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Abstract

Motivated by potentially serious imbalances of continuous baseline covariates in clinical trials, we 

investigated the cost in statistical power of ignoring the balance of these covariates in treatment 

allocation design for a logistic regression model. Based on data from a clinical trial of acute 

ischemic stroke treatment, computer simulations were used to create scenarios varying from best 

possible baseline covariate balance to worst possible imbalance, with multiple balance levels 

between the two extremes. The likelihood of each scenario occurring under simple randomization 

was evaluated. Power of the main effect test for treatment was examined. Our simulation results 

show that the worst possible imbalance is highly unlikely, but it can still occur under simple 

random allocation. Also, power loss could be nontrivial if balancing distributions of important 

continuous covariates were ignored even if adjustment is made in analysis for important 

covariates. This situation, although unlikely, is more serious for trials with a small sample size and 

for covariates with large influence on primary outcome. These results suggest that attempts should 

be made to balance known prognostic continuous covariates at the design phase of a clinical trial 

even when adjustment is planned for these covariates at the analysis.

Keywords

randomization; covariate; clinical trial; power

1. Introduction

Randomization in clinical trials is fundamental to study design. It provides validity of 

statistical analyses of trial results by incorporating randomness, and it promotes comparable 

treatment groups with respect to allocation numbers and baseline covariate distributions. 

Simple randomization ensures independence among subject treatment assignments and 

prevents potential selection biases associated with baseline covariates, but it cannot 
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guarantee balance in covariate distributions across treatment groups [1, 2]. The expected 

level of imbalance under simple randomization is zero, but this is only an average over an 

infinite number of imbalances. A clinical trial is only a single realization of a random 

phenomenon, and it cannot be assumed that the observed imbalance across treatment groups 

will be zero for any single trial. This paper illustrates that simple random allocation has the 

potential to result in large levels of covariate imbalances across treatment groups.

Constrained randomization designs have been used in clinical trials to balance the allocation 

across treatment groups, including permuted block, biased coin [3], and urn designs [4, 5]. 

Stratification and minimization [6, 7] are used together with these constrained 

randomization methods to combat imbalances in baseline covariate distributions. However, 

these methods only apply to categorical covariates, and they lack the capacity to control 

imbalance in continuous baseline covariates. Optimal designs developed by Begg, Iglewicz 

[8], and Atkinson [9] have the ability to control imbalances in continuous covariates, but 

their properties have not been fully explored and they have yet to be implemented in clinical 

trials [1]. Aickin [10], Nishi and Takaichi [11], Endo, et al [12], Frane [13], and Greevy [14] 

have also illustrated continuous covariate balancing techniques.

In clinical trial practice, however, continuous baseline covariates are traditionally 

categorized, and their imbalance is controlled with stratification or minimization. This 

strategy is limited because of the large number of potential strata which result in a small 

average stratum size, reducing the effectiveness of the constrained randomization method [1, 

15]. Lack of publicity for practical methods for continuous covariate balancing and lack of 

knowledge on the cost of failing to balance continuous covariates results in a common 

phenomenon, whereby continuous covariates are excluded from the randomization plan in 

clinical trials. Leaving important continuous covariates outside of the randomization scheme 

could lead to selection bias when an investigator has both knowledge of the covariate and 

influence on recruitment. Additionally, uncontrolled imbalances in continuous covariates 

may affect the statistical analysis of the trial outcome.

The purpose of this research is to explore both ends of the balance-imbalance spectrum and 

quantify the effect of imbalance in continuous covariate distributions on power in a 

nonlinear setup. We propose a visual method and a mathematical expression for measuring 

imbalance in continuous covariate distributions across two treatment groups. Computer 

simulation attempts to determine the imbalance distribution under several allocation 

scenarios. The next section provides motivation and background for this study. Section 3 

outlines the simulation methods, followed by results in Section 4. The last section discusses 

overall conclusions from this simulation study and explains what remains to be explored.

2. Motivation

Partly due to baseline disease severity and age imbalances across treatment groups, the 

National Institutes of Neurological Disorders and Stroke (NINDS) tissue plasminogen 

activator (tPA) study [16] for the treatment of acute ischemic stoke has been the source of 

controversy [17–20]. The randomization scheme implemented in the NINDS trial was the 

permuted block design, stratified by time from stroke onset (0–90 min, 91–180 min) and 

Ciolino et al. Page 2

Contemp Clin Trials. Author manuscript; available in PMC 2015 January 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



clinical site. This randomization scheme balances the number of subjects between the two 

treatment arms within each time-from-onset stratum in each site. Age and baseline National 

Institutes of Health Stroke Scale (NIHSS) score were not included in the randomization 

scheme, although both variables are known predictors of the trial’s primary outcome, the 

three month functional outcome following ischemic stroke [17, 21].

Insignificant statistical test results comparing mean or median covariate values across 

treatment groups does not necessarily suggest that there is little need for concern about 

covariate imbalance and its impact on the trial results. We propose a tool to assess the 

imbalance in the entire continuous variable distribution between two treatment groups.

Let F(x, j) be the number of subjects randomized to treatment arm j (j = 1,2) with the 

covariate value less than or equal to x. Then D(x) = F(x,1) − F(x,2) represents the 

distribution of cumulative imbalances between the two treatment arms. Ideally, an 

imbalance at one value (or in a small region) of the covariate can be compensated by another 

imbalance in the opposite direction at a nearby point (or small region). In this case, the curve 

of D(x) would frequently cross the zero line in the entire range of the covariate, indicating a 

nearly balanced distribution of that covariate between the two treatment arms.

In the NINDS tPA Trial, the mean baseline age differed by two years (p-value=0.03) 

between the treatment arms, and the mean baseline NIHSS score across treatment groups 

differed by only one unit (p-value=0.14). A closer look at the distribution of cumulative 

differences of both variables across treatment groups reveals major imbalances that cannot 

be seen by examining the means alone. Figure 1 illustrates plots of the cumulative 

imbalances, D(x), for age and NIHSS. It is evident from these plots that the cumulative 

imbalance for each variable strays far from zero, suggesting large amounts of distributional 

imbalance. With such large baseline imbalances in these known predictors, the 

randomization design in the NINDS trial is questionable.

In addition to the NINDS tPA clinical trial, there have been several other controversial 

clinical trials whose criticism stems from baseline covariate imbalances. For example, the 

Breast Cancer Erythropoietin Trial (BEST) terminated early as a result of an observed 

higher mortality rate in the group treated with erythropoietin (Eprex) compared to the 

placebo group [22]. Upon termination, this trial had enrolled 939 patients across 139 sites in 

20 different countries. Despite the increased death rates observed in the active treatment 

group, Leyland-Jones explains that the results of this trial are inconclusive as this group also 

showed an increased incidence of disease progression, increased incidence of thrombotic 

and vascular events (TVEs), higher average age, lower overall performance status, and 

increased incidence of other risk factors for TVEs when compared to the placebo group [22].

Furthermore, results from the Heart Outcomes Prevention Evaluation (HOPE) study [23] 

have also been criticized as a result of baseline covariate imbalances [24]. The study showed 

a decreased risk in cardiovascular events in subjects treated with angiotensin-converting-

enzyme (ACE) inhibitor when compared to those in the placebo group. However, Taylor 

points out that the placebo group contained more subjects with cardiovascular risk factors 

including peripheral vascular disease, previous myocardial infarction, angina, previous 
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cerebrovascular disease, and raised total cholesterol [24]. Thus, the results of this trial must 

also be interpreted with caution. In response to these comments, Sleight et al state that the 

observed imbalances are not statistically significant [25], but statistically insignificant 

imbalances in prognostic covariates can have a substantial effect on outcome [26].

Finally, it has been suggested that baseline imbalances may have effected overall study 

results in a clinical trial for efficacy and safety of recombinant activated factor VII for acute 

intracerebral hemorrhage (FAST) [27]. The purpose of the FAST study was to confirm 

previous findings from another study in which recombinant activated factor VII (rFVIIa) 

reduced growth of hematoma and improved survival and functional outcomes following 

intracerebral hemorrhage. In this study therapy with rFVIIa resulted in decreased hematoma 

growth, but no improvement was observed in survival or functional outcome. The authors 

state that “potentially important randomization imbalances were present.” Namely, larger 

proportions of patients with intraventricular hemorrhage, coma, and left ventricular 

hypertrophy were observed in the active treatment arm(s) compared to the placebo group at 

baseline. Imbalance in total lesion volume was also observed at baseline in this trial. The 

results of this trial were, therefore, not confirmatory, and further research is needed in this 

area [27]. An extensive list of controversial clinical trials can be found in Berger’s Selection 

Bias and Covariate Imbalances in Randomized Clinical Trials [28].

It is a common practice to include important baseline covariates in the final analysis model 

for a clinical trial to account for potential confounding, but the hope that any imbalances 

observed can simply be “adjusted away is no more than wishful thinking” [29]. The 

magnitude of the benefit in achieving baseline balance in the distributions of important 

continuous (or ordinal) predictors in a logistic regression setting is unclear. This research 

uses computer simulations in an attempt to quantify the effect on statistical power of 

detecting a treatment effect in a logistic regression model accounting for important baseline 

covariates with varying levels of imbalances across treatment groups in clinical trials.

3. Methods

3.1. Simulation assumptions

The NINDS tPA dataset served as a source for this simulation study and parameter values 

were obtained from the NINDS tPA descriptive statistics. The two covariates of interest 

were age and NIHSS. For the purposes of this simulation study, these were the only two 

covariates included in a simple logistic regression model for successful outcome at three 

months, defined as a Modified Rankin Scale (MRS) score of 0 or 1 [30, 31].

Standardized (mean centered, divided by standard deviation) NIHSS and age values from 

the NINDS tPA Trial data were used to model the overall response rate. The following 

simple logistic regression model was obtained by modeling success at three months in terms 

of the standardized variables and treatment. This model was used to simulate successful 

response in the simulation algorithm:

(1)
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where x1 corresponds to age, x2 corresponds to NIHSS, and I (tPA) is an indicator variable 

for active treatment (tPA). All simulations assumed only two treatment groups and for each 

subject simulated, two covariates were sampled from a standard normal distribution. If a 

sampled value was outside 3 standard deviations from the mean, it was resampled from the 

standard normal until a sampled value within 3 standard deviations was obtained. This was 

done to ensure that a valid range for the covariate of interest was obtained for each sample. 

Equation (1) was used to generate a probability of successful response. Adjustment was 

made for these two covariates in the analysis of each simulation dataset.

3.2. Measurement of imbalance

Imbalance in the sampled covariates of interest was measured by a rank-sum ratio (RSR). 

Within each sample, the values of each of the covariates were ranked from 1 to N, where N 

is the total sample size. Then, the ratio of the sum of the ranks in the treatment group to the 

sum of the ranks in the placebo group was calculated as the measurement of imbalance. For 

example, to calculate the RSR for the age variable in a clinical trial with 2 treatment groups, 

a total sample size of 100, and 50 subjects per treatment arm, we would first rank all age 

values in order from 1 to 100. Let rij be the rank for individual i (i=1,…,50) in treatment 

group j (j=1,2). Then, the rank-sum ratio for age can be calculated as

(2)

Ideally, this value would stay close to 1, but large imbalances correspond to large deviations 

from 1.

This measurement of imbalance was chosen for continuous covariates since it does not 

require any distributional assumptions, and it is analogous to several nonparametric test 

statistics [32]. It can be shown that if the two treatment groups have equal sample sizes, the 

worst case scenario (i.e. the lowest/highest 50% of values belong to the treatment group) 

imbalance for a single variable approaches 3 or 1/3 (depending on which 50% of values are 

in the treatment group) as the overall sample size approaches infinity. In this research the 

RSR was calculated using the ranks of the active treatment group in the numerator and the 

ranks of the placebo in the denominator. This means that for a covariate negatively 

associated with outcome, a RSR greater than 1 suggests an imbalance that “favors” the 

placebo group or results in a poorer baseline prognosis for the active treatment group.

3.3 Simulation algorithms

All simulations were conducted in R (version 2.10.0) and simulated a clinical trial involving 

two treatment arms. The scenarios investigated in these simulations were the worst case 

scenario, simple random allocation, randomized block allocation to ensure equal sample 

sizes, and an ideal scenario that attempted to achieve perfect balance across treatment and 

placebo groups. Sample sizes of N=50, 100, and 300 were investigated under each of these 

scenarios. Additional scenarios that allowed for varying levels of influence on outcome for 

the variable corresponding to NIHSS (x2) were also investigated.
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Flow charts of the simulation algorithms for the ideal scenario as well as the worst case 

scenario can be found in Figures 2 and 3, respectively. For the ideal scenario, both 

covariates were sampled from a standard normal distribution for the treatment group. The 

placebo group values were sampled from normal distributions centered at the corresponding 

treatment sample realizations with very small variance (standard deviation=0.001) so as to 

essentially match treatment and placebo groups while still allowing for slight variation. For 

the worst case scenarios, both covariates were again sampled from standard normal 

distributions. Then the sampled values were ranked from 1 to N, and, depending on the 

scenario, the upper or lower 50% of these values were placed in the treatment group, and the 

remainders were placed in the placebo group.

The simple random allocation algorithm simply assigned each subject to treatment or 

placebo with 50% probability, and the randomized block allocation used a blocking scheme 

to ensure equal sample sizes across treatment groups. The next section presents the 

simulation results for each of the simulation scenarios investigated.

4. Results

4.1. Rank-sum ratio and its distribution

Figure 4 shows empirical imbalance densities across 10,000 simulations for each scenario 

examined for the variable corresponding to NIHSS. Among the four worst case scenarios 

examined (see Figure 3), the worst performing scheme in terms of power occurred when the 

lower 50% of the first covariate (the less influential variable, corresponding to age) and the 

highest 50% of the second covariate (the more influential variable, corresponding to NIHSS) 

fell in the treatment group; this is the worst case scenario illustrated in Figure 4. The number 

of successful treatment effect detections as determined by a Wald p-value less than 0.05 out 

of the 10,000 simulated samples was used to estimate statistical power of treatment effect 

detection. These values are reported in the legend for this figure. The greatest power was 

achieved in the ideal scenario, and the smallest power was achieved in the worst case 

scenario for each sample size.

The ideal scenario RSR showed very slight deviations from 1, implying nearly perfect 

covariate balance across treatment groups. The maximum values under this scenario for 

sample sizes of 50, 100, and 300 were 1.033, 1.010, and 1.002, respectively. On the other 

hand, since the simple random allocation scheme does not ensure equal sample sizes, it is 

possible for the imbalance measure to exceed that of the worst case scenario (which 

assumed equal sample sizes across treatment groups). For a sample size of 50, this occurred 

18 out of 10,000 times (or 0.18% of the time). As the sample size increased, the probability 

of simple randomization resulting in imbalance greater than or equal to that observed under 

the worst case scenario quickly diminished (0.01% of the time for sample size of 100). In 

fact, once sample size reached 300, an imbalance of this magnitude was never observed. 

Under the random block allocation scheme, the worst case imbalance never occurred in 

these simulations. From this information and the plots in Figure 4, it is evident that as 

sample size increased, the distribution of the RSR remained more closely centered around 1.
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4.2 Power analyses

Recall that ideal scenario had the largest power for all sample sizes while the worst case 

scenario had the smallest power for all sample sizes. Since both of these designs are 

impractical and simple random allocation is not commonly used, it may be more appropriate 

to examine the random block scenario that ensures equal sample size (as long as all blocks 

are filled at the end of the trial). Also, recall that the simulations assumed the treatment 

effect was detected successfully if the Wald p-value for a particular simulation was less than 

0.05. Thus, one could argue that the smaller the p-value, the larger the power.

In order to better characterize the distribution of the imbalance measure (i.e. to simulate a 

larger number of extreme RSR values), an additional one million simulations were run using 

the blocked randomization scheme to ensure equal sample size. Sample sizes of 50, 100, 

300, and 500 were used to simulate one million clinical trials with varying levels of 

influence for x2, the variable representing NIHSS. The distributional results for the Wald p-

value for treatment effect and power associated with each scenario can be found in Table 1. 

The magnitude of influence for this variable is defined by the logistic regression coefficient 

associated with this variable in generating a positive response for each simulated subject. In 

the model dataset, this coefficient value was −1.2 as shown in equation (1). Coefficient 

values of −2.4 and −0.5 were also used to simulate response in order to examine the impact 

of the influence level for the variable of interest on power. The results under each level of 

influence can be seen in Table 1.

As one may expect, the level of influence of the variable of interest had a substantial impact 

on power. The purpose of Table 1 is to illustrate that for a given sample size, the power 

estimate decreased as the level of influence for the covariate of interest increased. Similarly, 

the distribution of the p-values shifted in a positive direction as the level of magnitude of 

influence increased.

In order to determine whether imbalance can predict power, separate datasets were created 

in each scenario for the imbalance measure (RSR) in increments of 0.005, ranging from 1 to 

the maximum imbalance observed for that scenario. The median p-value in each of these 

datasets was calculated and plotted versus the RSRs to illustrate the impact of RSR on 

power. Figure 5 illustrates the lowess smoothing line [33] for median p-value versus level of 

imbalance for these newly created datasets for each sample size, using the magnitude of 

influence observed in the model dataset (logistic regression coefficient for x2 is −1.2 as in 

equation (1)). As imbalance increased (i.e. as RSR strayed from 1), the median p-value for 

detecting treatment effect increased (i.e. power decreased), but the slope of the lowess line 

in Figure 5 appears to approach zero as sample size increases. Therefore, as sample size 

grew, the magnitude of the effect of imbalance on power decreased. It should be noted that 

the number of observations in each of these datasets quickly diminished as RSRs deviated 

from 1. Although the additional million simulations were conducted to combat this issue of 

sparse data for large imbalances, greater variation was observed in the median p-values for 

datasets representing extreme imbalance. For this reason, the plot in Figure 5 should be 

interpreted with caution for extreme levels of imbalance.
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For a sample size of 100, all simulations were combined into a single dataset to model 

successful detection of treatment effect given β (“beta”), the logistic regression coefficient 

for x2, and RSR. The following model was developed:

(3)

The Hosmer-Lemeshow goodness of fit test [34] shows marginal evidence against goodness 

of fit for this model (p-value=0.04), but each term is highly significant (i.e. p-value<2E–16). 

This model can be used to determine an estimate for power given a RSR and a particular 

level of influence for x2 assuming a sample size of 100.

Figure 6 illustrates the power estimates based on this model for a given level of imbalance 

(i.e. RSR) at each β value explored in these simulations. From this figure it is evident that as 

RSR moves away from 1, the estimated power of treatment effect detection (according to the 

model) decreases for every level of covariate influence examined in these simulations. In 

addition, Figure 6 shows the 90th percentile value under the simple random scenario. 

According to this model, for a β = −1.2 (as in the model NINDS tPA Trial dataset), simple 

random allocation had a 10% chance of exhibiting an imbalance of 1.350 or larger, 

corresponding to an estimated 2.2 % decrease in power when compared to the ideal scenario 

(RSR=1.0). The maximum level of imbalance observed in the 1 million simulations under 

the block scenario was 1.719. The probability of simple random allocation resulting in an 

imbalance this large was 1% in these simulations, and this corresponds to a 7.74% decrease 

in power.

5. Discussion

Balancing baseline covariates across treatment groups is important not only for face validity, 

but it also decreases excess noise in clinical trial data to allow for increased likelihood of 

detecting the treatment effect. This simulation study explored the magnitude of this effect on 

power for the logistic model framework even when adjustment is planned for these 

covariates. Balance in covariate distributions becomes important in clinical trials with 

sequential subject enrollment in case of early stopping, interim analyses, and to ensure 

maximal power in primary and secondary outcome analyses [15]. It is true that failure to 

include any known important covariates in a logistic regression model for final primary 

outcome results in biased treatment effect estimates [35], and regardless of observed 

imbalance or balance of important covariates, these variables should always be included in 

logistic regression models for primary outcome in order to prevent bias and achieve 

maximal power [35–37]. This simulation study has shown that the ideal level of balance in 

continuous prognostic factors, although impractical, may result in increases in power even 

when adjustment is made for these variables in analysis. On the other hand, the worst-case 

level of imbalance, although extremely rare, could occur when the covariate is excluded 

from the randomization scheme, and it has a potential to result in large loss in power. 

Therefore, every effort should be made to balance known important covariates at baseline in 

order to ensure that the rare case of severe imbalance does not occur and to protect from 

power loss.
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The balance in the distribution of a covariate across treatment arms is controlled by the 

randomization only when the covariate is included in the randomization scheme. The most 

commonly implemented methods including covariates in the randomization scheme are 

stratification and minimization [15]. Stratification controls covariate imbalance via the 

balancing of treatment allocation within each stratum formed based on covariate categories. 

Minimization controls the imbalances at each margin of covariate categories. Both methods 

require categorization if the covariate is continuous. Atkinson has shown that these methods 

result in substantial statistical loss when the stratified covariates do not come from truly 

discrete distributions, and their balancing ability quickly approaches that of simple 

randomization when categorizing highly skewed covariate distributions [38]. Developments 

from Begg, Iglewicz [8], and Atkinson [9] include optimal techniques based on linear 

models that have the capacity to account for continuous covariate distributions, but these 

designs have not been explored fully (especially for nonlinear relationships) and remain 

unpopular today [1, 15].

Greevy, et al. have outlined an allocation method involving optimal matching that accounts 

for categorical and continuous covariates when all subjects for a clinical trial are available at 

once [14]. In the authors’ simulation study, average efficiency for optimally matched 

samples was about 7% larger than unmatched samples, equating to a 7% increase in sample 

size in the linear model framework at no additional cost. This method does not apply to 

sequential clinical trials.

Some less well-known treatment allocation algorithms have been developed to tackle 

continuous covariate balancing in sequential trials, but they have gained little recognition. 

Endo, et al. have attempted to tackle the issue of continuous covariate balancing for 

sequential clinical trials using Kullback-Leibler Divergence (KLD) [12], but this method, 

like the optimal designs, remains to be explored theoretically and implemented in clinical 

trials. Nishi and Takaichi have also proposed a minimization method that minimizes a 

weighted sum of the differences in means and standard deviations of continuous prognostic 

covariates between treatment groups [11]. To the authors’ knowledge, this method has not 

been implemented. In addition, Frane has suggested an adaptation to the biased coin design 

for continuous covariates. This procedure favors allocation to the treatment group 

assignment resulting in the largest p-values for t-tests and analysis of variance (ANOVA) 

comparing continuous variables across treatment groups [13]. A method similar to this was 

actually implemented in the design of the controlled rosuvastatin multinational study in 

heart failure (CORONA) [39, 40]. Although detail of the treatment allocation algorithm was 

not included in the article(s) reporting the study results, this information was provided by an 

anonymous referee. Similarly, Aickin explains an allocation algorithm in which logistic 

regression models for treatment assignment (given all important covariates of interest) are fit 

under each potential treatment assignment for an entering subject. The treatment allocation 

chosen for the current subject is that corresponding to the logistic regression model with the 

smallest likelihood [10]. The algorithms discussed here to control continuous covariate 

imbalance at baseline have had very little publicity when compared to the popular stratified 

block and minimization designs.
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To our knowledge, a randomization scheme based on RSR (rank-sum ratio) minimization 

has not been developed or implemented in practice. However, Stigsby and Taves have 

recently proposed a similar method of rank-minimization as a simple and effective 

allocation method for controlling imbalance in covariate distributions [41]. This method has 

yet to be explored in terms of power advantages or disadvantages as well as balancing 

capabilities in comparison to the optimum designs. Further research in this area involves 

development of a RSR minimization algorithm and comparison with the rank-minimization 

method of Stigsby and Taves as well as comparison with additional continuous covariate 

balancing algorithms.

As the treatment allocation scheme shifts away from complete randomization toward 

constrained and/or covariate-adaptive designs, standard methods of statistical analysis may 

no longer be valid. Most statistical analyses for a clinical trial assume independence between 

subjects, but this assumption is not necessarily valid in these sequential allocation schemes 

as each subject’s treatment assignment depends on the previous assignments. Friedman, 

Furberg, and DeMets [2] suggest using simulation studies to determine an appropriate 

significance level for the statistical tests to be conducted in clinical trials using constrained 

or covariate-adaptive allocation schemes. The authors suggest analysis of covariance 

(ANCOVA) when minimization or adaptive stratification allocation schemes have been 

used, and failure to adjust overall significance level would result in an error on the 

conservative side for clinical trial analysis with the exception of non-inferiority trials [2]. In 

any case, adjustment should be made in the final analysis for those covariates controlled at 

the design phase as well as any known influential covariates.

The majority of research in the topic of randomization has focused on continuous outcome 

variables and the effect that various treatment allocation schemes have on power and 

efficiency. Several authors have explored the effects of currently available allocation 

schemes on efficiency and power for continuous outcome variables [8, 9, 14, 38, 42], and 

the overall consensus is that better balance in covariates across treatment groups implies 

increased power. Rosenberger and Sverdlov have pointed out that balance in covariate 

distributions does not necessarily imply increased power over the imbalanced scenario in 

nonlinear models (e.g. when the outcome is binary) [43]. Little work has been done to 

examine the magnitude of the effect of balance or imbalance in important baseline 

covariates in a logistic regression setup. In this simulation study, better baseline covariate 

balance resulted in increased estimated power, and the effect on power was more substantial 

for small sample sizes and highly influential variables. It should be noted that this effect was 

only seen after running a very large number of simulations (millions) in several scenarios 

and combining all data into one extremely large dataset. The large numbers of simulations 

were conducted in order to better characterize the imbalance distribution at extreme values, 

but it is unclear whether the “highly significant” decrease in power predicted by the model 

presented in Section 4 is truly nontrivial or if it simply a result of an over-powered model as 

the dataset was so large.

Nonetheless, in a small to moderately sized clinical trial (N=50 or N=100), ignoring 

imbalances that may be observed as a result of pure random assignment has the potential to 

result in the worst case scenario level of imbalance in covariate distributions, and this 
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imbalance may be associated with substantial loss in power. However, as sample size 

increased, the magnitude of the effect of imbalance on power diminished. Thus, it can be 

concluded that some attempt should be made to balance highly influential continuous 

covariates, especially in small sample sized clinical trials. As McEntegart and Greevy, et al. 

have pointed out, allocation schemes that control imbalance in baseline covariates can be 

seen as a “low-cost insurance policy” [15] against “rare disasters” that can be observed in a 

single realization of a random phenomenon[14].
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Figure 1. Baseline covariate imbalances in NINDS tPA dataset
These plots represent the cumulative sum of imbalance as measured by the difference in the 

number of subjects in each treatment groups at each level of the respective covariate. Let 

F(x,j) be the number of subjects randomized to treatment arm j (j = 1,2) with the covariate 

value less than or equal to x. Then these plots illustrate D(x)=F(x,1)−F(x,2), the distribution 

of cumulative imbalances between the two treatment arms. Ideally, the curve of D(x) would 

frequently cross the zero (red, dotted) line in the entire range of the covariate, indicating a 

nearly balanced distribution of that covariate between the two treatment arms. (Tx: 

Treatment group receiving tPA, Pbo: Placebo group). (a)Cumulative sum of imbalances by 
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level of age (1 year increments). Older subjects were assigned to treatment group. 

(b)Cumulative sum of imbalances by level of baseline NIHSS, which ranges from 0 to 42. 

Subjects with less severe strokes were assigned to treatment (tPA) group.
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Figure 2. Simulation flow chart for the ideal scenario
This flow chart explains the basic logic in the computer algorithm that ensured the ideal 

level of balance in covariates of interest. Note that a trivial level of variation between 

treatment and placebo groups was allowed to exist.
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Figure 3. Simulation flow chart for the worst case scenario
This flow chart explains the basic logic in the computer algorithm that ensured the worst 

case imbalance in covariate distributions of interest. Note that there were four possible 

scenarios since there were two baseline covariates of interest.
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Figure 4. Distribution of imbalance
These plots show the empirical probability densities for the imbalance measurement as 

determined by the RSR (rank-sum ratio) for each simulated allocation scenario (simple 

random allocation, blocked, ideal, and worst case) based on 10,000 simulations. The 

estimated power for the main effect of treatment is shown in the legend for each scenario. 

Sample sizes of (a)50, (b)100, and (c)300 are shown here.
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Figure 5. Median p-value versus imbalance
The data in these plots come from the 1 million simulations under the blocked scenario to 

ensure equal sample sizes. The 1 million simulations were divided by rank-sum ratio (RSR) 

increments of 0.005, ranging from 1 (the minimum) to the maximum value observed under 

each sample size. The lowess-fitted median Wald p-values for detection of a treatment effect 

are plotted for each imbalance level. The sample sizes explored were N=50, N=100, N=300, 

and N=500. The lines illustrate a definite positive trend. As imbalance increases, the 

predicted median p-value observed also increases, and this will in turn correspond to a 

decrease in power. It should be noted that the most extreme levels of imbalance must be 
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interpretted with caution due to the scarcity in RSR observations at these values. As sample 

size increases, magnitude of the effect or RSR on median p-value decreases as the lowess 

lines for N=300 and N=500 are nearly horizontal.
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Figure 6. Power estimate based on generalized linear model for a given imbalance level
Using equation (3) from the Results section, the power estimates were calculated for several 

levels of imbalance as measured by RSR (rank-sum ratio) and plotted here for varying levels 

of influence for the covariate of interest (logistic coefficient or “beta”=−0.50, −1.2, and 

−2.4). The 90th percentile for the simple random (SR) allocation scheme is also indicated 

here for reference.
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