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Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), induces formation of granulomas, structures in which im-
mune cells and bacteria colocalize. Macrophages are among the most abundant cell types in granulomas and have been shown to
serve as both critical bactericidal cells and targets for M. tuberculosis infection and proliferation throughout the course of infec-
tion. Very little is known about how these processes are regulated, what controls macrophage microenvironment-specific polar-
ization and plasticity, or why some granulomas control bacteria and others permit bacterial dissemination. We take a computa-
tional-biology approach to investigate mechanisms that drive macrophage polarization, function, and bacterial control in
granulomas. We define a “macrophage polarization ratio” as a metric to understand how cytokine signaling translates into po-
larization of single macrophages in a granuloma, which in turn modulates cellular functions, including antimicrobial activity
and cytokine production. Ultimately, we extend this macrophage ratio to the tissue scale and define a “granuloma polarization
ratio” describing mean polarization measures for entire granulomas. Here we coupled experimental data from nonhuman pri-
mate TB granulomas to our computational model, and we predict two novel and testable hypotheses regarding macrophage pro-
files in TB outcomes. First, the temporal dynamics of granuloma polarization ratios are predictive of granuloma outcome. Sec-
ond, stable necrotic granulomas with low CFU counts and limited inflammation are characterized by short NF-�B signal
activation intervals. These results suggest that the dynamics of NF-�B signaling is a viable therapeutic target to promote M1 po-
larization early during infection and to improve outcome.

The pathological hallmark of the immune response to Mycobac-
terium tuberculosis is the formation of organized clusters of

immune cells and mycobacteria called granulomas. Granulomas
typically form in lungs of an infected host following inhalation of
M. tuberculosis and the establishment of infection. These complex
and dynamic structures can immunologically restrain mycobac-
terial proliferation and physically contain bacterial dissemination
and thus represent an important determinant of disease outcome
(1–3). Although there are several types of observed granulomas,
the classical necrotic (caseous) granuloma has a necrotic core that
may contain extracellular bacteria surrounded by an epithelioid
macrophage-rich region, which may contain infected macro-
phages, and an outer cuff of lymphocytes intermixed with macro-
phages (4, 5). This unique spatial organization emerges as early as
1 month after infection in primates, with many granuloma lesions
forming in the lung, each of a different size and bacterial burden
(6, 7).

Macrophages are the most abundant cells in granulomas and
have been shown to play a key role throughout the course of in-
fection in all infection models, including humans and the nonhu-
man primate (8). Multiple other cell types, including neutrophils
(9–13), dendritic cells (DCs), and fibroblasts, can also be found
but are not the most abundant cell types (4). Macrophages per-
form many functions: they kill M. tuberculosis, serve as reservoirs
of M. tuberculosis intracellular infection and proliferation, and
regulate immune responses by producing a variety of pro- and
anti-inflammatory cytokines (3, 8). Distinct macrophage activa-
tion states (polarization) have been classified as classical M1 acti-
vation (stimulated by Toll-like receptor [TLR] ligands and
gamma interferon [IFN-�], signaling via STAT1) or alternative
M2 activation (stimulated by interleukin-4 [IL-4] and interleu-
kin-13 [IL-13] via STAT6, as well as interleukin-10 [IL-10] via

STAT3) (14–17). The M1, or proinflammatory, phenotype is char-
acterized by expression of high levels of proinflammatory cyto-
kines (e.g., tumor necrosis factor alpha [TNF-�]), high produc-
tion of reactive nitrogen and oxygen intermediates, promotion of
a Th1 response, and strong microbicidal and tumoricidal activity
(15, 16, 18). Resistance to intracellular pathogens is generally con-
sidered to be due to the action of M1-like macrophages, which
characterize the early phases of infection with M. tuberculosis in
mice (19, 20). The M2 or anti-inflammatory phenotype is charac-
terized by expression of anti-inflammatory cytokines (e.g., IL-10)
and the promotion of tissue healing and remodeling, as well as by
immunoregulatory functions (18, 20). Experimental studies have
shown that these polarized macrophage phenotypes (M1 and M2)
can be reversible both in vitro and in vivo (21–24). It has been
reported that a switch between pro- and anti-inflammatory cyto-
kine profiles can be observed during the transition from acute to
chronic infection and may be a regulatory mechanism providing
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protection against excessive inflammation (25). On the other
hand, pathogens that have evolved strategies to interfere with M1-
associated killing can drive a phenotypic switch toward M2 polar-
ization (26–29).

TNF and IFN-� are key proinflammatory mediators that are
elicited during M. tuberculosis infection. Both experimental and
modeling studies, as well as clinical data from humans (i.e., anti-
TNF therapies), have revealed that TNF plays a major role in host
defense against M. tuberculosis, in both the active and chronic
phases of infection, as well in proper granuloma function (30–35).
A necessary step toward a protective immune response to myco-
bacterial infection requires NF-�B activation of macrophages (36,
37). However, many studies have also shown how specific NF-�B-
mediated pathways may be exploited by bacterial pathogens to
promote survival (36, 38, 39). NF-�B activation of macrophages
occurs after cell surface ligation of TNF by tumor necrosis factor 1
(TNFR1) (40) and/or engagement of Toll-like receptors (TLRs)
by microbial ligands (41–44). The signaling pathways down-
stream of NF-�B include the induction of a variety of proinflam-
matory genes along with upregulation of phagolysosome fusion-
mediated killing of mycobacteria (45). Macrophage bactericidal
activity and phagocytosis are significantly enhanced by IFN-�
when it acts in concert with TNF and have been shown to be
necessary in both humans and mice for control of M. tuberculosis
(32, 46–48). IFN-�-inducible STAT1 phosphorylation transcrip-
tionally upregulates production of inducible nitric oxide synthase
(iNOS), which enables production of nitric oxide and related re-
active nitrogen intermediates (RNI) by macrophages, a major an-
timycobacterial effector mechanism that is characteristic of pro-
inflammatory M1-like macrophages (49, 50).

One of the primary downregulators of the immune response is
IL-10 (4, 51–55); however, its role in antimycobacterial immunity
remains to be fully elucidated. In humans, high levels of IL-10 are
found in lungs, serum, sputum, and bronchoalveolar lavage
(BAL) fluid of patients with pulmonary tuberculosis (TB) (4, 56).
There are data suggesting a necessary role in control of TB (57–
61), while others suggest that IL-10 plays no part in the dynamics
(62–68). Our modeling studies predict a protective role for IL-10,
balancing inflammation, limiting tissue damage, and regulating
the dominant macrophage phenotype in the lymph node and lung
(69–71). IL-10 induces STAT3 activation and downstream gene
expression when it binds with the IL-10 receptor (IL-10R) com-
plex, which is associated with M2-polarized macrophages. Fur-
thermore, ligation of IL-10 with its receptor complex directly inhibits
the TNF mRNA transcription pathway through STAT3-related fac-
tors (72, 73).

Overall, macrophage function, diversity, and location within a
granuloma environment are still poorly understood. In a recent
study in nonhuman primates (NHPs), we presented data suggest-
ing that macrophages in different granuloma microenvironments
have different polarization states that may control pathology
through regulated expression of pro- and anti-inflammatory sig-
nals (5). We also showed that a characteristic spatial separation
between pro- and anti-inflammatory macrophages could be ob-
served in different granuloma types (5). Experimental studies
have suggested that the presence of a dynamic balance between
pro- and anti-inflammatory cytokines is necessary for achieving
proper granuloma formation and control of M. tuberculosis infec-
tion (4, 56, 74, 75). In the context of macrophage activation, how
this dynamic balance evolves over the course of infection remains

to be elucidated and has been difficult to understand experimen-
tally.

In this work, we build on our existing computational model of
granuloma formation and function (GranSim), by integrating
macrophage polarization data from our NHP model of granu-
loma formation, in order to test how cytokine receptor signaling
influences macrophage polarization and bacterial containment
(71, 76–78). We define a “macrophage polarization ratio” as a
metric to understand how cytokine signaling translates into pro-
or anti-inflammatory polarization and plasticity of single macro-
phages in a granuloma, which in turn modulates cellular func-
tions, including antimicrobial activity and cytokine production
(Fig. 1A). Gene expression profiles are triggered by simplified cy-
tokine signaling models of STAT1, STAT3, and �F�� activation
(Fig. 1B to D). We then define a “granuloma polarization ratio” by
averaging macrophage polarization ratios over an entire granu-
loma, thus defining a metric of polarization at the tissue scale.
While this metric is theoretical in nature, it predicts key polariza-
tion hypotheses, directly linked to immune function, with respect
to contained granulomas which can be experimentally tested.

First, our computational model reproduces the spatial organi-
zation of the M1- and M2-like macrophages observed in many
NHP granulomas (79). Second, we show that the granuloma po-
larization ratio can be used as a predictive metric of infection
outcome as early as 2 months postinfection. Third, our in silico
granuloma data also suggest that the length of time that the NF-�B
signal is turned on (i.e., the signal activation interval [�]) is a key
regulatory mechanism, determining whether a granuloma con-
tains infection with a minimal amount of inflammation or leads to
uncontrolled bacterial growth. These studies provide clues to the
importance of driving polarization ratios of macrophages within
granulomas toward a containment phenotype and suggest how
gene transcription dynamics might be manipulated pharmacolog-
ically and targeted for therapeutic control of infection toward this
goal.

MATERIALS AND METHODS
Multiscale agent-based model. We recently published a next-generation
multiscale computational model of lung granuloma formation and func-
tion during M. tuberculosis infection where we captured immunological
processes over four different biological scales in the lung: the model op-
erates at the molecular, intracellular, and cellular scales and provides read-
outs at the tissue scale (71). The main body of the model, GranSim, is
based on the cellular scale and is populated with macrophages and T cells
as distinct agents within an agent-based model setting (77, 78). Submod-
els operating within GranSim capture events at the molecular scale using
ordinary differential-equation models (ODEs) that describe receptor-li-
gand dynamics for both IL-10 and TNF occurring within a single cell (71,
76). Diffusion of IL-10 and TNF in tissue is also tracked at the cellular scale
(details can be found in references 69, 71, 76, 80, and 81). In the current
study, we used TNF, IFN-�, and IL-10 as drivers for macrophage polar-
ization and as modulators of macrophage immune functions, such as
cytokine synthesis and bactericidal activity. These assumptions are sup-
ported by observed biological data (8, 49, 54–56).

The model environment represents a 2-by-2-mm section of lung pa-
renchyma tissue. Our two-dimensional square lattice comprises 100 rows
of 100 microcompartments, with each microcompartment measuring 20
by 20 �m (approximately the diameter of a macrophage). The lattice is
initialized with resident macrophages and vascular sources for recruit-
ment of macrophages and T cells to the site of infection. Recruitment of
cells into lung through vascular sources is based on our previous model
studies and experimental data (71, 76–78, 81). Infection is initiated by
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placing a macrophage in the middle of the lattice and infecting it (through
phagocytosis) with a single intracellular M. tuberculosis cell (82). We sim-
ulate infection over a time span of 200 days, with rules and interactions
solved using a 10-min time step. Details regarding implementation of cell
movement and molecule diffusion and degradation, as well as receptor-
ligand dynamics, can be found in references 69, 71, 76, and 81. In order to
make bacterial dynamics vary within known heterogeneous growth rates
(83), rates are assigned by randomly choosing extracellular and intracel-
lular M. tuberculosis doubling times from experimentally identified ranges
defined a priori. Extracellular M. tuberculosis growth rates are sampled
from a uniform distribution (defined by minimum and maximum values
inferred from data; see Table 1) at the beginning of the simulation and
assigned to each of the 100-by-100 microcompartments. A similar sam-
pling scheme is used to assign intracellular growth rates to bacteria grow-
ing inside new macrophages entering the grid. Ranges for intracellular and
extracellular bacterial growth rates are shown in Table 1, together with
other parameters used in the model.

Models of STAT1, STAT3, and NF-�B dynamics. To study the mo-
lecular mechanisms responsible for driving macrophage activation and
polarization, we used a coarse-grained version of the NF-�B signaling
module we previously implemented (80) and then modified our existing
multiscale model to account for the intracellular signaling pathways me-
diated by STAT1, STAT3, and NF-�B. Although we use STAT1, STAT3,
and NF-�B signaling as proxies for IFN-�, IL-10, and TNF signaling,
respectively, we understand that these signaling factors can be involved in
other pathways, including IFN-�/	 (STAT1), IL-6 (STAT3), and TLR4, T
cell-, B cell-, or IL-1 receptor (NF-�B) signaling. Future work will be
performed to identify the relationship between these factors and their
contributions to signaling pathways in the granuloma and to add them to
our computational model. We employed simplified versions of recently
published models for STAT1, STAT3, and NF-�B pathways (88, 90, 94).
We use two representative intracellular species for each signaling path-
way: a phosphorylated nuclear species (denoted with N) and a response
species (denoted with R) (Fig. 1B to D). The phosphorylated nuclear

FIG 1 Schematic representation of macrophage polarization and gene expression dynamics captured in the agent-based model. (A) Simplified cartoon that
represents the macrophage signaling cascade of the three pathways used in the study to capture M1 (proinflammatory) and M2 (anti-inflammatory) cues. Each
signal was quantified and used to calculate a ratio that was then used to modulate several immune functions of the macrophage (chemokine and cytokine [TNF,
IL-10] synthesis, bacterial killing). The modulation is implemented as a linear interpolation (the value of the ratio is normalized and multiplied by the parameter
value regulating the correspondent immune function). (B, C, and D) Representation of how gene transcription dynamics is modeled through the three pathways
(STAT1, STAT3, and NF-�B, respectively). For each of the pathways, we have a nuclear species state (denoted with N) and a response species state (denoted with
R). The details are given in Materials and Methods. (E) Different gene transcription dynamic regimes (fast [green], intermediate [blue], and slow [red]) that are
recapitulated by our in silico model, for each species. The two parameters whose values varied were the signal degradation time (or length [�]) and the
response/signal strength (	) of the response.
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species (STAT1N, STAT3N, and NF-�BN) represent the phosphorylated
forms of STAT1, STAT3, and NF-�B that exist in the nucleus following
ligand stimulation. These nuclear phosphorylated species lead to down-
stream signaling (including transcription factors and mRNA), where they
are referred to as the response species (STAT1R, STAT3R, and NF-�BR)
(95, 96, 97). In this context, inhibition of signal activation for the
response species represents the combined deactivation of these signal
transducers in the nucleus, events mediated by dephosphorylation
(STAT1 and STAT3) (97) and coupling with inhibitory subunits (NF-�B)
and degradation of signaling molecules by proteolytic processes (96). The
phosphorylated nuclear species have a maximum level (defined by
STAT1MaxLevel, STAT3MaxLevel, and NF-�BMaxLevel) to capture saturation
of ligand-induced stimulation.

Although the intracellular pathways are simplified by representing
only a nuclear phosphorylated and a response species, we are able to
recapitulate three gene expression regimes observed in many signaling
pathways—fast expression, intermediate expression, and stable expres-
sion (98, 99). This is made possible via altering two model parameters for
each pathway (see Fig. 1E), the signal activation interval (�) and the signal
strength (	). The signal activation interval for each pathway represents
the length of time the signal is turned on. This interval is controlled by a
degradation rate of the response species in the simplified signaling model
(see Fig. 1B to D). The next step is to link these pathways to the existing
multiscale model at the scale of the molecular species IL-10, TNF, and
IFN-�. To do this, we link models of IL-10 and TNF at the molecular scale
(71, 76) to the new intracellular models of STAT3 and NF-�B, respectively
(see Fig. 1), while STAT1 is similarly linked to IFN-�. In the model, IFN-�
is secreted by T cells and its impact is restricted locally at the immunolog-
ical synapse (100); thus, it is not necessary to explicitly model IFN-�
dynamics at the receptor scale (as we do for IL-10 and TNF). Thus, in the
model, T cells produce IFN-� as a proxy for activating STAT1N in neigh-
boring macrophages with a given probability (PSTAT1).

There are other potential partners for STAT1 and STAT3 signaling
activation, including type 1 interferons for STAT1 and IL-6 for STAT3

(20, 101). We are using TNF and IL-10 as activation signals since our
current in silico model already tracks these two cytokines in a detailed way;
we can include additional cytokines as more biological data supporting
their roles in TB become available. As we have done previously, we use
Poisson processes to describe the probability (PSTAT3 and PNF-�B) of li-
gand-induced activation of STAT3N and NF-�BN based on rate parame-
ters (kSTAT3 or kNF-�B), threshold values (
STAT3 or 
NF-�B), and the re-
spective concentrations of IL-10 bound to IL-10R and TNF bound to
TNFR1 (71, 76, 80):

PSTAT3 � �1 � e�kSTAT3 ([IL10 · IL10R]��STAT3�t)

0 �[IL10 · IL10R] � �STAT3

[IL10 · IL10R] � �STAT3

PNF�B � �1 � e�kNF�B ([TNF · TNFR1]��NF�B�t)

0 �[TNF · TNFR1] � �NF�B

[TNF · TNFR1] � �NF�B

Macrophage polarization states. In the previous version of GranSim,
we captured macrophages in resting, activated, infected, and chronically
infected states (71, 76, 80). To explore macrophage polarization, we in-
troduce new macrophage states: M0, M1, M2, and M1M2. M0 macrophages
represent the initial resident alveolar macrophages and any unpolarized
or nonactivated macrophages. M0 macrophages have no capabilities to
secrete cytokines or chemokines and perform limited bactericidal func-
tions (similar to the resting macrophage state in the previous version of
GranSim). The states M1, M2, and M1M2 can all be considered subtypes of
the activated macrophage state in the previous version of GranSim. Mac-
rophages characterized as M1 have been polarized via stimulation of
STAT1 or NF-�B or both. Macrophages characterized as M2 have been
polarized via stimulation of STAT3. M1M2 macrophages capture the wide
spectrum of macrophages between M1 and M2 (20), wherein these mac-
rophages have been stimulated with a combination of STAT1, NF-�B, and
STAT3.

Macrophage (RMP) and granuloma (RGP) polarization ratios. To de-
termine the polarization of a macrophage toward a proinflammatory (i.e.,

TABLE 1 List of parameters varied in the uncertainty and sensitivity analysisa

Parameter Parameter description Value
Reference(s)
or source


NF�B (no./cell) Cell surface sTNF/TNFR1 threshold for TNF-induced NF�B activation 40–60 [50] 76
kNF�B [(no./cell)�1 s�1] Rate constant for TNF-induced NF�B activation in macrophages 5e-6–1e-5 [5e5] 76

STAT3-IL-10 (no./cell) Cell surface sIL-10/IL-10R threshold for IL-10-induced STAT3 10–20 [15] Estimated
kNF�BSTAT3IL-10 [(no./cell)�1 s�1] Rate constant for IL-10-induced STAT3 activation in macrophages 0.00075–0.0016 [0.001] Estimated
SynthIL-10-MI (no./cell · s) Full-synthesis rate of soluble IL-10 by Mi 0.06–0.22 [0.17] 84, 85
SynthIL-10-MA (no./cell · s) Full-synthesis rate of soluble IL-10 by Ma 0.04–0.65 [0.45] 86, 87
�IntMtb (days) Doubling time for intracellular M. tuberculosis 1–2 [1.5] 83
�ExtMtb (days) Doubling time for extracellular M. tuberculosis 2–5 [4] 83
probKillExtMtbM0 Probability of M0 killing extracellular bacteria 0.05–0.25 [0.15] Estimated
probKillExtMtb Probability of non-M0 killing extracellular bacteria 0.75–1 [0.8] Estimated
probKillIntMtb Probability of non-M0 killing intracellular bacteria 0.001–1 [0.5] Estimated
	STAT1 (min�1) Rate of signal activation strength of STAT1 1–25 [13] 88, 89
	STAT3 (min�1) Rate of signal activation strength of STAT3 1–25 [13] 90–93
	NF�B (min�1) Rate of signal activation strength of NF�B 1–25 [13] 88, 90, 94
�STAT1 (min�1) Rate of signal degradation/inhibition of STAT1, which controls the length of time

the STAT1 signal is turned on (i.e., the signal activation interval)
0.0001–0.1 [0.0126] 88, 89

�STAT3 (min�1) Rate of signal degradation/inhibition of STAT3, which controls the length of time
the STAT3 signal is turned on (i.e., the signal activation interval)

0.0001–0.1 [0.0145] 90–93

�NF�B (min�1) Rate of signal degradation/inhibition of NF�B, which controls the length of time
the NF�B signal is turned on (i.e., the signal activation interval)

0.0001–0.1 [0.0197] 88, 90, 94


AgeTransition Normalized macrophage polarization ratio threshold for transitioning to a
shorter life span

0.7–0.9 [0.85] Estimated

timeRecEnabled (days) Days when effector T cells recruitment is enabled 20–30 [21] Estimated
probStat1T� Probability of macrophage STAT1 activation induced by IFN-�-producing T cells 0.001–0.1 [0.05] Estimated
a The rest of the parameter values used to generate the in silico granulomas shown in Fig. 3 can be found in reference 22. The containment parameters are indicated in square
brackets. sTNF, soluble tumor necrosis factor; TNFR1, tumor necrosis factor receptor 1.
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M1) or anti-inflammatory (i.e., M2) phenotype, we define a “macrophage
polarization ratio” (RMP) (Fig. 1A and B). RMP is a dynamic ratio com-
paring the amount of proinflammatory signals (STAT1R and NF-�BR)
received to the amount of anti-inflammatory signals received (STAT3R)
on an individual macrophage basis:

RMP �
STAT1R 	 NF�BR

2 
 STAT3R

We normalize the RMP between 0 and 1 based on the minimum and
maximum values of STAT1R, STAT3R, and NF-�BR dictated by the intra-
cellular signaling model parameters (see Text S1 in the supplemental ma-
terial [“macrophage polarization ratio—RMP calculation”]). Thus, mac-
rophages that have a high value of RMP are polarized toward the M1

phenotype, while macrophages with a low value of RMP are polarized
toward the M2 phenotype. We use a threshold of 1 for RMP as a theoretical
value to label a macrophage as either M1 (RMP � 1) or M2 (RMP � �1).
In order to use RMP (a cellular-level measure) at the tissue scale (i.e., the
granuloma level), we collect macrophage polarization ratios for all mac-
rophages within a single granuloma and average them. We call this com-
posite average the “granuloma polarization ratio” (RGP) and use it as a
metric at the granuloma scale. To make the averages consistent across
different granuloma simulations, we account for macrophages only
within a typical lesion size (�1.5-mm diameter) and exclude from the
average all the M0 (unpolarized/unactivated) macrophages.

Linking immune function with macrophage polarization using
RMP. We use RMP, the macrophage polarization ratio, to link multiple
immune functions (secretion of chemokines, secretion of two cytokines,
and bactericidal ability) directly to macrophage polarization values (Fig.
1A). At the extremes of polarization, M1 macrophages secrete high levels
of TNF and chemokines (CCL2, CCL5, and CXCL9/CXCL10/CXCL11)
and very low levels of IL-10, while M2 macrophages secrete high levels of
IL-10 and low levels of both TNF and chemokines (8, 102). Considering
that a broad spectrum of macrophage polarization exists in vivo (20), we
capture this by modeling secretion of TNF, IL-10, and chemokines as
linear functions of log(RMP) (see Fig. 1A, bottom). Studies show that M1

macrophages express high levels of iNOS and low levels of arginase (Arg)
whereas M2 macrophages express high levels of Arg and low levels of iNOS
(5, 8). The two species compete for arginine as a substrate, which in the
case of iNOS is used to produce antimicrobial RNI species and in the case
of arginase is used to convert arginase to urea and L-ornithine, an up-
stream precursor of collagen (103, 104). Macrophages can simultaneously
express iNOS and Arg enzymes (5, 103), suggesting that macrophage
functional characteristics are a consequence of the enzyme abundance in
that cell and not simply of enzyme presence or absence. Thus, we
model macrophage bactericidal capabilities, condensing the iNOS and
Arg pathways into a single response, as a linear function of the log of
RMP (see Fig. 1A).

Arginase expression in macrophages as a consequence of IL-10 signal-
ing was identified by few earlier studies (93, 105, 106). For example, in the
study described in reference 105, the researchers used BALB/c mice in-
fected with Leishmania and found that IL-10 signaled through STAT3 and
unregulated IL-4 receptor on macrophages. This makes these macro-
phages more sensitive to IL-4 and thus sensitive to upregulation of argi-
nase 1 in response to low IL-4 levels, reminiscent of the situation we see in
the tuberculous granuloma. We do not model IL-4- or IL-4-mediated
signaling, and we know that the number of IL-4-expressing T cells in
granulomas is quite small, so IL-10 is used to represent an M2-polarizing
factor.

Granuloma imaging. All procedures involving cynomolgus macaques
(Macaca fascicularis) were performed in accordance with Institutional
Animal Care and Use Committee protocols at the University of Pitts-
burgh. Macaques were infected with M. tuberculosis (Erdman strain),
monitored for development of disease, and humanely euthanized as pre-
viously described (7); all tissues were from animals subjected to necropsy
procedures for other studies. Granuloma-containing lung tissue fixed in

10% neutral buffered formalin and embedded in paraffin was deparaf-
finized and processed as previously described (5). Tissues were stained for
phosphorylated STAT1 (pSTAT1) or pSTAT3. Immunohistochemical
procedures involving pSTAT1 or pSTAT3 used Tris-buffered saline (TBS)
as a diluent or wash buffer. Tissue sections were blocked in 1% fetal bovine
serum (FBS)–TBS before being stained with rabbit anti-pSTAT1 (clone
D3B7; Cell Signaling Technology, Danvers, MA) and mouse anti-pSTAT3
(clone M9C6; Cell Signaling Technology). Slides were washed with TBS
before application of anti-mouse biotin (Vector Laboratories, Burlin-
game, CA) and Alexa Fluor 488-conjugated anti-rabbit (Life Technolo-
gies, Grand Island, NY) secondary antibodies. Biotinylated pSTAT3 was
stained with Alexa Fluor 546-conjugated streptavidin (Life Technologies)
followed by staining for CD163 (Thermo Fisher Scientific) with antibod-
ies labeled with Alexa Fluor 647 via the use of Zenon labeling reagents
(Life Technologies). Coverslips were applied to slides with Prolong Gold
mounting medium containing DAPI (4=,6-diamidino-2-phenylindole)
(Life Technologies), and images were acquired with a FluoView 1000
confocal microscope (Olympus, Center Valley, PA). For granulomas too
large to be imaged in a single 200� field, multiple overlapping fields were
acquired and the individual images assembled into a composite image
using the Photomerge feature of Adobe Photoshop CS4 (Adobe Micro-
systems, San Jose, CA).

Model validation, UA, and SA. Most model parameter values used
here are taken from references 69, 71, and 76 and are given in Table 1. We
used semiquantitative studies from the literature on STAT1 (88, 89),
STAT3 (90–93), and NF-�B (107) to specify ranges for parameters related
to the macrophage polarization ratio introduced in this work (see Table 1
for details). Additionally, we relied on uncertainty analysis (UA) and sen-
sitivity analysis (SA) techniques. These techniques can be used to effi-
ciently explore the parameter space to inform baseline behaviors of the
system (UA), as well as to quantify how parameter uncertainty impacts
model outcomes. This allows efficient identification of critical model pa-
rameters that drive model behavior (SA; reviewed in reference 108). Here
we used Latin hypercube sampling (LHS) for UA and partial-rank-corre-
lation coefficients (PRCC) for SA. The LHS algorithm is a stratified Monte
Carlo sampling method without replacement. It was used to generate 500
unique parameter sets, which were simulated in replication 3 times, and
the averages of the outputs were used to calculate PRCC values. The de-
tails on the parameters that were varied in our LHS experiments are
shown in Table 1.

Uncertainty analysis is also used to select in silico granulomas that
recapitulate typical NHP granuloma images, as well as to generate statis-
tics related to bacterial (CFU) numbers per granuloma over time (7, 109).
The in silico granulomas are obtained without biasing signal activation
intervals (�) and signal strengths (	) toward one of the three pathways
(STAT1, STAT3, and NF-�B; see Fig. 1E). Throughout the uncertainty
analysis, the same range was used for each of the three signal activation
interval parameters � ([0.0001, 0.1] min�1; see Table 1), as well as for the
three signal strength parameters 	 ([1, 25] min�1; see Table 1). These
ranges allow us to recapitulate the three typical expression regimes (i.e.,
fast, intermediate, and sustained expression) exemplified in Fig. 1E, as
observed in many signaling pathway systems (94, 98). We used a standard
t test to compare the impacts of the three different pathways (i.e., STAT1,
STAT3, and NF-�B) on granuloma development and maintenance.

Our comparison of in silico and ex vivo granuloma images is by no
means a comprehensive comparison of all possible known histopatholog-
ical outcomes seen in experimental studies in NHPs or in humans. How-
ever, we present a sampling here to provide evidence that our model can
recapitulate a myriad of granulomas observed in NHPs, depending on the
parameter values. We determined a baseline granuloma containment sce-
nario (see Table 1 for baseline parameter values), where the CFU/granu-
loma grew in an almost uncontrolled manner in the first 4 to 6 weeks
postinfection (as suggested by recent experimental data [109]) and then
declined to lower bacterial levels, reaching a stable, controlled CFU level.
We validated the model by performing virtual deletion simulations, where
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we set mechanisms (i.e., model parameters) to zero in upon infection to
mimic experimental studies of gene knockouts (for example, IFN-� and
TNF; data not shown). All postoptimization analysis of data generated by
our in silico model was done in Matlab.

Simulated granuloma classification. According to previously pub-
lished NHP data (83, 109), at 4 weeks the median bacterial level in an
individual granuloma is �2 � 104 CFU, with a large variability (between
1 � 102 and 1 � 106 CFU per lesion). Later time points show a decline of
the average CFU level per granuloma (see references 83 and 109 for de-
tails), regardless of how the NHP has been classified with respect to infec-
tion outcome (i.e., latent or active TB). Although our in silico model tracks
infection progression at only the single-granuloma level, we use bacterial
load as a marker of granuloma outcome. If a granuloma by 200 days
postinfection has a bacterial load below 2 � 104 CFU (e.g., if the CFU
declines from a peak at day 30), it is classified as contained (containment
scenario). If the bacterial load is above 2 � 104 CFU, then the granuloma
is classified as disseminating (dissemination scenario).

RESULTS
Characteristic spatial distribution of polarized macrophages in
TB granulomas. We first tested whether NHP data and model
simulations gave similar spatial organizations with respect to mac-
rophages and their phenotypes. Immunohistochemistry was per-
formed on three granulomas from three different M. tuberculosis-
infected NHPs. These granulomas were stained for pSTAT3
(pink) and pSTAT1 (green) (Fig. 2A, C, and E). The white areas at
the center of the granulomas in panels A and C represent a ne-
crotic core. The NHP granuloma images show a separation be-
tween pSTAT1-positive macrophages (green; localized closer to
the center) and pSTAT3-positive macrophages (pink; localized at
the outer regions of the granuloma). This supports previously
published results from our group identifying the spatial organiza-
tion of iNOS and arginase production by macrophages and show-
ing that macrophages with lower iNOS expression, relative to ar-
ginase (M2-like) expression, localize to the granuloma’s outer cuff
whereas macrophages with higher iNOS (M1-like) expression
were closer to the inner core (5). Representative in silico granulo-
mas (chosen from our uncertainty analysis simulations) are
shown in Fig. 2B, D, and F. Our model recapitulates this spatial
organization, identifying granulomas that are necrotic (Fig. 2B
and D) or nonnecrotic (Fig. 2F). As described in the Fig. 1 legend
and in Materials and Methods, macrophages are classified based
on their polarization ratio and labeled either M1 (green) if the
polarization ratio is greater than 1 or M2 (pink) if it is smaller than
1. This spatial separation between M1- and M2-like macrophages
is shared across different granuloma outcomes and is not due to a
specific parameter set. Since at present we model only two cell
types, e.g., macrophages and T cells, macrophages emerge as the
largest fraction of cells that constitute our in silico granulomas.
That is why a larger pink area is present in our in silico snapshots
(Fig. 2B, D, and F) compared to the NHP granuloma images (Fig.
2A, C, and E), which also comprise other cell types (not labeled)
such as neutrophils, B cells, and NK cells (4).

Granuloma polarization ratio dynamics are predictive of
granuloma outcome. To better understand how the overall po-
larization state of macrophages in a granuloma relates to bacterial
load, we examined granuloma polarization ratios (RGP) and CFU
per granuloma over time (Fig. 3). Each point in Fig. 3 represents
an in silico granuloma at a particular time point as generated in the
set of virtual experiments described in Materials and Methods;
each simulated granuloma is plotted over multiple time points.

The containment and dissemination scenarios followed similar
trajectories for bacterial growth in the first month postinfection
(Fig. 3A and B), but while the containment scenarios showed a
contraction in the levels of CFU/granuloma (Fig. 3C), the levels in
the dissemination scenarios continued to increase over time (Fig.
3D). We then tested whether granulomas that contained infection
had different granuloma polarization ratio dynamics with respect
to the dissemination outcome. Figure 4A shows average trajecto-
ries of granuloma polarization ratios (RGP) for the two scenarios
described in the Fig. 3 legend. The average time courses of RGP

showed similar dynamics from the beginning of infection until
day 60 (i.e., no significant differences between the two average
trajectories), followed by a spike toward increased M1-like polar-
ization ratios in the set of contained granulomas as early as 70 to
80 days postinfection. Later, the two trajectories crossed, and after
day 170, contained granulomas showed significantly lower M1-
like polarization. This suggests that a macrophage polarization
ratio biased more strongly toward M1 phenotypes early on (i.e.,
within 2 to 4 months postinfection) appears necessary to contain
bacterial loads at the single-granuloma level whereas at later time
points (greater than 6 months) it may not be protective and may
be detrimental due to excessive inflammation. Figure 4B shows
the time course of TNF/IL-10 (calculated as the average value of
ratios between TNF and IL-10 molecules) for the containment
and dissemination scenarios (as shown in Fig. 3). Overall, the in
silico model predicts that TNF levels are always higher (on average,
300 to 600 times higher) than IL-10 levels, whether the granuloma
is contained or not. We also predict that average levels of TNF and
IL-10 are 2 to 3 times higher in dissemination (data not shown).
TNF/IL-10 ratios peak early during infection (first 4 weeks) and
then decline rapidly within the first 6 weeks postinfection. After 6
weeks, the trajectories of the TNF/IL-10 ratios increase (the values
corresponding to contained granulomas are always higher). How-
ever, by �10 weeks, while the contained granulomas slightly con-
tract and stabilize their TNF/IL-10 levels, disseminating granulo-
mas show sustained growth (mainly due to an increase in TNF;
data not shown). Our model suggests that the higher TNF/IL-10
ratio in the first 40 to 80 days (Fig. 4B) drives a higher granuloma
polarization ratio in the containment scenario (Fig. 4A).

Larger populations of polarized macrophages emerge in the
dissemination scenario. Macrophage phenotypes were also dif-
ferentially represented between the disseminating and contain-
ment granuloma scenarios (Fig. 5). Overall, the total number of
macrophages in the dissemination cluster of granulomas was
larger (Fig. 5A), likely due to more cellular influx as a result of
higher bacterial loads, which could lead to higher levels of inflam-
mation. The dissemination scenario showed a significantly larger
population of M1-like polarized macrophages (�8% versus �4%;
Fig. 5D), as well as of infected macrophages (Fig. 5C), starting
when the granuloma polarization ratios began to diverge between
the two granuloma outcome groups, at about 2 to 3 months
postinfection (see Fig. 4A). The larger numbers of cells in the M1

and infected macrophage populations in the dissemination group
was mirrored by a smaller fraction of unpolarized macrophages,
representing �95% of the macrophage population in the contain-
ment group (Fig. 5B). The larger populations of M2 and M1M2

macrophages in the dissemination group suggest that the lower
granuloma polarization ratios seen in the 60-to-120-day window
were driven by these macrophage phenotypes. In contrast, almost
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no M2 or M1M2 macrophages were observed in the containment
group (data not shown).

Similarly, T cell counts were �2-fold to 3-fold higher in the
dissemination class than in the containment granuloma group
(Fig. 6A). There was no statistically significant difference between
the dynamics of the fractions of the three different T cell pheno-
types captured in the model (data not shown). However, while the
ratio between IFN-�-producing cells (Fig. 6B) and cytotoxic T
cells (Fig. 6C) was approximately 1:1 for containment granulo-

mas, T cell responses in disseminating granulomas were biased
toward a higher (almost 2:1) ratio of cytotoxic T cells to IFN-�-
producing T cells.

NF-�B signal activation dynamics characterize granuloma
outcome. To identify the molecular mechanisms behind these
predictions, we tested whether there is any significant difference in
the dynamics of gene transcription parameters between the con-
tainment and dissemination granuloma groups. We first com-
pared the signal activation intervals (�STAT1, �STAT3, �NF-�B) and

FIG 2 Comparison between granulomas from nonhuman primates and in silico granulomas generated by our model. (A, C, and E) Stains of 3 different
granulomas for p-STAT3 (pink) and p-STAT1 (green). Green, M1-like macrophages; pink/purple, M2-like macrophages. (B, D, and F) Computer model
snapshots at day 200 postinfection. As described in the Fig. 1 legend and in Materials and Methods, macrophages were classified as representing either an M1

(proinflammatory) or an M2 (anti-inflammatory) phenotype based on the polarization ratio. We label a macrophage as M1 (green) if its polarization ratio is
greater than 1 and M2 (pink) if it is smaller than 1. Other cell types are as follows: effector lymphocytes (proinflammatory IFN-�-producing T cells, light pink;
cytotoxic T cell, purple; regulatory T cells, light blue), extracellular bacteria (olive green), vascular sources (gray), and necrotic spots (center; white x’s). The three
granuloma snapshots are generated by the in silico model with three different parameter settings (chosen from our uncertainty analysis simulations).
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signal activation strengths (	STAT1, 	STAT3, 	NF-�B) of the two
granuloma groups shown in Fig. 3. In this context, shorter signal
activation intervals can be interpreted as representing inhibition
of the corresponding signal activation, since the length of time the

signal is turned on (i.e., the signal activation interval) is regulated
by proteolytic degradation or inhibition of the response species in
the simplified signaling models (see Fig. 1B to D). We found sig-
nificant differences between the signal activation intervals for the

FIG 3 CFU/granuloma versus granuloma polarization ratio (RGP), calculated as described in Materials and Methods. Each point represents an in silico
granuloma at different time points during infection. The x axis shows the RGP versus its corresponding CFU value (y axis). Both axes are shown on a log scale. The
data set shown is from an LHS of sample size 1,500 (n � 500 with 3 replications), with parameter ranges given in Table 1. Time is represented by labeling the data
with different colors (see key in figure). The panels in the left column represent contained granulomas (panels A and C [labeled “containment”]). The panels in
the right column represent granulomas that are not contained (panels B and D [labeled “dissemination”]). The classification distinguishing between those that
are and those that not contained is based on the total bacterial load per granuloma, which falls below 2 � 104 after day 200 postinfection. Panels A and B track
granulomas from day 10 to 40. Panels C and D track granulomas from day 50 to 200.

FIG 4 Granuloma polarization ratio (RGP) and TNF and IL-10 dynamics. (A) Granuloma polarization ratios (RGP) over time for both contained granulomas
(n � 377) and disseminated in silico granulomas (n � 1,119). For ease of illustration, error bars are not shown. The time points between day 70 and day 130 as
well as after day 170 show strong statistically significant differences between the two trajectories (*, P � 1e-2; **, P � 1e-3; ***, P � 1e-4). (B) Average trajectories
of the ratios between the numbers of TNF and IL-10 molecules on the 2-mm-by-2-mm virtual environment between the contained and disseminated granuloma
scenarios (as shown in Fig. 3).
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two different granuloma outcomes. Our in silico model predicts
that granulomas that control bacterial loads have shorter NF-�B
signal activation intervals than granulomas that are not able to
control bacterial growth (Figure 7A [P � �1e-8]): �NF-�B is �50%
stronger in the containment scenario than in the dissemination
scenario (data not shown). We then compared signal activation
intervals (�STAT1, �STAT3, �NF-�B) and signal activation strengths
(	STAT1, 	STAT3, 	NF-�B) within the same granuloma groups. Fig-
ure 7B shows significant differences for the containment group.
We predict that contained granulomas have NF-�B signal ac-
tivation intervals that are significantly shorter than the STAT1
(�NF-�B � �STAT1 [P � �7e-6]) and STAT3 (�NF-�B �
�STAT3 [P � �0.0115]) signal activation intervals, with the
STAT3 intervals only marginally shorter than the STAT1 inter-
vals (�STAT3 � �STAT1 [P � �0.05]). Almost opposite dynam-
ics were observed for the disseminating granuloma sets (Fig.
7C), with STAT1 signal activation intervals significantly
shorter than the NF-�B intervals (�NF-�B � ���STAT1 [P �
�0.0018]) and STAT3 intervals only marginally shorter than
the NF-�B intervals (�STAT3 � �NF�B [P � �0.05]).

Results of sensitivity analysis of the model also highlight the
importance of NF-�B-related parameters as key mechanisms in-
fluencing most of the relevant readouts during infection progres-
sion and granuloma outcome (e.g., NF-�B signal activation inter-

val, TNF-dependent NF-�B activation dynamics; see Table S1 in
the supplemental material for details). In particular, NF-�B signal
activation interval emerges as an important regulatory mecha-
nism. Shorter NF-�B signal activation times play a key regulatory
role both early and late during infection. The early role allows a
prompt response to infection (shown by the spikes in the TNF/
IL-10 ratio trajectories in Fig. 4B). Later during infection, a shorter
NF-�B signal activation interval determines a faster contraction of
the “activation” signal that is no longer needed, after the bacterial
load is contained. Longer NF-�B signal activation intervals in-
crease total TNF levels and the number of M1-like macrophages,
inducing more inflammation and, consequently, more recruit-
ment. This results in a large total number of macrophages at the
site and larger lesion sizes. Overall, longer NF-�B signal activation
intervals during the second and third month postinfection further
sustain inflammation and cell recruitment, allowing the infection
to persist and disseminate. TNF levels are higher for the dissemi-
nation trajectory late during infection, while they are similar for
the two scenarios early on.

Interestingly, STAT1 signal activation interval lengths showed
an impact almost opposite that of NF-�B on many of the readouts
mentioned above, especially on the total TNF, total M1, and apop-
tosis levels (see Table S1 in the supplemental material for details).

These model results suggest that both NF-�B and STAT1 must

FIG 5 Comparison of macrophage time courses for the in silico model. The y axis values represent either the cell count or the fraction (%) of cells over the total.
For each panel, two trajectories are shown with standard error bars. The two curves represent average values over time for the two scenarios represented in Fig.
3. (A) Total number of macrophages. (B) Fraction of unpolarized macrophages (M0) over the total number of macrophages. (C) Fraction of infected macro-
phages (MI) over the total number of macrophages. (D) Fraction of M1 macrophages over the total number of macrophages.
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be tightly regulated, with a shorter signal duration of NF-�B than
of STAT1, thus preventing uncontrolled macrophage activation.
Manipulating signal activation intervals can interfere with signal-
ing dynamics and ultimately hamper and inhibit a protective re-
sponse, as also shown in recent in vitro experimental and model-
ing studies (26, 27, 98, 99, 110). Our results show that the same
principle can affect granuloma outcome in silico and, potentially,
in vivo.

Spatial organization of polarized macrophages does not im-
pact granuloma outcome. We investigated the possibility of a

correlation between the spatial distribution of macrophages
within a granuloma and granuloma outcomes. Figures S1, S2, and
S3 in the supplemental material show the spatial distributions of
macrophage polarization ratios over time between the two mac-
rophage sets captured in Fig. 3. Each point represents a single
macrophage, with its distance from the center of the granuloma
on the x axis and its corresponding macrophage polarization ratio
on the y axis. Excluded from these analyses are all unpolarized/
unactivated macrophages (M0, as described in Materials and
Methods). No clear differences emerged between the two out-

FIG 6 Comparison of lymphocyte time courses for the in silico model. The y axis values represent the cell count. For each panel, two trajectories are shown with
standard error bars. The two curves represent average values over time for the two scenarios represented in Fig. 3. (A) Total number of lymphocytes. (B) Total
number of IFN-�-producing lymphocytes (T�). (C) Total number of cytotoxic T lymphocytes (Tcyt). (D) Total number of regulatory T cells (Treg).

FIG 7 Comparisons of gene transcription dynamics between and within the granuloma scenarios illustrated in Fig. 3. Only the signal activation interval (�)
parameters are shown, since they are the only significant ones. (A) Comparison of NF-�B signal activation intervals between containment and dissemination. The
NF-�B signal activation interval is shorter (less stable) in containment than in dissemination (P � 1e-8). (B) Comparison between the signal activation intervals
for the three different pathways in the containment scenario. The NF-�B signal activation interval is shorter (less stable) than the STAT1 interval (P � 8e-6) and
the STAT3 interval (P � 0.012). (C) Comparison between signal activation intervals for the three different pathways in the dissemination scenario. The NF-�B
signal activation interval is longer (more stable) than the STAT1 interval (P � 2e-3) and the STAT3 interval (P � 0.05).

Macrophage Polarization in TB Granulomas

January 2015 Volume 83 Number 1 iai.asm.org 333Infection and Immunity

http://iai.asm.org


comes within the first 100 days postinfection. After 3 to 4 months,
a larger population of polarized macrophages was present in the
dissemination scenario. However, this larger population did not
show a spatial distribution different from that seen with the gran-
ulomas that control bacterial levels. In both scenarios, macro-
phages closer to the granuloma core always had a macrophage
polarization ratio (i.e., they were near the site of infection and
were getting the most M1-like stimulus) higher than that seen with
the ones in the outer regions.

DISCUSSION

In pulmonary TB, granulomas in lungs are the key feature of in-
fection. The composition of cells within primate granulomas is
relatively well characterized (4), but their functions and the factors
leading to different granuloma outcomes are not. Therefore, a
better understanding of the cells and cytokines that both comprise
and function within each granuloma will aid our understanding of
both infection progression and outcome and provide possible tar-
gets for intervention to improve outcome. Here we used a com-
putational-biology approach to further characterize the role of
macrophage polarization within granulomas, described as M1,
M2, or M1M2. Our modeling work builds on our recent experi-
mental studies examining iNOS-producing (M1-like) and argi-
nase-producing (M2-like) macrophages within granulomas from
NHPs in which we found that many macrophages produced both
enzymes but did so in differing amounts (5). In that work, we also
characterized the spatial distribution of macrophages in granulo-
mas, with epithelioid macrophages surrounding the necrotic core
producing more iNOS than arginase (e.g., M1) whereas those in
the outer cuff of the granuloma produced higher levels of arginase
than iNOS (M2). The computational model used here allows us to
perform focused in silico experiments that cannot be performed in
vivo, thereby permitting exploration of potential immunomodu-
latory strategies for enhancing macrophage-based mycobacterial
killing.

Our computational model replicates the spatial organization
of M1-like and M2-like macrophages seen in many necrotic and
nonnecrotic nonhuman primate (NHP) granulomas (see refer-
ence 5 and Fig. 2). However, this spatial organization does not
appear to be correlated with granuloma outcome. This indicates
that the spatial organization of polarized macrophages in NHP
and in silico granulomas (M1-like macrophages closer to the core,
with M2-like macrophages in outer granuloma regions) is a gen-
eral property emerging from the host-pathogen interaction dur-
ing granuloma formation that does not directly affect granuloma
outcome. Recently published experimental and modeling studies
(5, 71) indicate that a continuous and dynamic balance between
pro- and anti-inflammatory signals is needed to control inflam-
mation and restrain bacterial growth. Other modeling studies by
Day et al. (111) and our group (69) defined the concept of “switch-
ing time” as the time necessary to switch from an M2-dominated
(i.e., non- or anti-inflammatory) to an M1-dominated (i.e., pro-
inflammatory) lung environment. In those studies, the authors
elaborated on the biological relevance of increasing switching
times in the context of M. tuberculosis infection, speculating that a
delay in M1 polarization in the lung may be responsible for the
bacterium gaining an initial “foothold.” Both studies described M.
tuberculosis infection progression in the lung and predicted an
optimal time window for a switch to occur in order to control
bacteria dissemination. Here we tested potential mechanisms that

drive macrophage polarization and plasticity and how the relative
contributions of these broadly classified M1 and M2 programs
evolve over time to initiate a protective immune response at the
scale of a single granuloma.

To study how macrophage polarization in the granuloma
evolves during infection and granuloma formation over many
months, we defined and tracked two quantities: a macrophage
polarization ratio (RMP) and a granuloma polarization ratio
(RGP). We showed how, by following temporal dynamics of gran-
uloma polarization ratios, we could predict granuloma outcomes.
As early as 2 to 3 months postinfection, a spike in granuloma
polarization ratio dynamics occurs for a set of granulomas that are
able to contain infection. Granuloma polarization ratios for dis-
seminating granulomas remain flat, without any significant oscil-
lation toward either an M1-like or M2-like phenotype. M1 polar-
ization timing and magnitude for an entire granuloma are
significant factors in containing the infection. Our predictions are
in line with those of Day et al. (111), where they predicted switch-
ing times of �50 days. Here we showed how stronger M1 polar-
ization 2 to 3 months postinfection is necessary to drive a stronger
protective immune response that is better at containing bacterial
proliferation. In fact, the spike shown in Fig. 4A for the granuloma
polarization ratios in the contained granuloma set can be inter-
preted as representing a more efficient way to contain higher bac-
terial loads during the first 4 to 6 weeks postinfection (83). We
hypothesize that containment at this time point is critical because
limiting bacterial replication with an early spike in M1 polariza-
tion limits excessive TNF expression and potentially pathological
inflammation at later time points.

Differences in NF-�B gene transcription dynamics between the
containment and dissemination granuloma scenarios represented
in Fig. 3 suggest possible key regulatory mechanisms in driving a
more or less protective response. We found that granulomas in the
containment set have shorter NF-�B signal activation intervals
than those granulomas in the disseminating set. Recently, Bai et al.
published work suggesting that inhibition of NF-�B activation
(i.e., shorter signal activation intervals) decreases survival of M.
tuberculosis in human macrophages (112). They used an inhibitor
of I�Ba kinase to inhibit NF-�B activation and found a signifi-
cant decrease in the number of viable intracellular mycobacte-
ria recovered from THP-1 macrophages at both 4 and 8 days
after infection. The granuloma environment is likely different
from the environment described in these in vitro studies com-
pared to the NHP or computational model; however, their ap-
proach highlights the pharmacological possibility of targeting
an important key proinflammatory pathway in macrophages,
such as NF-�B, and how this could be modulated in human
infection to improve outcome. Another interpretation is that
bacteria may actively interfere with NF-�B-mediated pathways
to promote survival, as shown in other bacterial pathogen stud-
ies (36, 38, 39).

In our computational model, a way to achieve NF-�B inhibi-
tion is to decrease signal activation intervals (Fig. 1E). Increasing
the length of these intervals translates into a more sustained signal,
which can disrupt “normal” signaling dynamics driving an effi-
cient inflammatory response; this has been demonstrated in both
experimental and modeling studies of the NF-�B pathway (26, 98,
99, 110). During granuloma formation and development, there is
a sustained level of TNF present. Thus, we speculate that control-
ling NF-�B activation (induced in the model by surface ligation of
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TNF by TNFR1) may be an important regulatory mechanism in
vivo to contain infection, especially soon after an adaptive im-
mune response arrives at the infection site and TNF-dependent
M1 polarization is supported by IFN-y signaling (the two-signal
concept that underpins classical macrophage activation). These
results are in line with our previous study where we analyzed dif-
ferent NF-�B transcriptional responses, in the context of M. tu-
berculosis infection, including TNF secretion, chemokine secre-
tion, inhibitors of apoptosis (IAPs), and macrophage-activating
molecules (80). Here we show that with shorter NF-�B signal
activation intervals, our in silico model produces stable necrotic
granulomas, where most of the M. tuberculosis cells are slowly
replicating or are nonreplicating, inducing less inflammation and
lower levels of cell recruitment. Increasing NF-�B signal activa-
tion intervals results in extensive inflammation and, ultimately,
uncontrolled CFU, as seen in the more complex pathologies ob-
served in active TB (83). This might reconcile with the fact that
some of the worst TB outcomes are associated with pneumonia or
rapidly disseminating TB. Future work will integrate our higher-
resolution molecular model of NF-�B (as shown in reference 80)
into the current M1/M2 polarization implementation to get more
mechanistic insights into the NF-�B pathway.

The hypotheses that we can test with our computational gran-
uloma model, GranSim, have become increasingly complex as we
have improved the model with additional laboratory-based data.
This work addresses mechanistic issues that are otherwise difficult
or impossible to address in vivo, including how the timing of mac-
rophage polarization and polarization bias (toward M1 or M2)
influences bacterial containment. Studying macrophages and T
cell functions in granulomas is difficult in humans as it requires
obtaining fresh lung tissue but is possible in cynomolgus ma-
caques, the best animal model for recapitulating human TB (4,
113). Up to this point, most data have been acquired at an end-
point—removal of the granuloma as part of a necropsy. Newer
technologies, including 18F-fluorodeoxyglucose (FDG)–positron
emission tomography-computed tomography (PET/CT) imaging
of humans (113, 114) and macaques (109, 115) with TB, has given
us a new appreciation for the dynamic process of inflammation
in the granuloma. Our in silico model complements these tech-
nologies by allowing us to test mechanistic hypotheses at the
individual-granuloma level, including our hypothesis that dis-
tinct macrophage polarization and granuloma polarization
trajectories are associated with differential control of bacte-
rium and granuloma outcomes. Here we sought to investigate
basic mechanistic factors underlying polarization of macro-
phage-based antimycobacterial responses using simplified
models of STAT1, STAT3, and NF-�B signaling, through
IFN-�, IL-10, and TNF, respectively. Examining metrics such
as macrophage and granuloma polarization ratios allows us to
test whether macrophage-associated inflammatory factors are
important and independent drivers of protective immunity
and whether granuloma polarization ratios can describe the
contribution of macrophage polarization to bacterial control
in the granuloma. We anticipate that, as more biological data
on macrophage function in the granuloma become available,
we will be able to further refine the model, better understand
interactions between host and pathogen, and develop new ways
of shifting the therapeutic balance in favor of the host.

ACKNOWLEDGMENTS

We thank Paul Wolberg for the technical support during computational
model development and Joe Waliga for website creation and management
for the supplemental material for this paper.

Additionally, this research was supported in part by the Open Science
Grid, which is supported by the National Science Foundation and the U.S.
Department of Energy’s Office of Science. This research used resources of
the National Energy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of Energy under
contract no. DE-AC02-05CH11231. This work also used the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), which is sup-
ported by National Science Foundation grant no. ACI-1053575. This re-
search was funded by NIH grants R01 EB012579 (D.E.K. and J.J.L. and
J.L.F.) and R01 HL 110811 (D.E.K. and J.J.L. and J.L.F.) and R01 HL
106804 (D.E.K. and J.L.F.).

REFERENCES
1. Bold TD, Ernst JD. 2009. Who benefits from granulomas, mycobacteria

or host? Cell 136:17–19. http://dx.doi.org/10.1016/j.cell.2008.12.032.
2. Flynn JL, Chan J. 2005. What’s good for the host is good for the bug.

Trends Microbiol 13:98 –102. http://dx.doi.org/10.1016/j.tim.2005.01
.005.

3. Rubin EJ. 2009. The granuloma in tuberculosis–friend or foe? N Engl J
Med 360:2471–2473. http://dx.doi.org/10.1056/NEJMcibr0902539.

4. Flynn JL, Klein E. 2011. Pulmonary tuberculosis in monkeys, p 83–106.
In Leong FJ, Dartois V, Dick T (ed), A color atlas of comparative pulmo-
nary tuberculosis histopathology. CRC Press, Taylor & Francis, London,
United Kingdom.

5. Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY,
Via LE, Barry CE, III, Klein E, Kirschner DE, Morris SM, Jr, Lin PL,
Flynn JL. 2013. Microenvironments in tuberculous granulomas are de-
lineated by distinct populations of macrophage subsets and expression of
nitric oxide synthase and arginase isoforms. J Immunol 191:773–784.
http://dx.doi.org/10.4049/jimmunol.1300113.

6. Lin PL, Pawar S, Myers A, Pegu A, Fuhrman C, Reinhart TA, Capuano
SV, Klein E, Flynn JL. 2006. Early events in Mycobacterium tuberculosis
infection in cynomolgus macaques. Infect Immun 74:3790 –3803. http:
//dx.doi.org/10.1128/IAI.00064-06.

7. Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C, Chiosea I,
Capuano SV, Fuhrman C, Klein E, Flynn JL. 2009. Quantitative com-
parison of active and latent tuberculosis in the cynomolgus macaque
model. Infect Immun 77:4631– 4642. http://dx.doi.org/10.1128/IAI
.00592-09.

8. Flynn JL, Chan J, Lin PL. 2011. Macrophages and control of granulo-
matous inflammation in tuberculosis. Mucosal Immunol 4:271–278.
http://dx.doi.org/10.1038/mi.2011.14.

9. Thwaites GE, Chau TT, Stepniewska K, Phu NH, Chuong LV, Sinh
DX, White NJ, Parry CM, Farrar JJ. 2002. Diagnosis of adult tubercu-
lous meningitis by use of clinical and laboratory features. Lancet 360:
1287–1292. http://dx.doi.org/10.1016/S0140-6736(02)11318-3.

10. Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho SN, Via
LE, Barry CE, III. 2010. Neutrophils are the predominant infected
phagocytic cells in the airways of patients with active pulmonary TB.
Chest 137:122–128. http://dx.doi.org/10.1378/chest.09-0903.

11. Lowe DM, Redford PS, Wilkinson RJ, O’Garra A, Martineau AR. 2012.
Neutrophils in tuberculosis: friend or foe? Trends Immunol 33:14 –25.
http://dx.doi.org/10.1016/j.it.2011.10.003.

12. Davis JM, Ramakrishnan L. 2009. The role of the granuloma in expan-
sion and dissemination of early tuberculous infection. Cell 136:37– 49.
http://dx.doi.org/10.1016/j.cell.2008.11.014.

13. Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN.
2008. Macrophage and T cell dynamics during the development and
disintegration of mycobacterial granulomas. Immunity 28:271–284.
http://dx.doi.org/10.1016/j.immuni.2007.12.010.

14. Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macro-
phage activation. Nat Rev Immunol 8:958 –969. http://dx.doi.org/10
.1038/nri2448.

15. Biswas SK, Mantovani A. 2010. Macrophage plasticity and interaction
with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889 –
896. http://dx.doi.org/10.1038/ni.1937.

16. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. 2002. Macro-

Macrophage Polarization in TB Granulomas

January 2015 Volume 83 Number 1 iai.asm.org 335Infection and Immunity

http://dx.doi.org/10.1016/j.cell.2008.12.032
http://dx.doi.org/10.1016/j.tim.2005.01.005
http://dx.doi.org/10.1016/j.tim.2005.01.005
http://dx.doi.org/10.1056/NEJMcibr0902539
http://dx.doi.org/10.4049/jimmunol.1300113
http://dx.doi.org/10.1128/IAI.00064-06
http://dx.doi.org/10.1128/IAI.00064-06
http://dx.doi.org/10.1128/IAI.00592-09
http://dx.doi.org/10.1128/IAI.00592-09
http://dx.doi.org/10.1038/mi.2011.14
http://dx.doi.org/10.1016/S0140-6736(02)11318-3
http://dx.doi.org/10.1378/chest.09-0903
http://dx.doi.org/10.1016/j.it.2011.10.003
http://dx.doi.org/10.1016/j.cell.2008.11.014
http://dx.doi.org/10.1016/j.immuni.2007.12.010
http://dx.doi.org/10.1038/nri2448
http://dx.doi.org/10.1038/nri2448
http://dx.doi.org/10.1038/ni.1937
http://iai.asm.org


phage polarization: tumor-associated macrophages as a paradigm for
polarized M2 mononuclear phagocytes. Trends Immunol 23:549 –555.
http://dx.doi.org/10.1016/S1471-4906(02)02302-5.

17. Sica A, Bronte V. 2007. Altered macrophage differentiation and im-
mune dysfunction in tumor development. J Clin Invest 117:1155–1166.
http://dx.doi.org/10.1172/JCI31422.

18. Gordon S, Martinez FO. 2010. Alternative activation of macrophages:
mechanism and functions. Immunity 32:593– 604. http://dx.doi.org/10
.1016/j.immuni.2010.05.007.

19. Chacón-Salinas R, Serafín-López J, Ramos-Payán R, Méndez-Aragón
P, Hernández-Pando R, Van Soolingen D, Flores-Romo L, Estrada-
Parra S, Estrada-García I. 2005. Differential pattern of cytokine expres-
sion by macrophages infected in vitro with different Mycobacterium
tuberculosis genotypes. Clin Exp Immunol 140:443– 449. http://dx.doi
.org/10.1111/j.1365-2249.2005.02797.x.

20. Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in
vivo veritas. J Clin Invest 122:787–795. http://dx.doi.org/10.1172
/JCI59643.

21. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR,
Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ,
Vonderheide RH. 2011. CD40 agonists alter tumor stroma and show
efficacy against pancreatic carcinoma in mice and humans. Science 331:
1612–1616. http://dx.doi.org/10.1126/science.1198443.

22. Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin
E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P. 2009. Interferon-
gamma reverses the immunosuppressive and protumoral properties and
prevents the generation of human tumor-associated macrophages. Int J
Cancer 125:367–373. http://dx.doi.org/10.1002/ijc.24401.

23. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thomp-
son RG, Robinson SC, Balkwill FR. 2008. “Re-educating” tumor-
associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–
1268. http://dx.doi.org/10.1084/jem.20080108.

24. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme
J, Mantovani A. 2000. Autocrine production of IL-10 mediates defective
IL-12 production and NF-kappa B activation in tumor-associated mac-
rophages. J Immunol 164:762–767. http://dx.doi.org/10.4049/jimmunol
.164.2.762.

25. Müller J, Tjardes T. 2003. Modeling the cytokine network in
vitro and in vivo. J Theor Med 5:93–110. http://dx.doi.org/10.1080
/1027336042000208642.

26. Benoit M, Barbarat B, Bernard A, Olive D, Mege JL. 2008. Coxiella
burnetii, the agent of Q fever, stimulates an atypical M2 activation pro-
gram in human macrophages. Eur J Immunol 38:1065–1070. http://dx
.doi.org/10.1002/eji.200738067.

27. Benoit M, Desnues B, Mege JL. 2008. Macrophage polarization in
bacterial infections. J Immunol 181:3733–3739. http://dx.doi.org/10
.4049/jimmunol.181.6.3733.

28. Noël W, Raes G, Hassanzadeh Ghassabeh G, De Baetselier P,
Beschin A. 2004. Alternatively activated macrophages during parasite
infections. Trends Parasitol 20:126 –133. http://dx.doi.org/10.1016/j
.pt.2004.01.004.

29. Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A,
Kaisho T, Kundu M, Basu J. 2007. Direct extracellular interaction
between the early secreted antigen ESAT-6 of Mycobacterium tubercu-
losis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol
8:610 – 618. http://dx.doi.org/10.1038/ni1468.

30. Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, Tsai
MM, Flynn JL, Chan J. 2001. Effects of tumor necrosis factor alpha on
host immune response in chronic persistent tuberculosis: possible role
for limiting pathology. Infect Immun 69:1847–1855. http://dx.doi.org
/10.1128/IAI.69.3.1847-1855.2001.

31. Bean AG, Roach DR, Briscoe H, France MP, Korner H, Sedgwick JD,
Britton WJ. 1999. Structural deficiencies in granuloma formation in
TNF gene-targeted mice underlie the heightened susceptibility to aerosol
Mycobacterium tuberculosis infection, which is not compensated for by
lymphotoxin. J Immunol 162:3504 –3511.

32. Bekker LG, Moreira AL, Bergtold A, Freeman S, Ryffel B, Kaplan G.
2000. Immunopathologic effects of tumor necrosis factor alpha in mu-
rine mycobacterial infection are dose dependent. Infect Immun 68:
6954 – 6961. http://dx.doi.org/10.1128/IAI.68.12.6954-6961.2000.

33. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein
CJ, Schreiber R, Mak TW, Bloom BR. 1995. Tumor necrosis factor-
alpha is required in the protective immune response against Mycobacte-

rium tuberculosis in mice. Immunity 2:561–572. http://dx.doi.org/10
.1016/1074-7613(95)90001-2.

34. Fallahi-Sichani M, Flynn JL, Linderman JJ, Kirschner DE. 2012. Dif-
ferential risk of tuberculosis reactivation among anti-TNF therapies is
due to drug binding kinetics and permeability. J Immunol 188:3169 –
3178. http://dx.doi.org/10.4049/jimmunol.1103298.

35. Marino S, Sud D, Plessner H, Lin PL, Chan J, Flynn JL, Kirschner
DE. 2007. Differences in reactivation of tuberculosis induced from
anti-TNF treatments are based on bioavailability in granulomatous
tissue. PLoS Comput Biol 3:1909 –1924. http://dx.doi.org/10.1371
/journal.pcbi.0030194.

36. Tato CM, Hunter CA. 2002. Host-pathogen interactions: subversion
and utilization of the NF-kappa B pathway during infection. Infect Im-
mun 70:3311–3317. http://dx.doi.org/10.1128/IAI.70.7.3311-3317.2002.

37. Yamada H, Mizuno S, Reza-Gholizadeh M, Sugawara I. 2001. Relative
importance of NF-kappaB p50 in mycobacterial infection. Infect Immun
69:7100 –7105. http://dx.doi.org/10.1128/IAI.69.11.7100-7105.2001.

38. Foryst-Ludwig A, Naumann M. 2000. p21-activated kinase 1 activates
the nuclear factor kappa B (NF-kappa B)-inducing kinase-Ikappa B ki-
nases NF-kappa B pathway and proinflammatory cytokines in Helico-
bacter pylori infection. J Biol Chem 275:39779 –39785. http://dx.doi.org
/10.1074/jbc.M007617200.

39. Philpott DJ, Yamaoka S, Israel A, Sansonetti PJ. 2000. Invasive Shigella
flexneri activates NF-kappa B through a lipopolysaccharide-dependent
innate intracellular response and leads to IL-8 expression in epithelial
cells. J Immunol 165:903–914. http://dx.doi.org/10.4049/jimmunol.165
.2.903.

40. Gupta S. 2002. A decision between life and death during TNF-alpha-
induced signaling. J Clin Immunol 22:185–194. http://dx.doi.org/10
.1023/A:1016089607548.

41. Baldwin AS, Jr. 1996. The NF-kappa B and I kappa B proteins: new
discoveries and insights. Annu Rev Immunol 14:649 – 683. http://dx.doi
.org/10.1146/annurev.immunol.14.1.649.

42. Barnes PJ, Karin M. 1997. Nuclear factor-kappaB: a pivotal transcrip-
tion factor in chronic inflammatory diseases. N Engl J Med 336:1066 –
1071. http://dx.doi.org/10.1056/NEJM199704103361506.

43. Zhang G, Ghosh S. 2001. Toll-like receptor-mediated NF-kappaB acti-
vation: a phylogenetically conserved paradigm in innate immunity. J
Clin Invest 107:13–19. http://dx.doi.org/10.1172/JCI11837.

44. Zingarelli B, Sheehan M, Wong HR. 2003. Nuclear factor-kappaB as a
therapeutic target in critical care medicine. Crit Care Med 31:S105–S111.
http://dx.doi.org/10.1097/00003246-200301001-00015.

45. Gutierrez MG, Mishra BB, Jordao L, Elliott E, Anes E, Griffiths G.
2008. NF-kappa B activation controls phagolysosome fusion-mediated
killing of mycobacteria by macrophages. J Immunol 181:2651–2663.
http://dx.doi.org/10.4049/jimmunol.181.4.2651.

46. Denis M, Gregg EO, Ghandirian E. 1990. Cytokine modulation of
Mycobacterium tuberculosis growth in human macrophages. Int J
Immunopharmacol 12:721–727. http://dx.doi.org/10.1016/0192
-0561(90)90034-K.

47. Flesch IE, Kaufmann SH. 1990. Activation of tuberculostatic macro-
phage functions by gamma interferon, interleukin-4, and tumor necrosis
factor. Infect Immun 58:2675–2677.

48. Green AM, Difazio R, Flynn JL. 2013. IFN-gamma from CD4 T cells is
essential for host survival and enhances CD8 T cell function during My-
cobacterium tuberculosis infection. J Immunol 190:270 –277. http://dx
.doi.org/10.4049/jimmunol.1200061.

49. Flynn JL, Chan J. 2001. Immunology of tuberculosis. Annu Rev Immu-
nol 19:93–129. http://dx.doi.org/10.1146/annurev.immunol.19.1.93.

50. Alderton WK, Cooper CE, Knowles RG. 2001. Nitric oxide synthases:
structure, function and inhibition. Biochem J 357:593– 615. http://dx
.doi.org/10.1042/0264-6021:3570593.

51. Cooper AM, Mayer-Barber KD, Sher A. 2011. Role of innate cytokines
in mycobacterial infection. Mucosal Immunol 4:252–260. http://dx.doi
.org/10.1038/mi.2011.13.

52. Jo EK, Yang CS, Choi CH, Harding CV. 2007. Intracellular signalling
cascades regulating innate immune responses to Mycobacteria: branch-
ing out from Toll-like receptors. Cell Microbiol 9:1087–1098. http://dx
.doi.org/10.1111/j.1462-5822.2007.00914.x.

53. Cyktor JC, Turner J. 2011. Interleukin-10 and immunity against pro-
karyotic and eukaryotic intracellular pathogens. Infect Immun 79:2964 –
2973. http://dx.doi.org/10.1128/IAI.00047-11.

54. Saraiva M, O’Garra A. 2010. The regulation of IL-10 production by

Marino et al.

336 iai.asm.org January 2015 Volume 83 Number 1Infection and Immunity

http://dx.doi.org/10.1016/S1471-4906(02)02302-5
http://dx.doi.org/10.1172/JCI31422
http://dx.doi.org/10.1016/j.immuni.2010.05.007
http://dx.doi.org/10.1016/j.immuni.2010.05.007
http://dx.doi.org/10.1111/j.1365-2249.2005.02797.x
http://dx.doi.org/10.1111/j.1365-2249.2005.02797.x
http://dx.doi.org/10.1172/JCI59643
http://dx.doi.org/10.1172/JCI59643
http://dx.doi.org/10.1126/science.1198443
http://dx.doi.org/10.1002/ijc.24401
http://dx.doi.org/10.1084/jem.20080108
http://dx.doi.org/10.4049/jimmunol.164.2.762
http://dx.doi.org/10.4049/jimmunol.164.2.762
http://dx.doi.org/10.1080/1027336042000208642
http://dx.doi.org/10.1080/1027336042000208642
http://dx.doi.org/10.1002/eji.200738067
http://dx.doi.org/10.1002/eji.200738067
http://dx.doi.org/10.4049/jimmunol.181.6.3733
http://dx.doi.org/10.4049/jimmunol.181.6.3733
http://dx.doi.org/10.1016/j.pt.2004.01.004
http://dx.doi.org/10.1016/j.pt.2004.01.004
http://dx.doi.org/10.1038/ni1468
http://dx.doi.org/10.1128/IAI.69.3.1847-1855.2001
http://dx.doi.org/10.1128/IAI.69.3.1847-1855.2001
http://dx.doi.org/10.1128/IAI.68.12.6954-6961.2000
http://dx.doi.org/10.1016/1074-7613(95)90001-2
http://dx.doi.org/10.1016/1074-7613(95)90001-2
http://dx.doi.org/10.4049/jimmunol.1103298
http://dx.doi.org/10.1371/journal.pcbi.0030194
http://dx.doi.org/10.1371/journal.pcbi.0030194
http://dx.doi.org/10.1128/IAI.70.7.3311-3317.2002
http://dx.doi.org/10.1128/IAI.69.11.7100-7105.2001
http://dx.doi.org/10.1074/jbc.M007617200
http://dx.doi.org/10.1074/jbc.M007617200
http://dx.doi.org/10.4049/jimmunol.165.2.903
http://dx.doi.org/10.4049/jimmunol.165.2.903
http://dx.doi.org/10.1023/A:1016089607548
http://dx.doi.org/10.1023/A:1016089607548
http://dx.doi.org/10.1146/annurev.immunol.14.1.649
http://dx.doi.org/10.1146/annurev.immunol.14.1.649
http://dx.doi.org/10.1056/NEJM199704103361506
http://dx.doi.org/10.1172/JCI11837
http://dx.doi.org/10.1097/00003246-200301001-00015
http://dx.doi.org/10.4049/jimmunol.181.4.2651
http://dx.doi.org/10.1016/0192-0561(90)90034-K
http://dx.doi.org/10.1016/0192-0561(90)90034-K
http://dx.doi.org/10.4049/jimmunol.1200061
http://dx.doi.org/10.4049/jimmunol.1200061
http://dx.doi.org/10.1146/annurev.immunol.19.1.93
http://dx.doi.org/10.1042/0264-6021:3570593
http://dx.doi.org/10.1042/0264-6021:3570593
http://dx.doi.org/10.1038/mi.2011.13
http://dx.doi.org/10.1038/mi.2011.13
http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x
http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x
http://dx.doi.org/10.1128/IAI.00047-11
http://iai.asm.org


immune cells. Nat Rev Immunol 10:170 –181. http://dx.doi.org/10.1038
/nri2711.

55. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. 2011.
Regulation and functions of the IL-10 family of cytokines in inflamma-
tion and disease. Annu Rev Immunol 29:71–109. http://dx.doi.org/10
.1146/annurev-immunol-031210-101312.

56. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ,
Berry MP. 2013. The immune response in tuberculosis. Annu Rev
Immunol 31:475–527. http://dx.doi.org/10.1146/annurev-immunol
-032712-095939.

57. Denis M, Ghadirian E. 1993. IL-10 neutralization augments mouse
resistance to systemic Mycobacterium avium infections. J Immunol 151:
5425–5430.

58. Murray PJ, Wang L, Onufryk C, Tepper RI, Young RA. 1997. T
cell-derived IL-10 antagonizes macrophage function in mycobacterial
infection. J Immunol 158:315–321.

59. Turner J, Gonzalez-Juarrero M, Ellis DL, Basaraba RJ, Kipnis A, Orme
IM, Cooper AM. 2002. In vivo IL-10 production reactivates chronic
pulmonary tuberculosis in C57BL/6 mice. J Immunol 169:6343– 6351.
http://dx.doi.org/10.4049/jimmunol.169.11.6343.

60. Shaler CR, Kugathasan K, McCormick S, Damjanovic D, Horvath C,
Small CL, Jeyanathan M, Chen X, Yang PC, Xing Z. 2011. Pulmonary
mycobacterial granuloma increased IL-10 production contributes to es-
tablishing a symbiotic host-microbe microenvironment. Am J Pathol
178:1622–1634. http://dx.doi.org/10.1016/j.ajpath.2010.12.022.

61. Redford PS, Boonstra A, Read S, Pitt J, Graham C, Stavropoulos E,
Bancroft GJ, O’Garra A. 2010. Enhanced protection to Mycobacterium
tuberculosis infection in IL-10-deficient mice is accompanied by early
and enhanced Th1 responses in the lung. Eur J Immunol 40:2200 –2210.
http://dx.doi.org/10.1002/eji.201040433.

62. Higgins DM, Sanchez-Campillo J, Rosas-Taraco AG, Lee EJ, Orme IM,
Gonzalez-Juarrero M. 2009. Lack of IL-10 alters inflammatory and im-
mune responses during pulmonary Mycobacterium tuberculosis infec-
tion. Tuberculosis (Edinb) 89:149 –157. http://dx.doi.org/10.1016/j.tube
.2009.01.001.

63. Pitt JM, Stavropoulos E, Redford PS, Beebe AM, Bancroft GJ, Young
DB, O’Garra A. 2012. Blockade of IL-10 signaling during bacillus
Calmette-Guerin vaccination enhances and sustains Th1, Th17, and in-
nate lymphoid IFN-gamma and IL-17 responses and increases protec-
tion to Mycobacterium tuberculosis infection. J Immunol 189:4079 –
4087. http://dx.doi.org/10.4049/jimmunol.1201061.

64. Beamer GL, Flaherty DK, Assogba BD, Stromberg P, Gonzalez-
Juarrero M, de Waal Malefyt R, Vesosky B, Turner J. 2008. Interleu-
kin-10 promotes Mycobacterium tuberculosis disease progression in
CBA/J mice. J Immunol 181:5545–5550. http://dx.doi.org/10.4049
/jimmunol.181.8.5545.

65. Jung YJ, Ryan L, LaCourse R, North RJ. 2003. Increased interleukin-10
expression is not responsible for failure of T helper 1 immunity to resolve
airborne Mycobacterium tuberculosis infection in mice. Immunology
109:295–299. http://dx.doi.org/10.1046/j.1365-2567.2003.01645.x.

66. North RJ. 1998. Mice incapable of making IL-4 or IL-10 display normal
resistance to infection with Mycobacterium tuberculosis. Clin Exp Im-
munol 113:55–58. http://dx.doi.org/10.1046/j.1365-2249.1998.00636.x.

67. Roach DR, Martin E, Bean AG, Rennick DM, Briscoe H, Britton WJ.
2001. Endogenous inhibition of antimycobacterial immunity by IL-10
varies between mycobacterial species. Scand J Immunol 54:163–170.
http://dx.doi.org/10.1046/j.1365-3083.2001.00952.x.

68. Erb KJ, Kirman J, Delahunt B, Chen W, Le Gros G. 1998. IL-4, IL-5
and IL-10 are not required for the control of M. bovis-BCG infection in
mice. Immunol Cell Biol 76:41– 46. http://dx.doi.org/10.1046/j.1440
-1711.1998.00719.x.

69. Marino S, Myers A, Flynn JL, Kirschner DE. 2010. TNF and IL-10 are
major factors in modulation of the phagocytic cell environment in lung
and lymph node in tuberculosis: a next-generation two-compartmental
model. J Theor Biol 265:586 –598. http://dx.doi.org/10.1016/j.jtbi.2010
.05.012.

70. Wigginton JE, Kirschner D. 2001. A model to predict cell-mediated
immune regulatory mechanisms during human infection with Mycobac-
terium tuberculosis. J Immunol 166:1951–1967. http://dx.doi.org/10
.4049/jimmunol.166.3.1951.

71. Cilfone NA, Perry CR, Kirschner DE, Linderman JJ. 2013. Multi-scale
modeling predicts a balance of tumor necrosis factor-alpha and interleu-
kin-10 controls the granuloma environment during Mycobacterium tu-

berculosis infection. PLoS One 8:e68680. http://dx.doi.org/10.1371
/journal.pone.0068680.

72. Lawn SD, Wilkinson RJ, Lipman MC, Wood R. 2008. Immune recon-
stitution and “unmasking” of tuberculosis during antiretroviral therapy.
Am J Respir Crit Care Med 177:680 – 685. http://dx.doi.org/10.1164
/rccm.200709-1311PP.

73. Smallie T, Ricchetti G, Horwood NJ, Feldmann M, Clark AR, Williams
LM. 2010. IL-10 inhibits transcription elongation of the human TNF
gene in primary macrophages. J Exp Med 207:2081–2088. http://dx.doi
.org/10.1084/jem.20100414.

74. Duell BL, Tan CK, Carey AJ, Wu F, Cripps AW, Ulett GC. 2012.
Recent insights into microbial triggers of interleukin-10 production in
the host and the impact on infectious disease pathogenesis. FEMS Im-
munol Med Microbiol 64:295–313. http://dx.doi.org/10.1111/j.1574
-695X.2012.00931.x.

75. Gideon HP, Flynn JL. 2011. Latent tuberculosis: what the host
“sees”? Immunol Res 50:202–212. http://dx.doi.org/10.1007/s12026
-011-8229-7.

76. Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linder-
man JJ. 2011. Multiscale computational modeling reveals a critical
role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma
formation. J Immunol 186:3472–3483. http://dx.doi.org/10.4049
/jimmunol.1003299.

77. Ray JC, Flynn JL, Kirschner DE. 2009. Synergy between individual
TNF-dependent functions determines granuloma performance for con-
trolling Mycobacterium tuberculosis infection. J Immunol 182:3706 –
3717. http://dx.doi.org/10.4049/jimmunol.0802297.

78. Segovia-Juarez JL, Ganguli S, Kirschner D. 2004. Identifying control
mechanisms of granuloma formation during M. tuberculosis infection
using an agent-based model. J Theor Biol 231:357–376. http://dx.doi.org
/10.1016/j.jtbi.2004.06.031.

79. Gong C, Mattila JT, Miller M, Flynn JL, Linderman JJ, Kirschner D.
2013. Predicting lymph node output efficiency using systems biology. J
Theor Biol 335:169 –184. http://dx.doi.org/10.1016/j.jtbi.2013.06.016.

80. Fallahi-Sichani M, Kirschner DE, Linderman JJ. 2012. NF-kappaB
signaling dynamics play a key role in infection control in tuberculosis.
Front Physiol 3:170. http://dx.doi.org/10.3389/fphys.2012.00170.

81. Marino S, El-Kebir M, Kirschner D. 2011. A hybrid multi-
compartment model of granuloma formation and T cell priming in tu-
berculosis. J Theor Biol 280:50 – 62. http://dx.doi.org/10.1016/j.jtbi.2011
.03.022.

82. Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J,
Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, Flynn JL,
Fortune SM. 2011. Use of whole genome sequencing to estimate the
mutation rate of Mycobacterium tuberculosis during latent infection.
Nat Genet 43:482– 486. http://dx.doi.org/10.1038/ng.811.

83. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T,
Sacchettini J, Fortune SM, Flynn JL. 2014. Sterilization of granulomas
is common in active and latent tuberculosis despite within-host variabil-
ity in bacterial killing. Nat Med 20:75–79. http://dx.doi.org/10.1038/nm
.3412.

84. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G,
Julkunen I, Coccia EM. 2001. Infection of human macrophages and
dendritic cells with Mycobacterium tuberculosis induces a differential
cytokine gene expression that modulates T cell response. J Immunol
166:7033–7041. http://dx.doi.org/10.4049/jimmunol.166.12.7033.

85. Shaw TC, Thomas LH, Friedland JS. 2000. Regulation of IL-10 secre-
tion after phagocytosis of Mycobacterium tuberculosis by human mono-
cytic cells. Cytokine 12:483– 486. http://dx.doi.org/10.1006/cyto.1999
.0586.

86. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M,
Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH.
2004. Human IL-23-producing type 1 macrophages promote but IL-10-
producing type 2 macrophages subvert immunity to (myco)bacteria.
Proc Natl Acad Sci U S A 101:4560 – 4565. http://dx.doi.org/10.1073
/pnas.0400983101.

87. Wu K, Koo J, Jiang X, Chen R, Cohen SN, Nathan C. 2012. Improved
control of tuberculosis and activation of macrophages in mice lacking
protein kinase R. PLoS One 7:e30512. http://dx.doi.org/10.1371/journal
.pone.0030512.

88. Rateitschak K, Karger A, Fitzner B, Lange F, Wolkenhauer O, Jaster R.
2010. Mathematical modelling of interferon-gamma signalling in pan-
creatic stellate cells reflects and predicts the dynamics of STAT1 pathway

Macrophage Polarization in TB Granulomas

January 2015 Volume 83 Number 1 iai.asm.org 337Infection and Immunity

http://dx.doi.org/10.1038/nri2711
http://dx.doi.org/10.1038/nri2711
http://dx.doi.org/10.1146/annurev-immunol-031210-101312
http://dx.doi.org/10.1146/annurev-immunol-031210-101312
http://dx.doi.org/10.1146/annurev-immunol-032712-095939
http://dx.doi.org/10.1146/annurev-immunol-032712-095939
http://dx.doi.org/10.4049/jimmunol.169.11.6343
http://dx.doi.org/10.1016/j.ajpath.2010.12.022
http://dx.doi.org/10.1002/eji.201040433
http://dx.doi.org/10.1016/j.tube.2009.01.001
http://dx.doi.org/10.1016/j.tube.2009.01.001
http://dx.doi.org/10.4049/jimmunol.1201061
http://dx.doi.org/10.4049/jimmunol.181.8.5545
http://dx.doi.org/10.4049/jimmunol.181.8.5545
http://dx.doi.org/10.1046/j.1365-2567.2003.01645.x
http://dx.doi.org/10.1046/j.1365-2249.1998.00636.x
http://dx.doi.org/10.1046/j.1365-3083.2001.00952.x
http://dx.doi.org/10.1046/j.1440-1711.1998.00719.x
http://dx.doi.org/10.1046/j.1440-1711.1998.00719.x
http://dx.doi.org/10.1016/j.jtbi.2010.05.012
http://dx.doi.org/10.1016/j.jtbi.2010.05.012
http://dx.doi.org/10.4049/jimmunol.166.3.1951
http://dx.doi.org/10.4049/jimmunol.166.3.1951
http://dx.doi.org/10.1371/journal.pone.0068680
http://dx.doi.org/10.1371/journal.pone.0068680
http://dx.doi.org/10.1164/rccm.200709-1311PP
http://dx.doi.org/10.1164/rccm.200709-1311PP
http://dx.doi.org/10.1084/jem.20100414
http://dx.doi.org/10.1084/jem.20100414
http://dx.doi.org/10.1111/j.1574-695X.2012.00931.x
http://dx.doi.org/10.1111/j.1574-695X.2012.00931.x
http://dx.doi.org/10.1007/s12026-011-8229-7
http://dx.doi.org/10.1007/s12026-011-8229-7
http://dx.doi.org/10.4049/jimmunol.1003299
http://dx.doi.org/10.4049/jimmunol.1003299
http://dx.doi.org/10.4049/jimmunol.0802297
http://dx.doi.org/10.1016/j.jtbi.2004.06.031
http://dx.doi.org/10.1016/j.jtbi.2004.06.031
http://dx.doi.org/10.1016/j.jtbi.2013.06.016
http://dx.doi.org/10.3389/fphys.2012.00170
http://dx.doi.org/10.1016/j.jtbi.2011.03.022
http://dx.doi.org/10.1016/j.jtbi.2011.03.022
http://dx.doi.org/10.1038/ng.811
http://dx.doi.org/10.1038/nm.3412
http://dx.doi.org/10.1038/nm.3412
http://dx.doi.org/10.4049/jimmunol.166.12.7033
http://dx.doi.org/10.1006/cyto.1999.0586
http://dx.doi.org/10.1006/cyto.1999.0586
http://dx.doi.org/10.1073/pnas.0400983101
http://dx.doi.org/10.1073/pnas.0400983101
http://dx.doi.org/10.1371/journal.pone.0030512
http://dx.doi.org/10.1371/journal.pone.0030512
http://iai.asm.org


activity. Cell Signal 22:97–105. http://dx.doi.org/10.1016/j.cellsig.2009
.09.019.

89. Lange F, Rateitschak K, Fitzner B, Pohland R, Wolkenhauer O, Jaster
R. 2011. Studies on mechanisms of interferon-gamma action in pancre-
atic cancer using a data-driven and model-based approach. Mol Cancer
10:13. http://dx.doi.org/10.1186/1476-4598-10-13.

90. Braun DA, Fribourg M, Sealfon SC. 2013. Cytokine response is deter-
mined by duration of receptor and signal transducers and activators of
transcription 3 (STAT3) activation. J Biol Chem 288:2986 –2993. http:
//dx.doi.org/10.1074/jbc.M112.386573.

91. Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI. 2011. IL-10
directly protects cortical neurons by activating PI-3 kinase and STAT-3
pathways. Brain Res 1373:189 –194. http://dx.doi.org/10.1016/j.brainres
.2010.11.096.

92. Naiyer MM, Saha S, Hemke V, Roy S, Singh S, Musti KV, Saha B.
2013. Identification and characterization of a human IL-10 receptor
antagonist. Hum Immunol 74:28 –31. http://dx.doi.org/10.1016/j
.humimm.2012.09.002.

93. Qualls JE, Neale G, Smith AM, Koo MS, DeFreitas AA, Zhang H,
Kaplan G, Watowich SS, Murray PJ. 2010. Arginine usage in mycobac-
teria-infected macrophages depends on autocrine-paracrine cytokine
signaling. Sci Signal 3:ra62. http://dx.doi.org/10.1126/scisignal.2000955.

94. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay
I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B. 2001. Force
and focal adhesion assembly: a close relationship studied using elastic
micropatterned substrates. Nat Cell Biol 3:466 – 472. http://dx.doi.org
/10.1038/35074532.

95. Bach EA, Aguet M, Schreiber RD. 1997. The IFN gamma receptor: a
paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–
591. http://dx.doi.org/10.1146/annurev.immunol.15.1.563.

96. Napetschnig J, Wu H. 2013. Molecular basis of NF-kappaB signaling.
Annu Rev Biophys 42:443– 468. http://dx.doi.org/10.1146/annurev
-biophys-083012-130338.

97. Schneider WM, Chevillotte MD, Rice CM. 2014. Interferon-stimulated
genes: a complex web of host defenses. Annu Rev Immunol 32:513–545.
http://dx.doi.org/10.1146/annurev-immunol-032713-120231.

98. Hao S, Baltimore D. 2009. The stability of mRNA influences the tem-
poral order of the induction of genes encoding inflammatory molecules.
Nat Immunol 10:281–288. http://dx.doi.org/10.1038/ni.1699.

99. Basak S, Behar M, Hoffmann A. 2012. Lessons from mathematically
modeling the NF-kappaB pathway. Immunol Rev 246:221–238. http:
//dx.doi.org/10.1111/j.1600-065X.2011.01092.x.

100. Sanderson NS, Puntel M, Kroeger KM, Bondale NS, Swerdlow M,
Iranmanesh N, Yagita H, Ibrahim A, Castro MG, Lowenstein PR.
2012. Cytotoxic immunological synapses do not restrict the action of
interferon-gamma to antigenic target cells. Proc Natl Acad Sci U S A
109:7835–7840. http://dx.doi.org/10.1073/pnas.1116058109.

101. Martinez FO, Sica A, Mantovani A, Locati M. 2008. Macrophage
activation and polarization. Front Biosci 13:453– 461. http://dx.doi.org
/10.2741/2692.

102. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. 2004.
The chemokine system in diverse forms of macrophage activation and
polarization. Trends Immunol 25:677– 686. http://dx.doi.org/10.1016/j
.it.2004.09.015.

103. Bratt JM, Zeki AA, Last JA, Kenyon NJ. 2011. Competitive metabolism
of L-arginine: arginase as a therapeutic target in asthma. J Biomed Res
25:299 –308. http://dx.doi.org/10.1016/S1674-8301(11)60041-9.

104. Morris SM, Jr. 2007. Arginine metabolism: boundaries of our knowl-
edge. J Nutr 137(Suppl 2):1602S–1609S.

105. Biswas A, Bhattacharya A, Kar S, Das PK. 2011. Expression of IL-10-
triggered STAT3-dependent IL-4Ralpha is required for induction of ar-
ginase 1 in visceral leishmaniasis. Eur J Immunol 41:992–1003. http://dx
.doi.org/10.1002/eji.201040940.

106. El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-
Tamayo M, Basaraba RJ, Konig T, Schleicher U, Koo MS, Kaplan G,
Fitzgerald KA, Tuomanen EI, Orme IM, Kanneganti TD, Bogdan C,
Wynn TA, Murray PJ. 2008. Toll-like receptor-induced arginase 1 in
macrophages thwarts effective immunity against intracellular pathogens.
Nat Immunol 9:1399 –1406. http://dx.doi.org/10.1038/ni.1671.

107. Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW. 2010.
Single-cell NF-kappaB dynamics reveal digital activation and analogue
information processing. Nature 466:267–271. http://dx.doi.org/10.1038
/nature09145.

108. Marino S, Hogue IB, Ray CJ, Kirschner DE. 2008. A methodology for
performing global uncertainty and sensitivity analysis in systems biology.
J Theor Biol 254:178 –196. http://dx.doi.org/10.1016/j.jtbi.2008.04.011.

109. Lin PL, Coleman T, Carney JP, Lopresti BJ, Tomko J, Fillmore D,
Dartois V, Scanga C, Frye LJ, Janssen C, Klein E, Barry CE, III, Flynn
JL. 24 June 2013. Radiologic responses in cynomolgous macaques for
assessing tuberculosis chemotherapy regimens. Antimicrob Agents Che-
mother http://dx.doi.org/10.1128/AAC.00277-13.

110. Behar M, Barken D, Werner SL, Hoffmann A. 2013. The dynamics of
signaling as a pharmacological target. Cell 155:448 – 461. http://dx.doi
.org/10.1016/j.cell.2013.09.018.

111. Day J, Friedman A, Schlesinger LS. 2009. Modeling the immune
rheostat of macrophages in the lung in response to infection. Proc
Natl Acad Sci U S A 106:11246 –11251. http://dx.doi.org/10.1073
/pnas.0904846106.

112. Bai X, Feldman NE, Chmura K, Ovrutsky AR, Su WL, Griffin L, Pyeon
D, McGibney MT, Strand MJ, Numata M, Murakami S, Gaido L, Honda
JR, Kinney WH, Oberley-Deegan RE, Voelker DR, Ordway DJ, Chan ED.
2013. Inhibition of nuclear factor-kappa B activation decreases survival of
Mycobacterium tuberculosis in human macrophages. PLoS One 8:e61925.
http://dx.doi.org/10.1371/journal.pone.0061925PONE-D-12-30305.

113. Barry CE, III, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J,
Schnappinger D, Wilkinson RJ, Young D. 2009. The spectrum of latent
tuberculosis: rethinking the biology and intervention strategies. Nat Rev
Microbiol 7:845– 855. http://dx.doi.org/10.1038/nrmicro2236.

114. Choi H, Lee M, Chen RY, Kim Y, Yoon S, Joh JS, Park SK, Dodd LE,
Lee J, Song T, Cai Y, Goldfeder LC, Via LE, Carroll MW, Barry CE, III,
Cho SN. 2014. Predictors of pulmonary tuberculosis treatment out-
comes in South Korea: a prospective cohort study, 2005–2012. BMC
Infect Dis 14:360. http://dx.doi.org/10.1186/1471-2334-14-360.

115. Francis K, Palsson BO. 1997. Effective intercellular communication
distances are determined by the relative time constants for cyto/
chemokine secretion and diffusion. Proc Natl Acad Sci U S A 94:12258 –
12262. http://dx.doi.org/10.1073/pnas.94.23.12258.

Marino et al.

338 iai.asm.org January 2015 Volume 83 Number 1Infection and Immunity

http://dx.doi.org/10.1016/j.cellsig.2009.09.019
http://dx.doi.org/10.1016/j.cellsig.2009.09.019
http://dx.doi.org/10.1186/1476-4598-10-13
http://dx.doi.org/10.1074/jbc.M112.386573
http://dx.doi.org/10.1074/jbc.M112.386573
http://dx.doi.org/10.1016/j.brainres.2010.11.096
http://dx.doi.org/10.1016/j.brainres.2010.11.096
http://dx.doi.org/10.1016/j.humimm.2012.09.002
http://dx.doi.org/10.1016/j.humimm.2012.09.002
http://dx.doi.org/10.1126/scisignal.2000955
http://dx.doi.org/10.1038/35074532
http://dx.doi.org/10.1038/35074532
http://dx.doi.org/10.1146/annurev.immunol.15.1.563
http://dx.doi.org/10.1146/annurev-biophys-083012-130338
http://dx.doi.org/10.1146/annurev-biophys-083012-130338
http://dx.doi.org/10.1146/annurev-immunol-032713-120231
http://dx.doi.org/10.1038/ni.1699
http://dx.doi.org/10.1111/j.1600-065X.2011.01092.x
http://dx.doi.org/10.1111/j.1600-065X.2011.01092.x
http://dx.doi.org/10.1073/pnas.1116058109
http://dx.doi.org/10.2741/2692
http://dx.doi.org/10.2741/2692
http://dx.doi.org/10.1016/j.it.2004.09.015
http://dx.doi.org/10.1016/j.it.2004.09.015
http://dx.doi.org/10.1016/S1674-8301(11)60041-9
http://dx.doi.org/10.1002/eji.201040940
http://dx.doi.org/10.1002/eji.201040940
http://dx.doi.org/10.1038/ni.1671
http://dx.doi.org/10.1038/nature09145
http://dx.doi.org/10.1038/nature09145
http://dx.doi.org/10.1016/j.jtbi.2008.04.011
http://dx.doi.org/10.1128/AAC.00277-13
http://dx.doi.org/10.1016/j.cell.2013.09.018
http://dx.doi.org/10.1016/j.cell.2013.09.018
http://dx.doi.org/10.1073/pnas.0904846106
http://dx.doi.org/10.1073/pnas.0904846106
http://dx.doi.org/10.1371/journal.pone.0061925PONE-D-12-30305
http://dx.doi.org/10.1038/nrmicro2236
http://dx.doi.org/10.1186/1471-2334-14-360
http://dx.doi.org/10.1073/pnas.94.23.12258
http://iai.asm.org

	Macrophage Polarization Drives Granuloma Outcome during Mycobacterium tuberculosis Infection
	MATERIALS AND METHODS
	Multiscale agent-based model.
	Models of STAT1, STAT3, and NF-B dynamics.
	Macrophage polarization states.
	Macrophage (RMP) and granuloma (RGP) polarization ratios.
	Linking immune function with macrophage polarization using RMP.
	Granuloma imaging.
	Model validation, UA, and SA.
	Simulated granuloma classification.

	RESULTS
	Characteristic spatial distribution of polarized macrophages in TB granulomas.
	Granuloma polarization ratio dynamics are predictive of granuloma outcome.
	Larger populations of polarized macrophages emerge in the dissemination scenario.
	NF-B signal activation dynamics characterize granuloma outcome.
	Spatial organization of polarized macrophages does not impact granuloma outcome.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


