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Abstract

Background: Sub-microscopic (SM) Plasmodium infections represent transmission reservoirs that could jeopardise malaria
elimination goals. A better understanding of the epidemiology of these infections and factors contributing to their
occurrence will inform effective elimination strategies. While the epidemiology of SM P. falciparum infections has been
documented, that of SM P. vivax infections has not been summarised. The objective of this study is to address this
deficiency.

Methodology/Principal Findings: A systematic search of PubMed was conducted, and results of both light microscopy (LM)
and polymerase chain reaction (PCR)-based diagnostic tests for P. vivax from 44 cross-sectional surveys or screening studies
of clinical malaria suspects were analysed. Analysis revealed that SM P. vivax is prevalent across different geographic areas
with varying transmission intensities. On average, the prevalence of SM P. vivax in cross-sectional surveys was 10.9%,
constituting 67.0% of all P. vivax infections detected by PCR. The relative proportion of SM P. vivax is significantly higher
than that of the sympatric P. falciparum in these settings. A positive relationship exists between PCR and LM P. vivax
prevalence, while there is a negative relationship between the proportion of SM P. vivax and the LM prevalence for P. vivax.
Amongst clinical malaria suspects, however, SM P. vivax was not identified.

Conclusions/Significance: SM P. vivax is prevalent across different geographic areas, particularly areas with relatively low
transmission intensity. Diagnostic tools with sensitivity greater than that of LM are required for detecting these infection
reservoirs. In contrast, SM P. vivax is not prevalent in clinical malaria suspects, supporting the recommended use of quality
LM and rapid diagnostic tests in clinical case management. These findings enable malaria control and elimination programs
to estimate the prevalence and proportion of SM P. vivax infections in their settings, and develop appropriate elimination
strategies to tackle SM P. vivax to interrupt transmission.
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Introduction

The global malaria incidence and death rates have decreased in

recent years [1] due to increasing funding and political commit-

ment, as well as implementation of artemisinin combination

therapy, better access to diagnostics and vector control interven-

tions such as insecticide treated bed nets and indoor residual spray.

As a result, many countries/regions are planning or have already

committed to eliminating malaria. In these areas the malaria

surveillance programs that generate information on malaria cases,

burden and transmission trends need to be strengthened and

extended to include case and foci investigations [2]. These focused

investigations play a pivotal role in informing malaria elimination

action plans and directing resources.

The effectiveness of malaria surveillance depends on the

performance of surveillance tools. Light microscopy (LM) has

been the main surveillance tool over the past decades. LM

provides important epidemiological information such as malaria

incidence rates, burden and relative species composition. Howev-

er, since the introduction of molecular based diagnostics, e.g.

polymerase chain reaction (PCR) in the 1990s, there has been

increased reporting of malaria infections in communities which are

detected by PCR, but not by LM. These reports demonstrate

LM’s limitation in detecting infections with low parasite densities;

levels well below the threshold for symptomatic malaria, but of

sufficient density to enable transmission of parasites to mosquitoes

[3,4]. Therefore, it is important to understand the epidemiology of

these sub-microscopic (SM) malaria infections in different settings
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and their role in maintaining malaria transmission, particularly in

the context of elimination strategies.

SM P. falciparum infections are well documented. A systematic

review and meta-analysis of P. falciparum LM and PCR

prevalence data revealed that on average, the prevalence of LM

was only 50.8% of that measured by PCR [5]. This suggests that

half of all detected P. falciparum infections were SM. The meta-

analysis revealed that the SM P. falciparum is more common in

adults, in areas with low transmission intensities and in chronic

infections [6]. Based on findings of earlier experimental studies,

Okell and colleagues estimated that SM P. falciparum contributes

between 20% and 50% of human to mosquito transmission in

areas with low and very low transmission intensity [6]. This has

great implications for malaria control and elimination programs

because SM P. falciparum infections cannot be readily detected by

diagnostic tools commonly used for case management or field

surveillance (such as LM and rapid diagnostic tests, RDTs) and

these undetected large reservoirs of SM P. falciparum can

maintain low level of transmission and seed outbreaks [7].

In contrast to P. falciparum, the prevalence and distribution of

SM P. vivax has not been systematically analysed despite

increasing reports of asymptomatic and SM P. vivax. This is a

major gap in moving forward with malaria elimination in certain

regions since it is likely that the epidemiology of SM P. vivax is

different to that of P. falciparum due to several unique biological

features of P. vivax. For example, parasite invasion of Duffy

positive reticulocytes is thought to contribute to the observed

overall lower parasite densities in P. vivax infections compared to

P. falciparum infections, thus heightening the theoretical likeli-

hood of having SM infections. Other features such as relapses may

affect the speed at which host immunity develops, which in turn

may affect parasite density. Mature gametocytes are present earlier

in P. vivax infections meaning they can infect mosquitoes at an

early stage of infection, with SM P. vivax gametocytes shown to be

able to successfully infect mosquitoes [8,9]. Dormant P. vivax
parasite stages in the liver (hypnozoites) that can activate at

variable periodicity depending on geographical region [10], means

that untreated SM infections will continue to relapse in the future

with the potential to continue transmission during each relapse.

Therefore, SM P. vivax poses a major challenge to malaria control

and elimination programs in areas where P. vivax is endemic.

In this study we reviewed published literature and analysed the

prevalence and relative proportion of SM P. vivax infections

across different transmission settings. We also investigated factors

associated with the occurrence of SM P. vivax infections. These

findings can support the reorientation of malaria control

programmes towards elimination of P. vivax.

Methods

Literature search
A literature search was conducted in PubMed using the search

terms ‘‘vivax, PCR, survey’’ in Jan 2014. These initial publications

(excluding 3 non-English papers) were then carefully reviewed and

selected according to the following inclusion criteria: 1) Data were

collected either from cross-sectional surveys of a population or a

representative subset of population at one point in time or from

screening studies of clinical malaria suspects, 2) Data include

separate microscopy and PCR-based results for P. vivax in the

same setting (RDT results were not considered), and 3) At least

one P. vivax infection was detected by either PCR or LM.

Data analysis
When results of multiple surveys were reported in a single

paper, either in different locations or in different season, data from

these surveys were combined if the authors did not report a

significant difference in prevalence between different locations or

seasons. However, if prevalence was reported to be significantly

different between locations or seasons by the authors each survey

was included separately, unless 1) the number of samples in each

location/season was ,50 and 2) there were no data provided for

each individual location/season.

Terminology

1.Microscopy method refers to detection of Plasmodium spp.

using light microscopy (LM) examination of thick and thin

blood smears following the WHO recommended protocol.

2.PCR method refers to detection of Plasmodium spp. by

amplification of any parasite gene using any PCR-based

technology, including conventional single round, multiplex,

nested, semi-nested PCR, real time quantitative PCR and

ligase detection reaction-fluorescent microsphere assay (LDR-

FMA).

3.Parasite prevalence determined by LM and PCR. This was

calculated as: total number of positive samples/total number of

samples examined 6100%.

4.Prevalence of sub-microscopic (SM) infections. The SM

prevalence was calculated as: PCR prevalence – LM

prevalence. In surveys where LM prevalence was higher than

PCR prevalence, the prevalence of SM is considered as 0.

5.Relative proportion of sub-microscopic (SM) infections. This

was calculated as: SM prevalence/PCR prevalence 6100%.

Statistical tests. Paired comparisons of LM and PCR, and

P. falciparum and P. vivax SM prevalence or SM proportion for

all sites were tested using Wilcoxon matched pairs signed rank test

(GraphPad Prism). Comparisons of LM, PCR and SM prevalence

or relative SM proportions between different age groups and

laboratory methods were performed using the Mann Whitney test.

Author Summary

Light microscopy (LM) has been the mainstay of malaria
diagnosis for case management and surveillance. The
introduction of molecular based diagnostics such as
polymerase chain reaction (PCR) in the 1990s resulted in
increased reporting of Plasmodium infections in commu-
nities compared to LM, indicating that sub-microscopic
(SM) Plasmodium infections are endemic in a variety of
different settings. The prevalence and transmission poten-
tial of SM P. falciparum was reviewed; however, informa-
tion on the prevalence and distribution of SM P. vivax in
different settings is not available. In this article, the authors
analysed LM and PCR results described in 38 publications
(44 studies), and revealed that SM P. vivax is highly
prevalent across different geographic areas with varying
transmission intensities. On average, these infections made
up 67% of P. vivax infections detected by PCR in cross-
sectional surveys, and were relatively more prevalent in
areas where malaria was under control and moving
towards elimination. By contrast, SM P. vivax is not
prevalent in clinical malaria suspects. These findings
highlight that for detection of clinical malaria LM and
rapid diagnostic tests (RDTs) are adequate, however, to
detect very low density infections that are largely
asymptomatic but still contribute to transmission, more
sensitive diagnostic tools are needed.

Sub-microscopic P. vivax Infections
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Regression analysis. The relationship between LM and

PCR prevalence was assessed using linear regression of the log10

transformed values. Log transformed values were used to resolve

heteroscedasticity. The relationship between LM prevalence and

proportion of SM infections was analysed using a generalized

linear model with a gamma distribution and log link function.

Results

Search outcome and data grouping
The PubMed search produced a list of 139 publications, of

which 38 met the inclusion criteria. Twenty five publications

[11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35] reported findings of 31 cross-sectional surveys of

different populations (including 29 cross-sectional surveys, one

reactive case investigation and one cohort study) that were

conducted by household or village based or random sampling.

The remaining 13 publications [18,36,37,38,39,40,41,42,43,44,

45,46,47] reported findings of fever/or clinically suspected

malaria patient screening. LM and PCR results reported in

these two groups of publications were analysed separately. The

location, year and references of these studies are summarised in

Table 1.

Prevalence of P. vivax and P. falciparum infections in
communities

The 31 cross-sectional community surveys were conducted in 12

countries (Table 1). Twenty eight of these surveys were conducted

between 1996 and 2010. Survey year was not described for the

remaining three surveys (Table 1). The number of samples tested

by PCR in each survey ranged from 98 to 3316 (median = 337,

interquartile range: 252 to 1269). The LM prevalence of P. vivax
ranged from 0.0% to 44.3% in geographically different settings,

while the corresponding PCR prevalence for P. vivax in these

same settings ranged from 0.2% to 59.5%. Overall across all sites,

the PCR prevalence of P. vivax was significantly higher than that

of LM (Wilcoxon matched-pairs signed rank test, P,0.0001,

Fig. 1), i.e. PCR detected a significantly higher number of P. vivax
infections than LM.

The prevalence of sympatric P. falciparum, including P.
falciparum in mixed species infections, was also analysed for 30

of the 31 surveys as a comparison. Prevalence of P. falciparum
determined by LM ranged from 0.0 to 40.4% while PCR

prevalence of P. falciparum PCR ranged from 0.0 to 81.5%.

Similar to P. vivax, the overall prevalence of P. falciparum
determined by PCR was significantly higher than that of LM

(Wilcoxon matched-pairs signed rank test, P,0.0001, Fig. 2).

Prevalence and relative proportion of SM P. vivax and P.
falciparum infections

The prevalence of SM P. vivax in the 31 community surveys

analysed ranged from 0.2 to 48.6% (Fig. 1). The relative

proportion of P. vivax not detected by LM (i.e. SM infections)

ranged from 1.5% to 100.0%, with a mean of 69.5% (Fig. 3). The

prevalence of SM P. falciparum ranged from 0.0% to 61.3%,

constituting, on average, 55.7% of P. falciparum infections (range

0.0% to 100.0%, Fig. 4).

The prevalence of SM P. vivax in these communities was not

significantly different to that of SM P. falciparum (Wilcoxon

matched-pairs signed rank test, P = 0.78, Fig. 5A). However, the

average relative proportion of SM was significantly higher in P.
vivax infections compared to P. falciparum in the same study

(Wilcoxon matched-pairs signed rank test, Median difference

= 5.2%, P = 0.045, Fig. 5B).

Relationships between LM and PCR determined P. vivax
prevalence

A positive relationship between LM and PCR determined P.
vivax prevalence was observed (Fig. 6). LM P. vivax prevalence

was a significant factor for predicting PCR P. vivax prevalence in

community surveys (P,0.001, R2 = 0.675). The fitted regression

equation is: log (PCR P. vivax prevalence) = 0.5966 log (LM P.
vivax prevalence) – 0.003. Thus, PCR detectable P. vivax
prevalence can be estimated based on LM P. vivax prevalence

for community surveys using quality LM and PCR with similar

sensitivities to those reported in the studies described here.

Relationship between LM and relative proportion of SM
P. vivax

A negative relationship between LM P. vivax prevalence and

proportion of SM P. vivax infections was identified (Fig. 7), with

LM P. vivax prevalence identified as a significant factor for

predicting the proportion of samples that are PCR positive/LM

negative (SM) in cross-sectional surveys where the LM P. vivax
prevalence is less than 45% (P,0.001, Deviance = 7.32, df = 29).

The regression equation describing this relationship is: proportion

SM P. vivax = exp (20.162–4.1636 LM P. vivax prevalence).

The negative relationship observed remains when a furthest outlier

was removed from the analysis.

Pathogenesis of SM P. vivax
The pathogenesis of SM could be indicated by the percentage of

infected individuals having malaria related symptoms at the time

of the survey. Malaria symptoms include acute symptoms normally

represented by fever, and chronic symptoms represented by

anaemia. Data on the proportion of symptomatic P. vivax mono

infections in PCR positive/LM negative subjects could only be

extracted from six studies [16,22,25,26,27,35], all of which were

conducted in areas with relatively low transmission (LM P. vivax
prevalence ranged 0.01% to 4.79%). The proportion of individuals

with symptoms ranged from 0.0% to 11.4%, averaging 2.8%. This

means that between 88.6 and 100.0% (average 97.1%) of

individuals with SM P. vivax were asymptomatic. To ascertain

whether these asymptomatic SM carriers will become symptom-

atic some time later, one study followed 25 LM negative/PCR

positive subjects in South America for two months and found they

remained asymptomatic over the 2 month duration [26].

The relationship between SM P. vivax and anaemia was

investigated by Ladeia-Andrade et al. [23] in Brazil using two-level

logistic regression models. After excluding LM positive subjects,

and controlling for covariates such as age and sex, they concluded

that the presence of SM P. vivax was a significant predictor of

anaemia (OR = 1.92; 95% CI:1.14–3.23; P = 0.015).

Factors contributing to the occurrence of SM infections

1.Anti-parasite antibodies. Antibodies against P. vivax are a

marker of host immunity developed during previous infections.

Four cross-sectional surveys [22,25,26,28] included a serolog-

ical investigation of anti-P. vivax antibodies using ELISA or

IFA in parallel with LM and PCR. However, only two studies

compared serological and PCR results. Versiani et al [26]

observed that PCR positive/LM negative subjects were 2.45

fold more likely to have anti-PvMSP1 antibodies than PCR

negative/LM negative subjects in Amazonas State of Brazil,

and that the PCR positive/LM negative group had signifi-

cantly higher titres of anti-PvMSP1 antibodies than the PCR

negative/LM negative group [26]. Increased presence of anti-

PvMSP1 antibodies was also noted for PCR positive/LM

Sub-microscopic P. vivax Infections
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Table 1. Summary of location, year and references of the selected surveys.

Region Country - reference No Area Year of survey Reference

Cross-sectional surveys

Africa Angola-11 Caxito, Mabubas, Ucua 2010 [11]

ASIA Bangladesh-12a Bandarban district (4 sub-districts) 2007–2008 [12]

ASIA Bangladesh-12b Bandarban district (3 sub-districts) 2007 [12]

ASIA Cambodia-13 Rattanakiri 2001 [13]

ASIA Cambodia-14a Rattanakiri 2001 [14]

ASIA Cambodia-14b Rattanakiri 2001 [14]

ASIA Indonesia-15 Flories Island 2008 [15]

ASIA Indonesia-16 Aceh 2010 [16]

ASIA Lao-17 Xepon district 2006 [17]

ASIA Malaysia-18 Sabah NR [18]

ASIA Thailand-19 Kanchanaburi, Pathumthani, Nakornpathom 2009 [19]

South America Brazil-20a Ji-Parana 2000 [20]

South America Brazil-20b Portuchuelo 1998 [20]

South America Brazil-20c Portuchuelo 1999 [20]

South America Brazil-21 Para State NR [21]

South America Brazil-22 Amazon state NR [22]

South America Brazil-23a Riverine-ABD 2002–2003 [23]

South America Brazil-23b Riverine-CE 2002–2004 [23]

South America Brazil-24 Porto Velho, Rondonia 2004–2007 [24]

South America Brazil-25 Espirito Santo 2001 [25]

South America Brazil-26 Amazonas State 2008 [26]

South America Peru-27 Iquitos 1999 [27]

South America Peru-28 Bellavista 2010 [28]

South America Venezuela-29* Amazonas and Sucre state NR [29]

South Pacific PNG-30 East Sepik 1996 [30]

South Pacific PNG-31 North of Madang 2000 [31]

South Pacific PNG-32a Central Sepik, Sepik River 2005 [32]

South Pacific PNG-32b Central Sepik, Foot hills 2005 [32]

South Pacific PNG-33 Maprik District 2006 [33]

South Pacific PNG-34 Wosera 2001–2003 [34]

South Pacific Solomon Is-35** Temotu 2008 [35]

Screening clinical malaria suspects

Africa Mauritania-36 Nouakchott 2007 [36]

Africa Mauritania-37 Nouakchott 2009 [37]

Africa Sudan-38 Refugee camps 1997 [38]

Asia India-39 Didori and Shivpuri 2009 [39]

Asia Malaysia-18 Hospitals NR [18]

Asia Myanmar-40 Yangon and Mandalay 2000 [40]

Asia Pakistan-41 Khyber Pakhtunkhwa, Sindh, Balochistan, Punjab, Islamabad 2011 [41]

Asia Thailand-42 Northern Thailand NR [42]

Asia Thailand-43 Umpang 2010 [43]

Europe Italy-44 Parma 2000–2007 [44]

Europe Italy-45 Parma 2005–2006 [45]

Europe Spain-46 Hospitals 1997–1998 [46]

South America Brazil-47 Amazone 2006–2007 [47]

NR: not reported
*223/295 samples were randomly selected
**PCR rates are estimates based on PCR results of a random sample set.
doi:10.1371/journal.pntd.0003413.t001

Sub-microscopic P. vivax Infections
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positive subjects (compared to subjects with no evidence of P.
vivax infection), however there were too few cases positive by

both PCR and LM (n = 15) to achieve statistical significance, or

compare between SM and patent infections. A second study

conducted in Bellavista, Peru observed that PCR positivity was

significantly associated with the presence of anti-PvMSP1

antibodies [28], however no comparison was made between

SM and patent infections.

2.Age. In many malaria endemic settings, the adolescent

population has higher proportions of asymptomatic and low

density Plasmodium infections than young children due to the

development of clinical immunity after repeated exposure to P.
vivax parasites. Therefore, age is a surrogate marker for

acquired clinical immunity. Fifteen of the 25 publications (21 of

the 31 surveys) described prevalence of P. vivax infection in

different age groups, but only 12 publications (16 surveys)

analysed the relationships between P. vivax LM or PCR

prevalence and age. Seven publications (eight surveys) found no

significant association between the relative proportion of SM

P. vivax infection and host age [14,15,17,22,27,28,30], while

five publications (eight surveys) reported that the relative

proport ion of SM P. vivax increased with age

[12,23,31,32,34]. Neither the LM nor the PCR P. vivax
prevalence was significantly different between the studies that

did and did not find an association with age (Mann Whitney

test, P.0.05).

3.Microscopy QA and DNA extraction method for PCR.
The prevalence and relative proportion of SM P. vivax could

vary because of differences in quality of microscopy and PCR.

Only one [35] of the 25 publications (1 of the 31 surveys) stated

the competency levels of microscopists according to the WHO

accredited malaria microscopy competency assessment. Eleven

publications (15 surveys) described the microscopists as experts,

experienced, highly skilled or well-trained but did not provide

information on qualifications. Fifteen of the 31 surveys reported

some form of quality assurance (QA) of the microscopy including

two independent microscopists reading and/or an expert referee

to confirm positives, discordant slides and random selection of

negatives, as well as PCR positive results. However, the presence

or absence of a description for performing microscopy QA did

not affect the average prevalence of SM (Mann Whitney test,

P = 0.2447) or the average proportion of SM P. vivax (Mann

Whitney test, P = 0.1626).

While quality of microscopy largely depends on the competency

of microscopists, quality of PCR can be particularly influenced

by the type and volume of blood used to extract DNA. All

surveys described the type of blood and DNA extraction method

used for PCR analysis. Fourteen surveys used blood from filter

paper while 17 surveys used whole blood (primarily.150 mL) for

DNA extraction. The average LM prevalence of P. vivax was

not significantly different between these two methods of DNA

extraction (Mann Whitney test, P = 0.161). However, the

average prevalence of SM P. vivax in community surveys

determined by PCR using whole blood was significantly higher

than that using blood from filter papers (Mann Whitney test,

P = 0.004).

4.Fever and drug use. Antimalarial drug use could also affect

parasite density at the time of survey and thereby increase the

prevalence and relative proportion of SM P. vivax. Only one

survey reported that recent antimalarial treatment (,4 weeks

prior to survey) was associated with a significant increase in risk

of having SM P. vivax infection [33].

Fig. 1. Prevalence of LM (light microscopy, blue bar) and SM (sub-microscopy, red bar) P. vivax in cross-sectional surveys. The total
height of each bar (blue + red) represents the PCR prevalence. Countries where data were collected and their corresponding references (detailed in
Table 1) are shown on the x-axis.
doi:10.1371/journal.pntd.0003413.g001

Sub-microscopic P. vivax Infections
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Prevalence of SM P. vivax infections in surveys among
clinical malaria suspects and their proportions in
different settings

In 13 surveys of clinical malaria suspects conducted in different

transmission settings (1997–2010), the prevalence of P. vivax
infections determined by LM varied widely from 0.7% to 86.0% of

the patients. Although PCR detected more P. vivax infections in

some studies, overall it did not have a significantly higher prevalence

than LM in fever patients (Wilcoxon matched-pairs signed rank test,

P = 0.278, Fig. 8). In these same surveys, the LM P. falciparum
prevalence rates ranged from 1.0% to 54.2% while PCR prevalence

rates ranged from 1.0% to 46.9%. Similar to P. vivax, PCR did not

detect a significantly higher number of P. falciparum infections than

LM in these patients (Wilcoxon matched-pairs signed rank test,

P = 0.123, Fig. 9). This suggests that amongst symptomatic patient

populations SM P. vivax and P. falciparum are not prevalent.

Discussion

Sub-microscopic malaria infections have been increasingly

reported in malaria endemic areas, especially in places where

malaria transmission intensities are relatively low and where

malaria elimination is being targeted. In this paper, published

articles from varying transmission intensities were reviewed and

data extracted for secondary analysis with the purpose of

providing an overview of SM P. vivax malaria in different settings

including its prevalence and relative proportion of all detectable P.
vivax infections, and relationship with LM prevalence, as well as

consideration of the factors contributing to SM P. vivax.

The 31 cross-sectional surveys reviewed were conducted in

areas where LM P. vivax prevalence ranged from 0 to 44%. Since

entomological inoculation rate (EIR) was not reported in these

surveys, we used LM P. vivax prevalence as an indicator of

transmission intensity in each setting. One of the advantages of

using LM prevalence instead of PCR prevalence is that LM

prevalence has been used as a measure of transmission intensity in

endemic countries for the past century. Our analysis showed that

the PCR P. vivax prevalence was significantly higher than that

LM P. vivax prevalence in these surveys, demonstrating the

presence of a sub-population carrying SM P. vivax across all

transmission settings. The prevalence of SM P. vivax infections

ranged from 0.2% to 48.6%. SM P. vivax constitutes between

1.5% and 100% of all P. vivax infections detected by PCR

(average 69.5%) in these settings, and this proportion is

significantly higher than that of the sympatric P. falciparum
infections. This suggests that without PCR or other comparably

sensitive methods, an average of 69% of P. vivax infections would

be undetected hence antimalarial treatment will usually not be

sought. This results in a potentially large group of people carrying

parasites that have the potential to transmit P. vivax [8,9] and

maintain the transmission cycle. Furthermore, the majority of

these people are asymptomatic and may remain so for months

[26].

Similar to the epidemiology of SM P. falciparum reported by

Okell et al.[6], a negative relationship was identified between the

relative proportion of SM P. vivax and LM P. vivax prevalence in

31 cross-sectional surveys. This suggests that a relatively larger

proportion of P. vivax infections are SM in areas with low

transmission intensity compared to areas with high transmission

Fig. 2. Prevalence of LM (light microscopy, blue bar) and SM (sub-microscopy, red bar) of sympatric P. falciparum in cross-sectional
surveys. Total height of each bar (blue + red) represents the PCR prevalence. Countries where data were collected and their corresponding
references (detailed in Table 1) are shown on the x-axis.
doi:10.1371/journal.pntd.0003413.g002

Sub-microscopic P. vivax Infections
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intensity, although SM P. vivax is prevalent in both type of

settings. Hence, SM P. vivax poses more challenges to malaria

control programs in areas where transmission intensities are

already low and are progressing toward elimination.

Many factors can contribute to the occurrence and level of SM

P. vivax. These include technical, parasite and host factors. From

a technical point of view, the quality of microscopy is an important

factor that can contribute to the level of LM P. vivax, and thus

SM P. vivax. The prevalence and relative proportion of SM P.
vivax would increase if the microscopist is relatively poor at

detecting parasites, or decrease if there are false positive results (eg

cell debris wrongly classified as a parasite). The correct speciation

of parasites is also important in areas with both P. falciparum and

P. vivax. This is a special concern since quality of field microscopy

has been shown to be highly variable [48,49,50,51,52,53,54].

Interestingly, the description of microscopy QA was not found to

be associated with the prevalence or relative proportion of SM P.
vivax in the 31 cross-sectional surveys reviewed. This indicates

that the quality of microscopy of these surveys was comparable

between studies, irrespective of whether QA was reported or not.

Quality of PCR is also an important determinant for the level of

SM P. vivax. It might be expected that a sensitive PCR would

detect more SM P. vivax than a less sensitive PCR in a field

survey. The PCR sensitivity is largely determined by the quality

and amount of parasite DNA and by copy number of the target

gene. Of the 31 cross-sectional surveys, 29 (93.5%) used a PCR-

based assay targeting the parasite 18sRNA gene. Therefore, the

sensitivity of these PCR methods would most likely be affected by

the number of parasites added in each assay which is determined

by the volume of blood used for DNA extraction and the

concentration of parasite DNA. Seventeen of the 31 cross-sectional

surveys used .150 mL of whole blood while 14 surveys used dried

blood spot on filter paper which usually contain 5-20 mL of blood.

As expected, the surveys using whole blood produced a

significantly higher average prevalence of SM P. vivax compared

to the surveys using filter paper blood. Although the final volume

of DNA elusion could not be assessed, this difference is likely due

to the higher number of parasites present in the larger volume of

whole blood, resulting in more parasite DNA being added into

each assay. This finding suggests that while filter paper helps to

preserve blood in field conditions and assists with transportation of

samples, the method is less sensitive than whole blood in detecting

SM P. vivax. In order to maximize PCR sensitivity in detecting

SM parasite infections, .150 mL of whole blood should be used

when possible.

Parasite factors influencing SM P. vivax may include the

growth characteristics and virulence of parasite strains, as well as

genetic diversity, susceptibility to antimalarial drugs and related-

ness of parasite strains. While the former, which is difficult to study

in the field, may directly affect the parasite density, the latter could

indirectly affect the parasite density through effective host

immunity. For example, homogeneity of parasite population, i.e.

lack of genetic diversity, is often reported in areas with low

transmission intensity, such as Peru and South American countries

[55,56,57]. This limited parasite genetic diversity could speed up

the development of acquired immunity in a host population, which

in turn could reduce parasite density in the host resulting in a

higher proportion of SM infections. However, parasite diversity

was not reported as part of any of the surveys reviewed. Recently,

Gray et al [58] reported genetic diversity and parasite relatedness

Fig. 3. Relative proportion of SM (sub-microscopy) P. vivax in cross-sectional surveys. Countries where data were collected and their
corresponding references (detailed in Table 1) are shown on the x-axis.
doi:10.1371/journal.pntd.0003413.g003
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in Temotu, Solomon Islands as a follow up of the baseline survey

[35]. In the baseline survey 75% of LM positive P. vivax infections

had parasite densities below 100/mL with a further 44% of P.

vivax infections being SM P. vivax; 94% of all P. vivax infections

were asymptomatic at the baseline survey. However, genetic

diversity of P. vivax population was very high and parasite

Fig. 4. Relative proportion of sympatric SM (sub-microscopy) P. falciparum in cross-sectional surveys. Countries where data were
collected and their corresponding references (detailed in Table 1) are shown on the x-axis.
doi:10.1371/journal.pntd.0003413.g004

Fig. 5. A) Comparison of SM (sub-microscopy) P. vivax and SM (sub-microscopy) P. falciparum prevalence (mean with 95% CI) in 31
cross-sectional surveys. B) Comparison of relative proportions of SM (sub-microscopy) P. vivax and P. falciparum (mean with 95% CI) in 31 cross-
sectional surveys.
doi:10.1371/journal.pntd.0003413.g005
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haplotypes were not highly related [58]. This suggests that genetic

diversity of P. vivax was not a major contributor to the high

prevalence of SM P. vivax in this setting.

Host factors including non-specific immune responses, immu-

nity status and human genetics could greatly impact parasite

density, and hence the prevalence and proportion of SM P. vivax.

Firstly, the non-specific immune response commonly associated

with febrile illness has been hypothesized to directly reduce

parasite density [59,60] and any resultant antimalarial treatment

can rapidly eliminate parasites. The effect of febrile illness and

antimalarial treatment on SM P. vivax was investigated in one of

the 32 cross-sectional surveys reviewed [33]. Lin et al. reported

that fever episodes in the two weeks prior to sample collection, and

antimalarial treatment 4 weeks prior, were associated with a

significant reduction in risk of being detected by LM or PCR-

based method [33]. Therefore, antimalarial treatment reduces

both LM and SM P. vivax infections.

Host immune status could also be a major determinant of SM P.
vivax. It has been reported that SM P. falciparum is more common

in adults compared to children [6]. However, this pattern was not

exactly repeated in P. vivax. Of the 16 surveys that analysed the

relationship of SM P. vivax with age, eight reported the relative

proportion of SM P. vivax was not associated with age, while the

other eight reported that the relative proportion of SM P. vivax
increased with age. This difference may be related to the transmission

intensities in study regions, however a comparison of the average LM

P. vivax prevalence between these two groups did not show a

significant difference. One other possibility may be difference in

geographical or host population; the group of surveys reporting no

association with age were mostly conducted in Southeast Asia and

South America, while those reporting an association included four

surveys conducted in PNG. The presence and quantity of anti-

PvMSP1 antibodies have also been associated with SM P. vivax in

two surveys conducted in South America [26][28]. This suggests that

serology may help detect SM P. vivax carriers.

Associations between other host factors such as polymorphisms

in Duffy antigen, haemoglobin or G6PD and SM P. vivax

Fig. 6. Relationship between LM (light microscopy) and PCR
determined P. vivax prevalence in 31 cross-sectional surveys.
doi:10.1371/journal.pntd.0003413.g006

Fig. 7. Relationship between LM (light microscopy) and SM (sub-microscopy) P. vivax prevalence in 31 cross-sectional surveys.
doi:10.1371/journal.pntd.0003413.g007
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infections were not investigated in any of the 31 cross-sectional

surveys reviewed. Further studies are required to ascertain the

contribution of host genetics to SM P. vivax infections.

Based on findings of six surveys, between 89% and 100%

(average 97.5%) of SM P. vivax infected subjects were asymp-

tomatic at the time of survey and it was not well documented

whether these people progressed to develop LM detectable

parasitemia at a later time. One study followed 25 LM-/PCR+
subjects and found them all asymptomatic after a 2 month follow

up [26]. If these individuals remain asymptomatic then they would

not be identified by either active or passive case detection based on

LM or RDTs with a similar sensitivity to LM.

Fig. 8. Prevalence of LM (light microscopy, blue bar) and SM (sub-microscopy, red bar) P. vivax in clinical malaria suspects. Total
height of the bar (blue + red) represents the PCR prevalence.
doi:10.1371/journal.pntd.0003413.g008

Fig. 9. Prevalence of LM (light microscopy, blue bar) and SM (sub-microscopy, red bar) P. falciparum in clinical malaria suspects. Total
height of bar (blue + red) represents PCR prevalence.
doi:10.1371/journal.pntd.0003413.g009
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Any individual infected with blood stage P. vivax, regardless of

the level of parasitemia, is likely carrying dormant hyponozoites in

the liver and is thus likely to relapse weeks to months after the

primary infection. Future relapses in these individuals can only be

limited by treatment that includes antimalarials (specifically,

primaquine) targeting the P. vivax hypnozoites. Therefore, to

prevent relapse WHO recommends that in low transmission areas

patients with P. vivax infection, who are not G6PD deficient,

receive treatment against both blood (such as chloroquine) and

hypnozoite (primaquine, 0.25 or 0.5mg/kg/day once a day for 14

days) stages [61]. However, SM P. vivax infections are not

detectable using LM or RDTs, as such these infected individuals

would not receive any anti-malarial therapy for P. vivax blood or

liver stages and thus continue to transmit P. vivax. The prevalence

of this undetectable and untreated SM P. vivax population creates

a major challenge to malaria control and elimination programs.

Strategies for detecting and treating infected cases (patent and

symptomatic infections) alone will unlikely interrupt transmission

because SM P. vivax infections and their future relapses will

continue to feed into transmission. Comparing to SM P.
falciparum, SM P. vivax infections represent a more important

transmission reservoir due to multiple relapses occurring over a

long period of time. To accelerate malaria elimination i.e. the

complete interruption of malaria transmission and total removal of

the disease burden of malaria such as anaemia, some form of mass

screening using PCR-based or comparably sensitive methods and

radical cure approach would be required to identify and treat all

SM P. vivax infected subjects. This strategy would be expected to

have more impact on P. vivax transmission than on P. falciparum
transmission because appropriate management of SM P. vivax
will not only stop transmission from current SM infections, but

also prevent future relapses and transmissions resulting from these

relapses. However, because the conventional PCR based assays

are expensive to implement and difficult to perform under field

conditions, mass screening will not be practical before more

sensitive and specific field deployable diagnostic tests become

available. Cost-effectiveness studies will be needed to properly

evaluate the options available for P. vivax elimination strategies

for different transmission settings. In the interim, the PCR

prevalence of P. vivax could be estimated based on the positive

relationship between PCR P. vivax prevalence and LM P. vivax
prevalence identified in this study. If the prevalence of PCR

positive P. vivax is much higher than that of LM, mass drug

administration may be an option for elimination but it also has its

operational challenges, risks and potential limitations [62].

In contrast to cross-sectional surveys, SM P. vivax was much

less prevalent in clinical malaria suspects. Overall, the PCR

prevalence for P. vivax or P. falciparum was not significantly

higher than that of LM in 13 surveys of febrile patients. This could

be due to relatively high parasite density in symptomatic patients.

This re-emphasizes that quality LM and RDTs are adequate tools

for case management of both P. vivax and P. falciparum patients.

In summary, SM P. vivax is prevalent across different

geographic areas with varying transmission intensities constituting,

on average, 69.5% of all P. vivax infections. The relative

proportion of SM P. vivax is significantly higher than that of

the sympatric P. falciparum in these settings and is higher in areas

with relatively low transmission intensity. These SM P. vivax
infections not only have negative health impact on the infected

individual, but will also contribute to P. vivax transmission both

from the current infection and subsequent relapses, and thus

present a major challenge for malaria elimination programs. This

review seeks to provide malaria control and elimination programs

with estimates of the prevalence and proportion of SM P. vivax
infections in their settings, and to highlight the importance of

developing diagnostic tools for detecting SM P. vivax infections in

order to support elimination strategies. Strategies for tackling both

patent and SM P. vivax are critical for eliminating P. vivax.
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