the distribution associated with array sequences. These were
searched against two databases, one containing over 4000 bacteria and viruses (top), and another containing 596 human pathogens (bottom).
The plots suggest that when two 7-mer linear epitopes from the same protein antigen are known with at least 80% identity, unique pathogen
identification is reliably predicted.
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teins, but they are hypothetical, and direct studies about their
expression or function have not been reported in the
literature.

Although many individuals within a cohort shared epitopes,
heterogeneous responses were also observed. Two Borrelia
samples bound the consensus sequence EDAK. Although this
is too short to be conclusive or unique, it does map precisely
to the OspF protein found in several strains of the bacterium.
This is a known antigen (31), and the subsequence is found in
a region between two trans-membrane sections of the pro-
tein, a feasible location for an epitope. In cases like these,
although the assignment might not be definitive, it does allow
reduction to likely candidates.

The presence of homogeneous epitopes within cohorts is
promising, as these arrays were originally developed to mon-
itor serum and predict the presence of a disease as part of a

diagnostic platform, without the need for peptide sequence
information. Previously we showed that this assay is capable
of capturing a “signature” of the immune system, a precise
measure of thousands of off-target binding events that, when
taken together, create a predictive diagnosis (18, 20–23, 32).
Although machine learning algorithms can accurately classify
blinded serum samples into the correct disease category, until
now we had not shown that any epitope information could be
extracted from the signatures. The serum samples revealed
patterns consistent with those seen in the predictive mono-
clonal samples, and they appear to map to antigenic proteins
from the pathogen (Table III). In the case of the two dengue
epitopes, validation that these sequences are indeed antibody
targets has been offered by other groups (33, 34), but this has
not been completed for the other sequences, and for now
they should be considered putative rather than definitive
candidates.

As previously mentioned, the arrays contained 
27% of
possible pentamers in triplicate. Given this modest represen-
tation, one would predict a success rate of approximately one
in four when mapping epitopes. However, in both monoclonal
and serum samples, success rates were much higher, with
discernable epitopes revealed in over half of tested samples/
cohorts. One likely explanation is that infected sera contain
multiple antibodies, each with unique specificities. However,
only a subset was “visible” given our feature selection criteria.
We saw some evidence of this when we repeated the assay in
dengue on a new array, which revealed an additional validated
epitope in previously unrepresented space.

Identifying eliciting proteins using sequence information
gleaned from the arrays with the current 330,000 peptides per
array is challenging. These arrays contain a relatively limited

TABLE III
Proposed epitope mappings for disease cohorts

Discovered epitope sequences and their proposed antigen mappings. The two dengue epitopes were previously verified using peptide tiling
of the NS1 and NS3 proteins against dengue sera. Another two (EDAK, DAFEY) map to known and characterized antigens in Borrelia
burgdorferi and Plasmodium falciparum, respectively. The remainder displayed motif conservation consistent with epitopes but mapped to
hypothetical proteins. “E-value” refers to the expected number of matches to the presumed epitope sequence(s) within the proteome of
interest; “p value” refers to the chance of encountering at least one instance of the sequence within the proteome of interest. Not all proposed
epitopes mapped to the proteome with significant p values, but they are reported here as a “best guess” to explain the high response to these
sequences on the arrays.

TABLE IV
Sensitivity and specificity of epitope candidates

Sequence Infection Sensitivity Specificity

AVHAD Dengue 1 1
REGEK Dengue N/A N/A
DYAFG Syphilis 1 1
EDAK Lyme disease 0.125 1
FKEG Pertussis 0.83 1
SNKQG, RLKEP Malaria 0.69 1
DAFEY Malaria 0.46 1

Sensitivity and specificity calculations for the top epitope candi-
dates from Table III. The selection algorithm maximizes sensitivity and
might not be a reliable estimate of performance. However, the can-
didates do map to antigenic proteins and are specific to the cohort of
interest. Estimates for the REGEK sequence from dengue could not
be computed, as this was discovered using a separate set of arrays
or too few samples were processed.
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amount of sequence information compared with what is avail-
able in genome or transcriptome annotation studies. A typical
BLAST search of a pentamer against a database of human
pathogens is likely to be dominated by spurious and insignif-
icant results. The arrays tend to reveal only consensus motifs
that are present on the array, not exact sequences. The array
only provides ample coverage of sequence space up to five
amino acids, limiting the lengths of epitopes that can be
reasonably discovered. However, even with these limitations
we have demonstrated that it is possible to identify likely
antigenic proteins using combinatorial random-sequence
peptide arrays. Interestingly, epitope candidate pentamers
gleaned from the arrays were much more likely to match
pathogenic protein sequences than randomly drawn array
pentamers. This indicates that epitopes are actually much
less diverse than random or even life-space sequences, sup-
porting the idea that antigen space is intrinsically convergent

(35). These data also suggest that some design principles
should be applied when designing a “random” peptide library.
Representing more unique pentamers with less redundancy
would enable broader coverage without increasing the number
of peptides, but in this case the peptides would no longer be
random, and instead should be considered “of random origin.”

The techniques underlying this technology are highly ame-
nable to high-throughput manufacturing. Given that we iden-
tified different epitopes by using two different libraries, it is
likely that larger arrays would achieve the sensitivity required
for a priori pathogen identification. The approach seems
promising in that true epitopes were revealed along with sev-
eral previously undiscovered linear sequence segments in
antigenic proteins. Such an approach could help identify an-
tigenic hot spots within proteins and immunodominant
epitopes with high resolution using an assay that is signifi-
cantly less costly in terms of time and labor than display

FIG. 7. Using significant subsequences to identify an eliciting pathogen. Sample specific significant subsequences from the malaria
cohort were combined, aligned, and hierarchically clustered by single linkage. This revealed three distinct epitope candidates, indicated by red
asterisks. These three sequences were queried against a database of 596 human pathogens for exact and 80% identity. Only one protein from
P. falciparum out of all human pathogens contained both RLKEP and SNKQG. The probability of two array 5-mers hitting the same protein by
chance is 	0.001.
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techniques, facilitating high-throughput screening of serum
and monoclonal antibodies.

The peptide microarrays in this study are available from
www.peptidearraycore.com for independent studies.

‡ To whom correspondence should be addressed: E-mail:
phillip.stafford@asu.edu.
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