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Visual crowding refers to a phenomenon whereby
objects that appear in the periphery of the visual field
are more difficult to identify when embedded within
clutter. Pooling models assert that crowding results
from an obligatory averaging or other combination of
target and distractor features that occurs prior to
awareness. One well-known manifestation of pooling is
feature averaging, with which the features of target and
nontarget stimuli are combined at an early stage of
visual processing. Conversely, substitution models
assert that crowding results from binding a target and
nearby distractors to incorrect spatial locations. Recent
evidence suggests that substitution predominates when
target–flanker feature similarity is low, but it is unclear
whether averaging or substitution best explains
crowding when similarity is high. Here, we examined
participants’ orientation report errors for targets
crowded by similar or dissimilar flankers. In two
experiments, we found evidence inconsistent with
feature averaging regardless of target–flanker similarity.
However, the observed data could be accommodated
by a probabilistic substitution model in which
participants occasionally ‘‘swap’’ a target for a
distractor. Thus, we conclude that—at least for the
displays used here—crowding likely results from a
probabilistic substitution of targets and distractors,
regardless of target–distractor feature similarity.

Introduction

Objects that appear in the periphery of the visual
field are more difficult to identify when surrounded

by clutter. This phenomenon—known as visual
crowding (Bouma, 1970; Strasburger, Harvey, &
Rentschler, 1991; see also earlier work by Ehlers,
1936; Stuart & Burian, 1962)—places important
constraints on many everyday visual tasks, including
reading (e.g., Chung, 2002; Pelli et al., 2007), visual
search (Carrasco, Evert, Chang, & Katz, 1995;
Vlaskamp & Hooge, 2006), and object recognition
(Levi, 2008; Pelli, 2008).

Pooling models propose that crowding results from
an obligatory combination of target and flanker
features at a relatively early stage of visual processing
(prior to the point at which features or objects can be
consciously accessed or reported; e.g., Balas, Nakano,
& Rosenholtz, 2009; Dakin, Cass, Greenwood, & Bex,
2010; Greenwood, Bex, & Dakin, 2009; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001; van den Berg,
Roerdink, & Cornelissen, 2010). Pooling can take many
forms, including (but not limited to) feature averaging
(e.g., Parkes et al., 2001), positional averaging (e.g.,
Dakin et al., 2010; Greenwood et al., 2009), and pixel
averaging or blurring. More complicated forms of
pooling based on local first-, second-, and third-order
statistics are also plausible (e.g., Balas et al., 2009;
Freeman & Simoncelli, 2011). Each alternative is
assumed to result in a percept that preserves the
ensemble statistics of the display but lacks information
about local features or stimuli.

Here, we focus on feature averaging and ask
whether it suffices to explain reductions in orienta-
tion acuity within displays containing a set of
oriented stimuli. In a relevant study, Parkes et al.
(2001) asked participants to report the tilt of a
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Gabor surrounded by an array of horizontal dis-
tractors and found that tilt thresholds (i.e., the
minimum target tilt needed to perform the task with
criterion accuracy) decreased monotonically as the
number of tilted distractors decreased. In a second
experiment, the authors asked participants to report
the configuration of three tilted Gabors presented
among horizontal distractors. Performance on this
latter task was at chance levels, suggesting that even
though the number of tilted distractors had a large
effect on tilt thresholds participants were unable to
identify or report the identity of any single Gabor.
These results suggest that under some circumstances
(e.g., for displays containing simple oriented stimuli)
crowding results from an obligatory averaging of
target and distractor features. However, these find-
ings can also be accommodated by a probabilistic
substitution model in which participants occasionally
mistake or ‘‘swap’’ the target Gabor with a dis-
tractor. Indeed, in a recent paper (Ester, Klee, &
Awh, 2014), we asked participants to report the
precise orientation of a crowded or uncrowded target
and fit the resulting distributions of response errors
(i.e., reported minus actual target orientations) with
quantitative functions that assume feature averaging
or probabilistic substitution (in which participants
occasionally confuse a distractor orientation with the
target orientation and report the former). In all
cases, the observed data were well described by a
function assuming substitution and poorly described
by a function assuming orientation averaging.

One limitation of this study was that the distractors
used to induce crowding were quite dissimilar from the
target (e.g., tilted 6608, 6908, or 61208 relative to the
target), and there is reason to suspect that different
forms of crowding may predominate when target–
distractor similarity is high. For example, recent
reports suggest that different kinds of target–distractor
interference appear to manifest themselves when
similarity is high versus low (‘‘repulsion’’ vs. ‘‘assimi-
lation,’’ respectively; see Mareschal, Morgan, & Solo-
mon, 2010). Thus, one possibility is that feature
averaging predominates when target–distractor simi-
larity is high, and substitution predominates when
similarity is low. The goal of this study was to evaluate
this possibility.

Experiment 1

Following Ester et al. (2014), we asked partici-
pants to report the orientation of a crowded or
uncrowded target. When present, crowders were
tilted 6158, 6308, 6608, or 6908 relative to the
target with an equal number of crowders tilted

clockwise and counterclockwise. For each participant
and experimental condition, we generated a distri-
bution of response errors (i.e., reported minus actual
target orientation), which were then fit with quanti-
tative models that assume feature averaging or
probabilistic substitution. We then compared these
models to determine which provided a better
description of the data.

Methods

Participants

Twenty-two undergraduate students from the Uni-
versity of California, San Diego, completed a single
1.5-hr testing session in exchange for course credit. All
participants reported normal or corrected-to-normal
visual acuity. Data from one participant were subse-
quently discarded due to exceptionally poor perfor-
mance (specifically, s/he appeared to be responding
randomly, and we could not extract stable estimates
for either the averaging or substitution models as a
result); the data reported here reflect the remaining 21
participants. All experimental procedures were ap-
proved by the local institutional review board, and all
participants gave both written and oral informed
consent in accordance with the Declaration of
Helsinki.

Stimuli and display

Stimuli were generated in Matlab (Version 2010b;
Natick, MA) and rendered on a 19-in. CRT monitor
cycling at 60 Hz (resolution 800 · 600) via Psycho-
physics Toolbox software (Version 3.1.1; Brainard,
1997; Pelli, 1997). Participants were seated in a dimly lit
room approximately 60 cm from the display (head
position was unconstrained). From this distance,
targets and crowders subtended 2.678 and appeared
69.238 from fixation along the horizontal meridian.
The center-to-center distance between adjacent stimuli
was fixed at 3.338.

Procedure

A schematic of the task is shown in Figure 1. Each
trial began with the presentation of a fixation display
containing a small black dot (subtending 0.258) and
two small (0.188) white ‘‘placeholders’’ at 69.238
eccentricity along the horizontal meridian. After a
short interval (determined on a trial-by-trial basis by
sampling from a uniform distribution with a range of
400–700 ms), a target display was presented for 75
ms. In 50% of trials, a single, randomly oriented
‘‘clock face’’ (the target) was rendered over one of the
two placeholders (‘‘uncrowded’’ trials). In the re-
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maining 50% of trials, the target was embedded
within six additional distractors (‘‘crowded’’ trials;
see Figure 1). When present, three randomly
chosen distractors were tilted 6158, 6308, 6608, or
6908 clockwise from the target, and the remaining
distractors were tilted counterclockwise by an equal
amount. Participants were instructed to ignore the
distractors and remember the orientation of the
target that appeared over the placeholder. After a
400-ms blank interval, a randomly oriented probe
was presented at the same location as the target,
and participants used the arrow keys on a standard
keyboard to adjust the orientation of the probe
until it matched their percept of the target (pressing
the spacebar to enter their final response). Partici-
pants were instructed to respond as precisely as
possible, and no response deadline was imposed.
Trials were separated by a 250- to 600-ms interval
(randomly chosen in each trial). Each participant
completed 13 (n¼ 1), 14 (n¼ 2), or 16 (n¼ 18) blocks
of 64 trials for a total of 832, 896, or 1024 trials,
respectively.

Model fitting and model comparison

We fit each participant’s response errors (i.e.,
reported minus actual target orientation) within each
condition with quantitative functions that assume
either feature averaging or probabilistic substitution.
During uncrowded trials, performance is well described
by a ‘‘mixture model’’ that combines a von Mises
distribution (a circular variant of the standard normal
distribution) with mean l and concentration k with a
uniform distribution with height q:

pðxj l; k; qÞ ¼ ð1� qÞ e
kcosðx�lÞ

2pI0ðkÞ
þ q

2p
ð1Þ

where x is a vector of response errors in radians with
range [�p, p]. I0 is the modified Bessel function of the
first kind of order 0:

I0ðkÞ ¼
X‘

i¼0

k2

4

� �i
i!2

ð2Þ

In Equation 1, l (in radians) and k (dimensionless
units) correspond to the mean (center) and concentra-
tion of the von Mises distribution (respectively), and q
determines the height of a uniform distribution over the
range (�p, p]. Concentration is a reciprocal measure of
dispersion, and as k increases, the von Mises begins to
approximate a normal distribution with mean l and
variance 1/k (Abramowitz & Stegun, 1964; Fisher,
1993). Thus, we defined a measure of response
variability as r ¼=k� 1 with units in radians.
Estimates of l and r were then converted to degrees by
multiplying these values by (180/p).

Equation 1 can also be used to quantify performance
in crowded trials given a simple linear feature averaging
model (e.g., Parkes et al., 2001). Consider a scenario in
which the target is surrounded by three distractors
tilted 308 clockwise to the target and three distractors
tilted 308 counterclockwise to the target. If the target
and flankers are averaged prior to reaching awareness,
then the clockwise and counterclockwise distractors’
features should cancel, and the precision of partici-
pants’ responses (quantified by r) should equal the
precision of responses in the uncrowded condition
(alternately, if the target and each distractor contrib-
utes an independent (noisy) orientation signal, then
averaging could actually improve the precision of
participants’ responses). Conversely, any decrease in
estimates of k (corresponding to a ‘‘broader’’ distribu-
tion of report errors and thus, lower precision) is
inconsistent with feature averaging.

Of course, other averaging rules are plausible. For
example, perhaps flankers further away from or closer
to fixation are weighted more heavily during averaging
process (see, e.g., Chastain, 1982; Strasburger &
Malania, 2013, for examples of instances in which

Figure 1. Behavioral task used in Experiment 1. Each trial began

with the presentation of a fixation display (upper panel) for a

short interval. A target display (middle panel) was presented for

75 ms, and participants were instructed to identify the

orientation of the stimulus that appeared over the small white

cue in the fixation display. When present, a randomly chosen

subset of flankers were rotated 158, 308, 608, or 908 clockwise

relative to the target, and the remaining three were rotated

counterclockwise by an equivalent amount. After a short blank

interval, a randomly oriented probe appeared at the target

location; participants adjusted its orientation to match their

memory of the target (displays are not drawn to scale; see

Methods for further information on specific display parame-

ters).

Journal of Vision (2015) 15(1):4, 1–12 Ester, Zilber, & Serences 3



‘‘inner’’ and ‘‘outer’’ flankers have an asymmetric
influence on alphanumeric character recognition per-
formance under various circumstances). In the current
study, this would produce a systematic shift in l toward
the pooled orientations of the distractors nearest to or
furthest from fixation.

To quantify response errors under the assumption
that crowding results from probabilistic substitution (in
which distractors are occasionally ‘‘swapped’’ with the
target), we fit each participant’s distribution of errors
with a trimodal function:

pðxjlt; ld; k; s;qÞ

¼ ð1� qÞ· ð1� 2sÞ e
kcosðx�ltÞ

2pI0ðkÞ

�

þ s
ekcosðx�ldÞ

2pI0ðkÞ
þ s

ekcosðxþldÞ

2pI0ðkÞ � þ q
2p

ð3Þ

where s corresponds to the probability of reporting a
distractor orientation; lt corresponds to the target
orientation, and ld corresponds to absolute distractor
orientation relative to the target (i.e., 158, 308, 608, or
908); k and q are as defined above. A trimodal
distribution was used to account for the fact that in a
given trial participants could report the orientation of
the target, a counterclockwise flanker, or a clockwise
flanker. For convenience, we assumed that targets and
distractors would be reported with the same precision
(r; estimated from k using the method described
above), and we fixed both lt and ld at the target and
flanker orientations, respectively, during fitting.

We used Bayesian model comparison (BMC; Mac-
Kay, 2003; van den Berg, Shin, Chou, George, & Ma,
2012; Wasserman, 2000) to compare the averaging and
substitution models for each crowded condition. BMC
returns the likelihood of a model given the observed
data and includes a penalty for model complexity.
Additionally, BMC integrates information over pa-
rameter space and thus accounts for variability in
model performance over a range of possible parameter
values. Each model m from the set of models M (in our
case, the pooling and substitution models) produces an
error distribution p(D; m, X), where D is a vector of
report errors, and X is a vector of j model parameters.

For each model, we calculate the probability of finding
D under this distribution, averaged over free parame-
ters:

LðmÞ ¼ pðDj mÞ ¼
Z

pðDj m;XÞpðXj mÞdX

¼
Z �

P
Ntrials

i¼1
pðDij m;XÞ

�
pðXj mÞdX ð4Þ

For numerical convenience, we take the logarithm
and rewrite Equation 4 as

logLðMÞ ¼ logLmaxðMÞ þ log

Z
exp
�

logLðM;XÞ

� logLmaxðMÞ
�
pðXjMÞdX

ð5Þ
where log L(M; X) ¼

PNtrials

i¼1 logpðDi;M;XÞ and
Lmax(M)¼max L(M; X). Semicolons denote operations
applied to the entire set of models M (i.e., m1, m2 . . .
mn). Subtracting Lmax(M) avoids numerical problems
by ensuring that the exponential in the integrand is of
order 1 near the maximum likelihood value of X.

For simplicity, we set the prior of the jth model
parameter, i.e., p(XjjM), to be uniform over interval Rj

(see Table 1). That is, we iteratively computed the log
likelihood of each model using all possible combina-
tions of parameter values over the range Rj (min) to
Rj (max) and selected the set of parameter values that
maximized this quantity. Equation 5 thus becomes

logLðMÞ ¼ logLmaxðMÞ �
XdimX

j¼1

logRj

þ log

Z
expðlogLðM;XÞ

� logLmaxðMÞÞdX ð6Þ

Statistical analyses

We report traditional p values as well as Bayes
factors throughout the paper. Unlike traditional null-
hypothesis significance testing, Bayesian analyses allow
one to incorporate prior knowledge about the likely
state of the world and to make precise statements about
the likelihood of a hypothesis, including the null, given
the observed data. Consider the following hypothetical
scenario: We wish to compare a null model M0 with an
alternative model M1. M0 states that the true magni-
tude of the difference between two conditions is 0
whereas M1 states that the true magnitude of the
difference is nonzero, and our a priori uncertainty
about the true magnitude of the effect is a normal
distribution over a plausible range of possible effect

l k s q

Lower bound �p/3 3 0 0

Upper bound p/3 40 0.9 0.9

Increment 0.01 0.1 0.01 0.01

Table 1. Ranges of parameter values used in BMC. Notes: An
exhaustive grid search was used to find the combination of
parameters that maximized the log likelihood of the pooling and
substitution models. Units of l and are in radians, and units of k
are dimensionless.
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sizes. The a priori plausibility of model M1 to M0 is
given by p(M1)/p(M0). Given this ratio and the
observed data, Bayes rule allows one to calculate the
posterior odds of each model given the data:

pðM1jDÞ
pðM0jDÞ

¼ pðDjM1Þ
pðDjM0Þ

·
pðM1Þ
pðM0Þ

ð7Þ

The ratio p(DjM1)/p(DjM0) is called the Bayes factor
(bf), and it describes the amount by which the data
have changed the prior odds. For example, a bf of 10
indicates a 10-to-1 change in the prior odds favoring
the alternative model. Conversely, a bf of 0.1 indicates
a 10-to-1 change in the prior odds favoring the null
model (see Edwards, Lindman, & Savage, 1963, and
Kass & Raftery, 1995, for further information).

Bayesian analyses were performed in R using the
‘‘BayesFactor’’ package developed byRichardMorey and
Jeffrey Rouder (available for download at bayesfactorpcl.
r-forge.r-project.org).

Results

Figure 2A depicts the mean distribution of response
errors during uncrowded trials. As expected, response
errors were tightly distributed around the target
orientation (i.e., 08 response error) with approximately
8% of responses attributable to random guessing
(Figure 2B is discussed in Experiment 2 below).

Next, we fit each participant’s response errors within
each crowded condition with the averaging and
substitution models described in Equations 1 and 2.

Histograms of response errors within each crowded
condition are shown in Figure 3, and the parameters
for the best-fitting averaging and substitution models
are shown in Figure 4. BMC was used to compare the
performance of the two models within each crowded
condition. Specifically, we computed log likelihoods for
each model over a large range of possible parameter
values (see Table 1) and extracted the parameter
estimates that maximized this quantity (separately for
each condition). We then averaged the log likelihoods
of both models within each condition across partici-
pants and subtracted the averaged log likelihood of the
averaging model from the averaged log likelihood of
the substitution model. In this formulation, a log
likelihood difference of x means that the data are x
times more likely under the substitution model than the
averaging model.

For the 6158, 6308, and 6608 conditions, the
substitution model marginally outperformed the pool-
ing model. Specifically, averaged log likelihoods were
0.80, 1.33, and 1.48 units higher for the substitution
relative to the pooling model for three conditions,
respectively. These correspond to approximately 2.22-,
3.78-, and 4.40-to-1 odds favoring the substitution
model over the pooling model. However, the substitu-
tion model outperformed the averaging model within
the 6908 condition by a substantial amount. Specifi-
cally, the averaged log likelihood of the substitution
model was 3.56 units larger than the averaged log
likelihood of the averaging model; this corresponds to
approximately 35-to-1 odds favoring substitution over
averaging. These results suggest that crowding induced
by more dissimilar flankers (e.g., 6608, 6908) results
from a probabilistic substitution of targets, consistent
with earlier work (Ester et al., 2014). However, they are
somewhat ambiguous with respect to the effect of
similar flankers (6158 or 6308).

Next, we examined the plausibility of the averaging
model using two similar-flanker conditions (6158 and

Figure 2. Histograms of response errors for uncrowded displays

in Experiments 1 (A) and 2 (B). Error bars are 95% confidence

intervals.

Figure 3. Response errors during crowded trials in Experiment 1.

Error bars are 95% confidence intervals.
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6308; qualitatively identical results were obtained when
we also included the 6608 condition) by comparing
estimates of l, r, and q during crowded and uncrowded
trials. These are shown in Table 2. Recall that in each
crowded trial three distractors were tilted clockwise
relative to the target in each trial while the remainder
were tilted counterclockwise. If the orientations of the
targets and distractors are pooled (averaged) at an early
stage of processing (e.g., Parkes et al., 2001), then the
effect of the distractors should cancel, and performance
should equal levels observed in the uncrowded condi-
tion. To evaluate this possibility, estimates of l, r, and
q returned by the averaging model were subjected to
separate one-way ANOVAs with condition (uncrowd-
ed, 6158, 6308) as the sole within-subjects factor. This
analysis revealed a significant effect of condition on r

(p¼ 2.84e� 08, bf¼ 2.90eþ 06; Figure 4C) and on q (p
, 2.19e� 11, bf¼ 3.22eþ 08; Figure 4E), but not on l
(p¼ 0.27, bf¼ 0.36; Figure 4A). Post hoc comparisons
(repeated measures t tests) revealed robust differences
between estimates of r for the uncrowded and 6158

conditions (p¼ 0.002, bf ¼ 19.00), and the uncrowded
and 6308 conditions (p ¼ 1.39e� 06, bf ¼ 13,256).
Estimates of r were also significantly different across
the 6158 and 6308 conditions (p ¼ 0.003, bf ¼ 103).
Identical comparisons on q revealed robust differences
between the uncrowded and 6158 conditions (p¼ 4.80e
� 08, bf ¼ 2.94eþ 05), and the uncrowded and 6308

conditions (p¼ 1.56e � 07, bf ¼ 9.91eþ 04). The
difference between the 6158 and 6308 conditions was
not significant (p ¼ 0.29, bf ¼ 0.38).

Figure 4. Parameters of the best fitting pooling (left column) and substitution (right column) models. (A, B, and C) Estimates of l, r,
and q estimated from the pooling model (Equation 1) as a function of distractor presence and target–distractor rotation differences

(6158 through 6908). (D, E, and F) Estimates of s, r, and q obtained from the substitution model in Equation 2 as a function of

distractor presence and target–distractor differences. By definition, s ¼ 0 when there are no distractors in this display, so this

condition has been omitted from (D). The estimate of r for uncrowded trials in (E) was obtained via the pooling model, i.e., it is

identical to the estimate shown in (C). Error bars are 95% confidence intervals.

l r q

No flankers �1.37 [�3.60–�2.37] 19.78 [16.58–22.90] 0.08 [0.05–0.12]

6158 �2.00 [�3.09–�0.91] 23.45 [21.73–25.30] 0.26 [0.20–0.32]

6308 �0.97 [�2.29–0.40] 27.63 [25.48–19.77] 0.28 [0.22–0.34]

Table 2. Estimates of k and s returned by the pooling model in Experiment 1 for the no-flanker and similar-flanker (6158 and 6308)
conditions. Notes: Values of l and r are in degrees. Values in brackets are 95% confidence intervals.
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These results are inconsistent with simple averaging
models in which target and distractor values are
averaged prior to reaching awareness (e.g., Parkes et
al., 2001). Under such a model, one would expect
roughly equivalent performance during crowded and
uncrowded conditions because the influence of clock-
wise and counterclockwise distractors should cancel
during the averaging operation. However, more com-
plex averages are also plausible. For example, perhaps
distractors nearer the fovea are weighted more heavily
during the averaging process. This alternative is
motivated by observations suggesting that ‘‘inner’’ or
‘‘outer’’ flankers may have a greater effect on recogni-
tion performance under certain conditions (e.g., Stras-
burger, Rentschler, & Juttner, 2011; Strasburger &
Malania, 2013). Here, one would expect estimates of l
to be systematically shifted away from 0 and toward the
mean of the three distractors nearest or furthest from
fixation in each trial. To evaluate this possibility, we
conducted separate analyses in which we extracted the
orientations of the three distractors either nearest or
furthest from fixation in each 6158 and 6308 trial. We
then sorted each participant’s report errors into one of
two bins, depending on whether the mean orientation
of the flankers were tilted counterclockwise or clock-
wise relative to the target (data were pooled across
6158 and 6308 trials to ensure adequate statistical
power). We then estimated l within each bin using
Equation 1. False-discovery-rate-corrected repeated-
measures t tests revealed no effect of mean distractor
rotation direction (i.e., clockwise or counterclockwise
relative to the target) on l, r, or q; both ps . 0.70 and
both bfs , 0.27. Qualitatively similar results were
obtained when we included all target–distractor tilts in
this analysis.

Thus far, our findings are inconsistent with a feature-
averaging model of crowding either because a substi-
tution model provides a better description of the
observed data (e.g., in the 6608 and 6908 conditions)
or because the averaging model actually behaves in a
manner inconsistent with feature averaging (e.g., across
the uncrowded, 6158 and 6308 conditions). Thus, we
next consider an alternative model. Under this model,
the observed distributions of response errors are a sum
of three underlying distributions: one centered at the
target’s orientation, and one centered at each distractor
orientation (e.g., 6158). Unfortunately, it is difficult to
unambiguously recover these three subdistributions
(see below). Nevertheless, given that this model
provided a reasonable description of the observed data
(average r2 across participants and crowded conditions
was 0.77; Figure 3C, D), we decided to examine the
behavior of this model across the various crowded
conditions. Estimates of r, s, and q for each crowded
condition (i.e., 6158 through 6908) were subjected to a
one-way ANOVA with target–flanker rotation as the

sole within-subjects factor. These analyses revealed a
significant effect of rotation on q (p , 2.47e� 07, bf¼
5.48eþ 04; Figure 4F), but no effect of rotation on
either r (p¼ 0.21, bf¼ 0.42; Figure 4D), or s (p¼ 0.24,
bf¼ 0.36; Figure 4B).1 Inspection of Figure 3 suggests
that increasing target–distractor rotations increased the
likelihood of random responses but has no discernable
effect on the likelihood of reporting a nontarget or the
precision of participants’ responses.

As mentioned above, we were unable to recover
unambiguously trimodal distributions in the 6158,
6308, and 6608 conditions. The reason for this is that
it is extremely difficult to disambiguate proximal target
and distractor error distributions, particularly when the
distance between the target and distractors is less than
or equal to the precision with which a participant can
encode and report information. To illustrate this, we
generated a set of trimodal response distributions using
parameters returned by the substitution model during
6158, 6308, and 6608 trials. We then generated
100,000 samples from each distribution and compared
how well the averaging and substitution models in
Equations 1 and 2 were able to characterize the data. In
nearly all cases, the two models performed equivalently
even though the data were synthesized from a trimodal
distribution. Thus, in our view, the fact that the simple
averaging model equals or outperforms the substitution
model when target–distractor similarity is high (6158
and 6308) constitutes only weak support for feature
averaging.

Experiment 2

Experiment 2 was similar to Experiment 1 with two
exceptions. First, we eliminated the 6308 and 6908
target–distractor tilt conditions. Second, we systemat-
ically varied the center-to-center distance between the
target and distractors. It is well known that increasing
the distance between a target and nearby distractors
reduces the severity of crowding (e.g., Bouma, 1970;
Scolari, Kohnen, Barton, & Awh, 2007). This allowed
us to examine whether the frequencies of distractor and
random responses were modulated by a factor known
to determine crowding strength.

Method

Participants

Eighteen additional undergraduate students from
UCSD completed a single 1.5-hr testing session in
exchange for course credit. All participants gave both
written and oral informed consent and reported normal
or corrected-to-normal visual acuity. All experimental
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procedures were approved by the local institutional
review board.

Procedure

Schematics of the target displays used in this
experiment are shown in Figure 5. Experiment 2 was
similar to Experiment 1 with the following exceptions:
First, when present, distractors were tilted 6158 or
6608 relative to the target. Second, in 50% of crowded
trials, the center-to-center distance between the target
and distractors was set at 3.338 (identical to Experiment
1; ‘‘near’’ trials); in the remaining 50% of trials, this
distance was increased to 6.508 (‘‘far’’ trials). Target
eccentricity was fixed at 9.678. Data were fit using the
averaging and substitution models described in Equa-
tions 1 and 2.

Results

The mean distribution of response errors during
uncrowded trials is shown in Figure 2B. As in
Experiment 1, response errors were tightly distributed
around 0 with few high-magnitude errors. Next, we fit
each participant’s distribution of response errors within
each of the four crowded conditions with the averaging
and substitution models described in Equations 1 and
2. Histograms of response errors within each crowded
condition are shown in Figure 6, and the parameters
for the best-fitting averaging and substitution models
are shown in Figure 7. As in Experiment 1, BMC was
used to compare the performance of the two models
within each crowded condition. Unlike Experiment 1,
both models performed equally well in all conditions.
For example, the difference in model log likelihoods
(substitution minus averaging) for the near and far
6158 and 6608 conditions were 0.36, 0.53, �0.67, and
0.16, respectively. We thus examined the plausibility of
the averaging and substitution models as a function of
target–distractor tilt (i.e., 6158 or 6608) by comparing
estimates of l, r, and q (for the averaging model) and

r, s, and q (for the substitution model) during crowded
and uncrowded trials (separately for near and far trials)
using the same logic outlined in Experiment 1.

We began by examining the behavior of the simple
averaging model. Target–distractor tilt had no effect on
estimates of l in either the near or far condition (p¼
0.60 and 0.33, bf ¼ 0.22 and 0.36, respectively).
Conversely, tilt had a substantial effect on estimates of
r during both near and far trials (p ¼ 3.30e� 05 and
8.45e� 04, bf ¼ 560 and 61.29 for 6158 and 6608
trials, respectively). Post hoc analyses on r revealed
substantially lower estimates during both 6158 and
6608 near trials relative to uncrowded trials (p¼ 6.61e
� 05 and 0.004; bf¼407.17 and 72.59, respectively), but
the difference between 6158 and 6608 trials was not
significant (p¼ 0.93, bf ¼ 0.24). Similar findings were
observed for far trials. Specifically, we observed reliably
lower estimates of r during 6158 and 6608 trials
relative to uncrowded trials (p¼ 2.94e� 06 and 0.004,
bf ¼ 6,697 and 11.55 for 6158 and 6608 trials,
respectively). The difference between 6158 and 6608
trials was not significant (p¼ 0.11; bf ¼ 9.77). Finally,
an ANOVA on estimates of q revealed significant
effects of target–distractor tilt during both near and far
trials (p ¼ 3.18e� 06 and 3.50e � 11, bf ¼ 4,881 and
6.71eþ 08, respectively).

As in Experiment 1, the substantial increases in
estimates of r from uncrowded to both near and far
crowded trials are inconsistent with a simple feature-
averaging model in which items are averaged prior to
reaching awareness. However, the current data can be
accommodated by a substitution model with which
targets and distractors are occasionally ‘‘swapped,’’
leading participants to report a distractor value as the
target. Thus, we examined the behavior of this model in
more detail. Specifically, separate 2 · 2 ANOVAs with
target–flanker rotation (6158, 6608) and target–flanker

Figure 6. Histograms of response errors observed in each

condition of Experiment 2. Error bars are 95% confidence

intervals.

Figure 5. Target displays used in Experiment 2. Displays are not

drawn to scale; see Methods for information on display

parameters.
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distance (near, far) as within-participants factors were
performed on estimates of r, s, and q. For r, this
analysis revealed a marginally significant main effect of
distance (p¼ 0.05) but no main effect of rotation (p¼
0.20) nor an interaction between these factors (p ¼
0.76). A complementary Bayesian ANOVA revealed
very modest support for a model containing only the
main effect of distance (bf¼ 1.88 relative to the null
hypothesis of no main effects nor an interaction).

An identical analysis performed on estimates of s
revealed a main effect of target–flanker rotation, (p¼
7.42e� 04) but no main effect of distance (p¼0.15) nor
an interaction (p¼ 0.77). A Bayesian ANOVA revealed
strong support for a model containing only target–
distractor rotation relative to a null model containing
no main effects nor an interaction (bf ¼ 1,919) but
relatively weak support when compared to the next
strongest model containing both main effects (bf¼
1.72). Finally, the same analysis on estimates of q
revealed a main effect of rotation (p¼ 4.33e� 04), a
main effect of distance (p ¼ 8.17e� 05), and a
significant interaction between these factors (p¼ 1.18e
� 04). A complementary Bayesian ANOVA revealed
strong support for a model containing both main

effects and their interaction (bf¼1.61eþ07 relative to a
null model containing no effects and bf ¼ 8.19 relative
to the next strongest model containing both main
effects but not their interaction). Visual inspection of
Figure 7F suggests that random responses were more
likely during near relative to far trials.

To summarize, the results of Experiment 2 largely
replicate those of Experiment 1: Although BMC
revealed equivalent support for the averaging and
substitution models, a comparison of parameter
estimates returned by the averaging model across
crowded and uncrowded trials revealed evidence
inconsistent with averaging. Specifically, the precision
of participants’ response errors decreased with in-
creasing target–distractor rotation. Because an equal
number of distractors were tilted clockwise and
counterclockwise relative to the target, one would
expect performance to be as good when crowders are
present relative to when they are not under an
averaging model. This was not the case. Finally,
Experiment 2 revealed that increasing target–distractor
spatial separation—a factor known to have a large
influence on crowding strength—reduced the frequency
of random orientation reports but had little effect on

Figure 7. Pooling and substitution model parameters obtained in Experiment 2. (A, B, and C) Estimates of l, r, and q obtained from

the pooling model in Equation 1 as a function of distractor presence (triangle symbols) and target–distractor differences (6158 and

6608). (D, E, and F) Estimates of s, r, and q obtained from the substitution model in Equation 2 as a function of distractor presence

(triangle symbols) and target–distractor differences. By definition, s¼ 0 when there are no distractors in this display, so this condition

has been omitted from (D). The estimate of r for uncrowded trials in (E) was obtained via the pooling model, i.e., it is identical to the

estimate shown in (B). Lines connected by squares correspond to ‘‘far’’ trials, and lines connected by circles correspond to the ‘‘near’’
trials. Error bars are 95% confidence intervals.
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the precision of participants’ responses or the likeli-
hood of reporting a distractor orientation.

Discussion

In two experiments, we examined whether crowding-
induced changes in a continuous orientation report task
were better explained by a model assuming feature
averaging or a model assuming a probabilistic substi-
tution of target and flanker features. In Experiment 1,
the substitution model outperformed the averaging
model when target–distractor similarity was low,
replicating the results of an earlier study (Ester et al.,
2014). However, when similarity was high, both models
performed equally well. A comparison of parameter
estimates returned by the averaging model across
crowded and uncrowded trials revealed evidence
inconsistent with simple feature averaging. Specifically,
the relative precision of participants’ orientation
reports decreased during crowded relative to un-
crowded trials. Moreover, precision decreased mono-
tonically with the angular difference between target and
flanker orientations. Both of these results are incon-
sistent with an averaging model in which each stimulus
(flanker or target) contributes equally to the ultimate
perception of orientation. Specifically, recall that when
present, half of the crowders were tilted counterclock-
wise relative to the target, and the remaining crowders
were tilted clockwise relative to the target by an
equivalent amount. If each orientation contributes
equally to the computation of a local average, then one
would expect orientation report performance for
crowded displays to equal or exceed performance for
uncrowded displays. We also found no evidence for an
averaging model in which ‘‘inner’’ or ‘‘outer’’ flankers
are weighted more heavily during the averaging
operation. Experiment 2 replicated these findings while
manipulating a factor known to influence the severity
of crowding: target–flanker distance. Increasing the
separation between the target and nearby distractors
had a large effect on the frequency of random responses
in the model but little effect on either the likelihood of
nontarget reports or the precision of participants’
responses.

Here, we compared a simple pooling model in which
the target and distractor orientations are averaged
prior to reaching awareness (Parkes et al., 2001; see
also Greenwood et al., 2009) with a substitution model
in which the target and a neighboring flanker are
occasionally swapped (Ester et al., 2014). Although
either of these alternatives may often suffice to explain
the pattern of errors observed in a given crowding
experiment, other models are also plausible. One
possibility is that participants encode and/or report

targets and distractors with variable precision over
trials (e.g., van den Berg et al., 2012). On the one hand,
it is difficult to fathom how such a model could explain
the clearly trimodal distribution from the 6908
condition in Experiment 1 (Figure 3D). On the other
hand, such a model could easily mimic either pooling or
substitution when target–distractor similarity is high.
Additional research is needed to evaluate this possi-
bility.

As mentioned in the Introduction, feature averag-
ing constitutes just one example of ‘‘pooling.’’ Other
forms of pooling include positional averaging (e.g.,
Dakin et al., 2010; Greenwood et al., 2009) and pixel
averaging (e.g., Balas et al., 2009). Each of these
alternatives have been invoked to explain crowding
effects under various scenarios, but we suspect that
many of these demonstrations can also be accounted
for by probabilistic substitution. Consider a study by
Greenwood et al. (2009) in which participants were
asked to report the location of the horizontal stroke of
a cross-like stimulus that was flanked by two cross-like
distractors and reported that estimates of stroke
position were systematically biased by the position of
the distractors’ strokes. This result is amenable to
positional averaging, but it instead may reflect
interactions of two response biases. Specifically,
Greenwood et al. documented a repulsion bias from
the target midpoint (i.e., participants rarely reported
the target as a ‘‘þ’’), and we suspect that many
participants may have had a similar bias away from
extreme stroke positions (e.g., ‘‘T’’) although this is
impossible to ascertain from the data. Nevertheless,
the combination of these biases could restrict the
range of possible responses and create the artificial
appearance of positional averaging.

More recent theoretical and experimental work
suggests that pooling may reflect a nonlinear combi-
nation of local first- and second-order statistics,
resulting in a ‘‘mongrel’’ percept that resembles any or
none of the original stimuli (e.g., Balas et al., 2009;
Freeman & Simoncelli, 2011). Our findings neither
refute nor support this possibility. However, one
potential limitation of these studies is that they rely on
forced-choice identification or discrimination tasks that
preclude participants from reporting precisely what
they perceive in each trial (e.g., a participant cannot
report that his or her mongrel percept ‘‘looks like the
average of an H and a B’’). Under many circumstances,
it may be desirable or useful to examine the effects of
flankers on perception by asking participants to directly
report target features. For example, the analytical
approach used in the current study allows one to
account for a large range of possible responses by
estimating the precision and relative frequencies of
target and nontarget responses as well as the frequency
of random orientation reports. Related approaches
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may be intractable for some stimulus sets (e.g., letters
or natural images), but where possible, they may yield
novel insights that complement or refute data patterns
observed in forced-choice tasks.

The present findings build upon recent work
challenging feature averaging as a major cause of visual
crowding (Anderson, Ester, Klee, Vogel, & Awh, 2014;
Ester et al., 2014). Specifically, we have shown that a
probabilistic substitution model outperforms a pooling
model when target–distractor similarity is low, repli-
cating earlier findings (Anderson et al., 2014; Ester et
al., 2014). However, a systematic comparison of
pooling-model parameters during uncrowded and
crowded trials revealed evidence inconsistent with a
simple feature-averaging model. Instead, the data can
be accommodated by a probabilistic substitution
model, which assumes that crowding manifests when
participants accidentally ‘‘swap’’ a target for a dis-
tractor.

Keywords: crowding, pooling, substitution
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Footnote

1 By definition, s ¼ 0 during uncrowded trials; thus
this comparison included only the four distractor-
present conditions.
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