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Abstract
Fire seasonality, an important characteristic of fire regimes, commonly is delineated using

seasons based on single weather variables (rainfall or temperature). We used nonparamet-

ric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence

likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind

speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at

the Avon Park Air Force Range in southern Florida. A four-variable, three-season model ex-

plained more variation within fire weather variables than models with more seasons. The

three-season model also delineated intra-annual timing of fire more accurately than a con-

ventional rainfall-based two-season model. Two seasons coincided roughly with dry and

wet seasons based on rainfall. The third season, which we labeled the fire season, occurred

between dry and wet seasons and was characterized by fire-promoting conditions present

annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine

fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses,

and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire

season facilitate natural landscape-scale wildfires that burn uplands and across wetlands.

We related our three season model to fires with different ignition sources (lightning, military

missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest

wildfires originate from lightning and military ignitions that occur within the early fire season

substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in

contrast, largely occur outside the fire season. Our delineation of a pronounced fire season

provides insight into the extent to which different human-derived fire regimes mimic lightning

fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions

should be useful as a basis for ecological fire management of humid savanna-grassland

landscapes worldwide.
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Introduction
Fire is prominent in terrestrial ecosystems, particularly savanna and grassland biomes. Studies
of changing climates and vegetation indicate global ascendancy of such fire-dominated ecosys-
tems during the latter part of the Cenozoic [1]. Seasonal climates with pronounced wet/dry sea-
sons and associated thunderstorms that produce lightning provide predictable ignitions of
wildfires that can spread across landscapes in flammable vegetation [2–5]. Evolutionarily-
derived fire-vegetation feedbacks [6, 7] in a climatic context result in pyrogenic ecosystems, es-
pecially savannas and grasslands that are dominated by flammable C4 grasses and contain
trees and other ground layer plants that produce pyrogenic fuels [8]. Evolutionary relationships
involving vegetation-fire feedbacks in these fire-frequented landscapes [9–12] may reduce in-
herent variation in fire regimes that otherwise would be exogenously controlled.

Humans now exert control over fire regimes worldwide. Such control typically involves
changes, intentionally or unintentionally, in characteristics of fire regimes [5, 13–16]. Adapta-
tion for aspects of historical fire regimes often is greatly reduced in importance in human-
engineered fire regimes, changing ecological relationships among plant species and resulting in
threats to species and even entire ecosystems adapted for historical rather than current fire re-
gimes. In addition, the scientific focus on fire as a disturbance interrupting ongoing changes in
vegetation composition rather than an environmental selection pressure has resulted in evolu-
tionary fire-vegetation relationships being underappreciated [9, 17, 18]. Only recently has the
idea emerged that conservation of entire fire-adapted floras and ecosystems depends on under-
standing historical fire regimes and on managing human fire regimes so that they mimic his-
torical fire regimes [19, 20]. Such a shift in concepts related to fire has resulted in a need to
study components of fire regimes worldwide [21].

Seasonality is a key component of fire regimes crucial to understanding ecological and evo-
lutionary roles of vegetation-fire relationships. Natural fire regimes are inherently messy in na-
ture; variation occurs in climatic conditions involved in ignition and spread of fires in
landscapes that are themselves variable. In addition, patterns of natural fire seasonality now are
blurred by anthropogenic ignitions [5]. Burning by humans outside the period of natural light-
ning ignitions has altered fire seasons [9], often by preempting or replacing lightning ignitions
in fire-prone ecosystems [16, 22, 23]. As a result, the concept of fire seasonality often has
been expanded to include all times when conditions are favorable for fires (both natural and
anthropogenic ignitions) or all times when fires are ignited, regardless of source, within the
year [24–26]. The consequence is that seasonality remains undervalued as a primary aspect of
natural fire regimes [27, 28], despite its ecological and evolutionary significance, especially in
frequently burned savannas and grasslands [9, 29, 30].

Concepts of natural fire seasonality emerge from empirical field studies of fire regimes. Fire
seasons are most often delineated as a period of time that fires typically occur or that they are
likely to be of high intensity or burn large areas of land. Characterizations tend to be ad hoc in
nature, only loosely related to climatic conditions at the times of ignition and fire spread [27].
For example, in subtropical Florida a wildfire season occurs during what is often called the
“transition” between the dry and wet seasons, when fine fuels are dry at the advent of convec-
tive sea-breeze storms that produce lightning strikes that ignite those fuels [31–33]. A similar
process in northern Australia is termed the “build-up” [4, 34]. In the southwestern United
States, an arid “foresummer” intervenes between a cool wet season (winter/spring) and sum-
mer monsoonal rains [35, 36]. In regions with a Mediterranean climate, warm months with
strong winds (e.g., Santa Ana winds in California or foehn winds in Europe) are considered a
fire season [37, 38]. The underlying basis of what appear to be fire seasons has not been
explored.
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Climate-fire related indices have attempted to describe fire seasonality. One approach has
used remotely sensed data to indicate fire frequency or area burned. Global maps of fires over
time [39] have been used to examine intra-annual variation in fires [24, 27, 40]. Using such re-
motely sensed proxies to predict seasonality of fire may underestimate peak fire months,
lengthen the fire season, and emphasize human-caused temporal shifts in the timing of the fire
season [41]. In the southeastern United States one study using satellite-based measurements of
area burned targeted February as the peak fire month within a fire season spanning January to
March [42], but a similar study identified a 10 month fire season [43]. A second approach has
been to use single variables known to influence fire. For example, temporal occurrences of
lightning have been used [44–46], which can lead to erroneous assumptions about timing of ac-
tual lightning ignitions and area burned. A third approach has been to use a fire weather (or
danger) index to determine the likelihood of wildfires. In Florida fire season severity indices
[47] showed that 65% of area burned was from January to June. Such indices have attempted to
represent much of the complexity of fires by combining estimates of fuel availability (dryness)
with weather variables known to influence fire (generally wind speed, relative humidity, and
temperature) [21]. A fourth approach has integrated remotely sensed fire spatial data, fire-
vegetation models (Dynamic Global Vegetation Model), and fire metrics (fuels, productivity,
seasonal rainfall, area burned, etc.) into a meta-analysis to describe fire seasonality [27, 48, 49].

Climate indices have advanced our understanding of fire seasonality, but they also tend to
be removed from direct causal relationships. In addition, relying on single metrics to delimit
fire seasons discounts much of the underlying complexity governing fire behavior. For exam-
ple, models that relate precipitation to area burned might predict increases in area burned with
increases in precipitation because production of fine fuels is enhanced, but predictions also
might indicate reductions in area burned because the dry season is reduced and so fine fuels
are less dry at the times of fires [3, 50]. More direct approaches are needed to investigate rela-
tionships between climatic conditions (i.e., weather variables) and fires ignited naturally by
lightning and accidentally/purposefully by humans. Thus, ecological effects of different igni-
tion sources that change fire seasonality could be investigated and used to evaluate the extent
to which humans are modifying fire regimes in ways that threaten natural ecosystems. Such ap-
proaches should provide more effective direction for restoration and management of fire re-
gimes that incorporate important evolutionary components, especially in those regions with a
long history of fire.

We addressed fire seasonality in one region of the North American Coastal Plain dominated
by subtropical, seasonal savannas and grasslands. We quantitatively characterized intra-annual
variation in a suite of weather variables known to affect fire spread at the Avon Park Air Force
Range in south-central Florida. We used cluster analysis of weather variables known to influ-
ence fire behavior in southern Florida to develop models that grouped days into seasons. We
reasoned that our approach should reveal conventional wet and dry seasons. Because our anal-
ysis focused specifically on variables known to influence fire spread [51], we hypothesized that
it also should reveal clusters representing fire seasons. Our analyses suggested a three-season
model with an annual fire season that was highly associated with local weather conditions that
facilitate fires and that occurred annually between the dry and subsequent wet season. Our
three-season model provided a better fit than the conventional rainfall model with dry and wet
seasons [2].

We used our three-season fire weather model to analyze fire data at the Avon Park Air
Force Range. We analyzed seasonal timing and area burned during a 13-year period based on
ignition source: lightning, military missions, and prescribed fires. We specifically asked: (1)
Does defining fire seasons using fire weather variables result in different seasonal patterns for
fires with different ignition sources? (2) Do peak fire modes at specific times of the year that
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emerge from analyses of fire weather variables correspond to peak timing and largest area
burned in lightning or human ignitions? (3) To what extent does fire resulting from human ig-
nitions mimic or deviate from fires ignited by lightning? Our study provides insight into the
ecological and evolutionary implications of fire seasonality in a region recognized as a biodiver-
sity hotspot and in which the endemism is highly associated with pyrogenic savannas and
grasslands. It further provides a scientific basis for constructing and adjusting fire regimes pro-
duced by management programs based on the similarities to natural fire regimes.

Methods

Study site
Our study focused on the Avon Park Air Force Range (hereafter, APAFR) in Polk and High-
lands counties in south-central Florida (27°35’ N, 81°16’W). The 42,430 ha military installa-
tion, located in the interior of the Florida peninsula, north of Lake Okeechobee and within the
Everglades headwater region, was established during World War II for practicing air-to-
ground missions. APAFR contains 38,000 ha of natural vegetation that is subject to recurrent
fire. Of this acreage, 23,000 ha comprise diverse fire-maintained savanna-grassland landscapes
[52]. These pine savannas and grasslands are centered within what historically encompassed
over 643,600 ha of savanna-grasslands in central peninsular Florida [53, 54], and the more
than 116,510 ha of grasslands in the southern peninsula comprise the largest subtropical grass-
lands in the United States. Currently, the fire regime is governed by a complex set of variables,
including a seasonal climate, three ignition sources (lightning, military, and prescription), a
fire-filtered flora, and plant communities that vary in hydroperiod, flammability, and fire
history.

The seasonal humid subtropical climate of southern Florida has been characterized as hav-
ing annual dry and wet seasons [55]. We previously defined these two seasons [2] for the region
using cumulative rainfall anomalies [56]. Our analyses, based on data over a 58 year period
(1950–2007), revealed that the wet season lasts on average 134 days (May 21 to October 1), and
generates 89 ± 27 cm yr-1 (mean ± 1 SD) rainfall. In contrast, the much longer dry season lasts
on average 231 days (October 2 to May 20), but generates about half the rainfall (42 ± 15; mean
± 1 SD cm yr-1). In addition, onset dates and durations of the wet and dry seasons are variable,
with standard deviations of about one month for onset dates and greater than a month for du-
rations [2]. Some of this variation is associated with ENSO oscillations [3].

Peninsular Florida is a global hotspot for lightning. Strike densities on the order of 10–15
cloud-ground strikes per square kilometer annually [57] historically resulted in fire return in-
tervals that averaged around two years in the region prior to twentieth century alterations of
the landscapes by humans (J.M. Huffman, W.J. Platt, and S.L. Orzell, unpublished data). Cur-
rently, anthropogenic fires are now the most common ignition source at the APAFR and else-
where in the region [58, 59], and are often set earlier in the year, thereby decreasing the
frequency and size of lightning fires. For example, according to the APAFR’s fire records
(1997–2009), lightning fires accounted for (4%) total area burned, while military ignitions
(caused by bombs, flares, rockets, and some ordnance) accounted for three times as much, with
the remainder resulting from prescribed fires with human ignitions. From the early 1940s
through the 1980s, during widespread fire suppression in central Florida [60–62], APAFR ex-
perienced an uninterrupted history of burning from lightning and military ignitions. Although
wildfires have been influenced by landscape fragmentation (disked firebreaks, roads, etc.) and
suppression efforts, these often have not been sufficient to control wildfires during extreme
weather conditions. Prescribed fires at APAFR have been ignited by fire management
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personnel since the 1970s on a three-year burn rotation, a standard practice throughout much
of the southeastern United States for managing pinelands and reducing fire danger [45, 63, 64].

Natural fires are not random. Studies in the region [44, 65] and elsewhere [66–68] show
that lightning fires burn the largest areas within a narrow window prior to the mid wet season
peak of lightning strikes during the convectively active warm, wet season (May thru Septem-
ber) in southern Florida [44]. For example, at the APAFR 74% of the recorded area burned by
lightning fires occurred from 21 days before onset of the wet season to 7 days afterwards
(APAFR fire records, 1997–2009). Similar trends have been noted in Everglades National
Park (~200 km south of the APAFR) [44] and the complex of federally owned lands at Cape
Canaveral, 125 km to the northeast [65]. Dendrochronological work in Florida, including
APAFR, suggests similar seasonal timing of lightning fires back at least to the 16th–17th centu-
ries ([69, 70], J.M. Huffman, W.J. Platt, and S.L. Orzell, unpublished data).

Natural fires result from three synergistic conditions: fuel growth, availability and ignition
timing [44, 65, 67]. Fuels accrue during the wet season, when plentiful rainfall and warm tem-
peratures allow rapid growth of graminoids [71–73]. Fuels gradually become desiccated and
cured during the subsequent dry season, allowing for fuel connectivity across the landscape in
the late dry season. This is pronounced during La Niña-induced droughts [2, 3, 33], which des-
iccate even the lowest elevation wetlands. Lightning then ignites well-connected biomass fuels
during dry conditions prior to the onset of the wet season, allowing for landscape-level wild-
fires [2, 34, 51]. Large lightning wildfires thus occur earlier than the mid-wet season peak of
lightning strikes in Florida, when there is decreased likelihood of fire spread resulting from in-
creased fuel moisture, precipitation, and inundation of wetlands.

Data analysis
In this study, we used five weather variables (relative humidity, solar radiation, air temperature,
wind speed, and soil moisture) that influence wildfire size at APAFR. We thus augmented ex-
isting data from our prior work [51] and added new components to conduct our study. No
other area within the region has the level of data on weather that permit the analyses we con-
ducted. Mean daily values for the first four variables were obtained from a climate station
(S65CW) located 20 km southeast of the installation (data obtained using the DBHYDRO
browser of the South Florida Water Management District; http://www.sfwmd.gov/dbhydro).
For soil moisture, values at 30–60 cm soil depth (measured in mm) were obtained from the Ex-
perimental Surface Water Monitor (ESWM), a daily analysis of hydrologic conditions through-
out the continental United States (www.hydro.washington.edu/forecast/monitor; [74]. This
project has a 0.5° resolution; we used soil moisture data from a grid point (27.75° N, 81.25° W)
located 10 km north of the APAFR. We used data collected over a 17-year period, 1993–2009
(6,205 days). We refer to these variables as “fire-weather variables.” Although soil moisture is
not technically weather, it is a primary determinant of moisture and humidity at ground level.
It thus influences moisture content of fine fuels and litter at the ground surface, and hence like-
lihoods of fire spread. As such, we consider it an important fire-weather variable.

The data set potentially contains many associations among the weather variables. Some are
seasonally constrained, while others span seasons (e.g., storm fronts) or occur only during par-
ticular years (e.g., phases of the El Niño-Southern Oscillation). Any approach to identify fire
seasons logically might first attempt to detect these associations and determine which appear
the most interesting or useful. Caution is needed, however, to avoid over-fit patterns generated
by random error. Based on these concerns, we went through a three-step approach to: (1) gen-
erate models containing potential associations, (2) sort through the models to find those that
appeared the most useful and generated patterns attributable to seasons, and (3) ensure that

Fire Weather Seasonality Influences Savanna-Grassland Fire Regimes

PLOS ONE | DOI:10.1371/journal.pone.0116952 January 9, 2015 5 / 28

http://www.sfwmd.gov/dbhydro
http://www.hydro.washington.edu/forecast/monitor


candidate models were not over fit. The engine of our approach was cluster analysis, and our
stepwise procedure mirrors those used in similar studies [75]. We then compared the models
that were selected using the above three-step criterion. We selected what we called our “most-
representative”model and conducted two additional steps to examine how effectively that
model characterized fire weather and seasonal patterns of fires with different ignition sources.
Lastly, we validated our selected models, including the “most-representative”model.

Step 1. Produce candidate models
We used nonparametric cluster analysis to generate “candidate models” containing potential
weather associations. Nonparametric cluster analysis can detect clusters of different shapes,
sizes and dispersion, and thus provides more power for capturing potentially interesting pat-
terns than more commonly used hierarchal techniques [76]. Analyses were conducted with the
MODECLUS procedure of SAS 9.3 (SAS Institute Inc., Gary, NC), using method = 1 and a
minimum cluster size of 50 (CK = 50). In the procedure, we altered the radius parameter (R) to
produce analyses that varied in the kinds and numbers of clusters produced. About 200 candi-
date models were produced, each having between 2 to 8 clusters (we reasoned that models with
more than 8 potential seasons were unlikely to be useful). Each “cluster number” was repre-
sented by at least 10 analyses. Weather variables were standardized before being entered into
the analyses so that each had equal weight in influencing the results. Because nonparametric
cluster analyses are sensitive to the influence of outliers, we examined normality of the frequen-
cy distribution of each variable using box-whisker plots. We found that the distribution of soil
moisture was strongly positively skewed, so we normalized it using a natural log transforma-
tion. Similar approaches using cluster analyses have been employed to search for various asso-
ciations among weather variables (e.g., synoptic types, weather regimes, or sub-seasons) [27,
77–80].

Step 2. First culling of candidate models
We did not assume that all of the fire-weather variables would associate with each other in
ways that allowed candidate models to be determined. It was possible that one or more of the
variables would act as a “wrench in the works” and not allow useful models to be discovered
[76]. We attempted to identify such variables and eliminate them from further consideration.
We did this by testing data sets that contained different combinations of the fire-weather vari-
ables. See the Results and S1 Appendix (Section S1–1) for more details.

Our procedure generated hundreds of possible models. We did an initial culling based on
the fit of models to fire-weather variables. We generated R2 scores for each fire-weather vari-
able of each model using an ANOVA (i.e., with cluster as the independent variable and the
fire-weather variable as the independent variable). We then averaged the R2 scores across the
fire-weather variables within each model. The models were then plotted against each other in a
scatter plot of mean R2 score versus R, the cluster radius. This examination produced patterns
that allowed models to be compared and evaluated. In addition to mean R2 scores, we also test-
ed other measures of model fit (AIC and Pillai’s trace). These other measures provided results
almost identical to that provided by mean R2 scores; we report mean R2 scores here because
they also provided intuitive information about models. Results for the other methods are de-
tailed in S1 Appendix (Section S1–2). S1 Appendix (Section S1–3) contains an alternate meth-
od for culling models based on the number of days per year that were grouped into seasons.
This method, especially combined with fit statistics, generated the same pattern for culling of
candidate models.
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Step 3. Seasonality
Once a set of models was selected in Step 2, we then examined them to see if they contained
seasonal patterns. For a given candidate model, clusters should contain both a reasonable num-
ber of days per year and unique seasonal timing to be considered as a season. Therefore, for
each cluster, we examined its average number of days per year and how its days were distribut-
ed across the year. Models with one or more clusters that did not meet these criteria were elimi-
nated from further consideration as potential fire-weather seasons. In this way, we eliminated
short-term weather changes not consistent across years.

Once we had selected models with consistent seasons of at least 10 days across all years of
the study, we ranked the models based on fit statistics. S1 Appendix (Section S1–4) contains
the rankings of the fit statistics of these models. We used the mean of the rankings to select
what we termed the most “representative model” for use in further analysis.

Step 4. Examine fire-weather
We determined how effectively the “most-representative”model described fire-weather. We
used discriminant analysis, a technique often used in SAS in conjunction with cluster analysis
[27], (SAS Institute Inc., Gary, NC). Discriminant analysis decomposes multivariate data into
composite variables (discriminant functions) that can predict which class a given observation
belongs [81]. Thus, if a cluster analysis is successful, a discriminant analysis of the input vari-
ables of that cluster analysis should be able to predict the clusters to which the observations be-
long (i.e., with low percentages of miss-classified observations). Moreover, because each
observation is given a score on each of the discriminant functions, discriminant plane graphs
can be created that describe how clusters differ on the functions. We found that such visualiza-
tions effectively described relationships between fire weather and clusters of given candidate
models and especially for the “most-representative”model. Discriminant analysis was per-
formed using the DISCRIM procedure of SAS version 9.3. We specified the CANONICAL op-
tion (so that output included discriminant functions) as well as the POOL = NO option (to
perform quadratic discriminant analysis).

Step 5. Examination of fires in relation to fire-weather models
We also examined how well the “most-representative”model described fire regimes at the
APAFR. Data on ignition dates, areas of fires, and source of ignition (lightning, military and
prescribed) were obtained from a 13-year fire record (1997 to 2009). We mapped each fire re-
corded at the APAFR on the graphs produced by discriminant analysis. The size of these fires
was detailed using bubble plots in which size of the bubble reflected area burned. Different
plots were produced for the three ignition sources. We then examined how sizes and seasonal
patterns resulting from fires with different ignition methods differed in their relationships to
fire-weather and seasonal climate. We also described fire-weather conditions under which fires
burned. This was done separately for fires stemming from the three ignitions sources and with-
in different clusters of selected models. Average conditions were calculated for each fire type
and cluster.

Step 6. Validation of selected models
In addition to these five steps, we addressed the validity of selected models. First, we recognized
that because our analyses attempt to reveal seasons (most importantly, whether there was a fire
season), it was important to compare these analyses to a conventional description of seasonali-
ty at the site. Therefore, we compared our results to the prior description of seasonality based
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on rainfall [2], which used cumulative rainfall anomalies to define wet and dry seasons in the
region. Second, we tested our key analyses to estimate how well they would perform if provided
new data. For cluster analysis, we validated each selected model by randomly partitioning its
data set into smaller data sets, and then repeating our analyses (Step 1 through 4 above) on
each partition. Models were considered validated if they produced similar patterns and inter-
pretations as the analysis of the full data set. Secondly, we examined the validity of discriminant
analyses by examining their misclassification rate. We also performed a ‘leave-one-out’ cross-
validation of these analyses. In the Results we discuss which specific models we ended up vali-
dating, and the outcomes of these procedures. Additional details on these analyses are provided
in S1 Appendix (Section S1–5) and S1 Appendix (Section S1–6).

Results

Steps 1 and 2. Production of candidate models and initial culling
In our initial exploration, we performed cluster analyses on a data set that included all five fire-
weather variables (relative humidity, solar radiation, soil moisture, air temperature, and wind
speed). We found that, as expected, the overall fit of the models increased as more clusters
were added (S1 Appendix, Section S1–1). However, none of the models stood out as being sub-
stantially more fit than the others, and thus we considered none of them as being “better” or
potentially useful. We therefore proceeded to produce candidate models using data sets that in-
cluded the possible combinations of four fire-weather variables. Examination of the fit of these
models led us to conclude that none of the models that included wind speed stood out as hav-
ing particularly good model fit (S1 Appendix, Section S1–1). Wind speed therefore appeared to
associate with the other variables in such a way that prevented interesting candidate models
from being produced, and so it was designated as a “wrench in the works” and eliminated from
further consideration.

The four variable data set containing relative humidity, solar radiation, soil moisture, and
air temperature did produce viable models. We graphed mean R2 scores against R, the cluster
radius (Fig. 1). A set of 20 models with three clusters had mean R2 scores ranging from 0.33 to
0.39. These scores were far higher than those of all of the models with 2 clusters, and were also
substantially higher than other models with 3 clusters as well as all of the 4- to 5-cluster models.
Moreover, these scores were comparable to those of the 6- and 7-cluster models, and were only
surpassed by scores of some of the 8-cluster models. Considering that models with 6 or more
clusters should be much more complex than models with 3 clusters, we considered them to
lack parsimony and thus not to be as useful as 3 cluster models. Similar results were found for
the “non-wind” data set when we examined other measures of model fit (Pillai’s trace, mean
AIC scores) (S1 Appendix, Section S1–2).

In these comparisons among the candidate models, we also determined the mean R2 score
for our reference seasonal model (i.e., our model of wet and dry seasons derived using cumula-
tive rainfall anomalies, CRAs). This model had a mean R2 score of 0.134, which was lower than
the R2 scores of all models produced by cluster analysis of the four weather variables.

Steps 3 and 4. Seasonality and fire-weather of the selected models
We considered the set of 3-cluster models with R2 scores from 0.33 to 0.39 in the next phase of
analysis. In Steps 3 and 4 we characterized the seasonality of the 20 selected models, as well as
how effectively they described fire weather. Not only did all of the 20 models have clusters that
appeared to represent a season, the picture they described of seasonality was similar. This result
is not unexpected given the similarity of their R values (roughly 0.6–0.7; Fig. 1). We detail these
cluster analyses in S1 Appendix (Section S1–4). Here, we present results from a representative
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model that appeared to be the “best” in terms of several model-fit criteria (see S1 Appendix,
Section S1–4 for details). Although this representative model is useful, we want to emphasize
that the most important finding here is that our analysis reveals a region in the “hyperspace” of
four predictor variables where 3-cluster models successfully defined a third season.

The seasonal profile of this representative model is shown in Fig. 2. Cluster #1 was the pre-
dominant cluster for 137 days per year (days 156 to 323), approximately June to mid-
November (Fig. 2A). This cluster loosely corresponded to the wet season, with similar days
(133) and timing to the conventional model of seasonality based on rainfall (Fig. 2B). Cluster
#2 was the predominant cluster from mid-October (day of year 295) to early April (day of year
99), also 137 days per year (Fig. 2A). This cluster loosely corresponded to the dry season in the
conventional model based on rainfall (Fig. 2B). Cluster #3 was the predominant season from
early April to late June (days of year 98 to 173), 91 days per year (Fig. 2A). The seasonal timing
was coincident with the latter part of the dry season and the initial part of the wet season by the
rainfall model (compare Fig. 2A and B). In addition, there was a “tail” of days that extended
into the middle of the wet season defined using either model.

Discriminant analysis of the representative model showed that these three seasons had clear
differences in fire weather. The analysis produced two discriminant functions, with the first ex-
plaining 64% of the variation and the second 36% (Table 1). These functions were both highly
statistically significant (F values> 1000, P values< 0.0001). The first function described a
trend of increasing solar radiation and temperature, while the second described a trend of

Figure 1. Model fit (meanR2 scores) of candidate models developed to represent fire-weather seasons.Candidate models were generated by varying
a parameter describing the radius used in the algorithm of the nonparametric cluster analyses. Models shown here were developed using four daily fire-
weather variables (not wind speed) over 13 years (1997–2009).

doi:10.1371/journal.pone.0116952.g001
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increasing soil moisture and relative humidity, as well as a moderate decreasing trend in solar
radiation (Table 1).

We used a discriminant plane that we termed a “fire-weather plane” to explore relationships
between fire weather and the days assigned to different clusters. We plotted the days assigned
to the different clusters (seasons) in two dimensions (Fig. 3A). On this plane, Cluster #1 (the
wet season) was located in the upper region of the plane, a placement that corresponded with

Figure 2. Seasonal timing of candidate models representing seasons.Models were developed using cluster analyses of four daily fire-weather variables
over 13 years (1997–2009). Panels include (A) results of the selected model with 3 clusters (the “representative model”), and (B) results based on dry and
wet seasons defined by the CRA reference model. For each panel histograms for different colors are coded as follows: black = histogram of cluster appearing
to represent the wet season, blue = cluster appearing to represent the dry season, and red = cluster appearing to represent the peak fire season. Histograms
use 15 day bins. Numbers detail average number of days per year found for each cluster.

doi:10.1371/journal.pone.0116952.g002
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its high soil moisture and relative humidity (Table 2). Soil moistures typically were low early in
the wet season, but increased and often resulted in flooded conditions late in the wet season
(82); these patterns of change resulted in much higher variation among wet season soil mois-
tures than the other seasons, in which soil moisture tended to be much lower and more uniform
(Table 2). In addition, more of the days also had warm air temperatures and high relative hu-
midity (Table 2), resulting in most days being located in the upper right hand region of the fire-
weather plane. Cluster # 2 (the dry season) was placed in the mid- and lower left region of the
plane. Lower air temperatures and solar radiation, coupled with lower soil moisture and relative
humidity, resulted in most days in the dry season being in the lower left region of the fire plane
(Table 2). During the dry season, soil moistures declined rapidly from higher values at the end
of the wet season to low values during the middle and end of the dry season. Cluster #3 was
placed in the lower right hand region. Warmer air temperatures than the dry season and more
intense solar radiation resulted frommore clear days than in either the wet or dry season. These
patterns were coupled with lower soil moisture and relative humidity than in either the wet or
dry season and resulted in a distinctive cluster (Table 2). Because these conditions were favor-
able for fire spread, we labeled this third cluster the fire season. The two conventional seasons
had less favorable conditions for fire spread, so the fire season was distinct as a separate season.

We gained further insight into the fire-weather at the APAFR by using the fire-weather
plane of the representative model to examine some of the other models. We started with the
CRA model (Fig. 3B) and the 2-cluster model with the highest mean R2 score (Fig. 3C). When
compared to the representative 3-season model, the CRA model split the days assigned to the
fire season between the dry and wet seasons (compare Fig. 3B to 3A). In contrast, the “best”
2-cluster model assigned most of the days of the fire season in the representative 3-season
model to the wet season (compare Fig. 3A and C). These results demonstrate the low explana-
tory power of 2-season models, as many days with unique fire weather characteristics are
forced to belong to one of two clusters.

Models with more than three clusters tended to subdivide that region of the fire weather
plane that contained the fire season in the 3-season model. For example, the 8-cluster model
(Fig. 3D) produced four clusters within the cluster that defined the fire season, carved off
that part of the dry season with intermediate values for function 1 and low values for function
2, and also separated one cluster within the wet season (compare Fig. 3A and D). This model
also assigned part of the fire season to the wet season. Overall, results suggested that the fire sea-
son—especially that portion of the transition season with low values of function 2 (i.e., low rela-
tive humidity and soil moisture)—had more variable fire weather than the other seasonal
modes.

Table 1. Results of discriminant analysis showing the relationships between two discriminant functions and four variables describing fire
weather conditions over 13 years (1997–2009) at the Avon Park Air Force Range, south-central Florida (USA).

Discriminant function Fire-weather variables Structural correlations Variation explained (%)

I Soil moisture 0.29 64%

Relative humidity -0.20

Solar radiation 0.87

Air temperature 0.94

II Soil moisture 0.96 36%

Relative humidity 0.98

Solar radiation -0.49

Air temperature 0.34

doi:10.1371/journal.pone.0116952.t001
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Figure 3. The “fire-weather plane” describing 13 years of fire weather. The plane is defined by the two discriminant functions described in Table 1.
Panels include: (A) the seasons of the representative model (wet season, gray dots; dry season, blue dots; fire season, red dots). (B) The wet and dry
seasons of the CRAmodel. (C) The wet and dry season of the “best”model with 2 clusters. (D) The “best”model with 8 clusters (clusters 3–8 are colored
differently than the seasons found in the other panels).

doi:10.1371/journal.pone.0116952.g003
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Step 5. Examination of fires
We examined relationships between characteristics of fires at APAFR with different sources of
ignition (lightning, military, prescribed) and the three seasons of the representative model.
Numbers of fires and area burned differed among the three ignition sources (Table 3). Most
lightning-ignited fires occurred during the fire season (73%), with smaller proportions

Table 2. Descriptions of fire-weather conditions as delimited by the representative 3-season model.

Season Wet Dry Fire

Air temperature (°C) 24.9 ± 2.4 18.1 ± 4.1 24.2 ± 3.7

Relative humidity (%) 83 ± 5 78 ± 8 72 ± 6

Solar radiation (mW m-2) 0.19 ± 0.05 0.15 ± 0.05 0.28 ± 0.03

Soil moisture @ 30–60 cm depth (mm) 50.0 ± 34.2 21.5 ± 16.3 19.2 ± 11.5

Seasonal timing (day of year) 225 ± 71 (August 13) 20 ± 54 (January 20) 149 ± 53 (May 29)

All values are mean ± 1 standard deviation.

doi:10.1371/journal.pone.0116952.t002

Table 3. Descriptions of lightning, military, and prescribed fire regimes at the Avon Park Air Force
Range, south-central Florida, USA (1997–2009).

Season Wet Dry Fire

Lightning Fires

Number of fires 13 3 43

Area burned (ha) 152 521 6,093

Air temperature (°C) 26.2 ± 0.8 23.4 ± 0.1 26.5 ± 3.0

Relative humidity (%) 85 ± 4 79 ± 1 74 ± 5

Solar radiation (mW m-2) 0.21 ± 0.04 0.20 ± 0.01 0.28 ± 0.02

Soil moisture @ 30–60 cm depth (mm) 32 ± 17 7 ± 4 14 ± 9

Seasonal timing (day of year) 210 ± 29 (Jul 29) 109 ± 42 (Apr 19) 163 ± 23 (Jun 12)

Military fires

Number of fires 17 44 51

Area burned (ha) 1,154 5,853 11,115

Air temperature (°C) 25.6 ± 1.7 17.5 ± 4.3 23.3 ± 3.6

Relative humidity (%) 79 ± 5 75 ± 10 68 ± 6

Solar radiation (mW m-2) 0.22 ± 0.02 0.17 ± 0.05 0.28 ± 0.03

Soil moisture @ 30–60 cm depth (mm) 32 ± 27 17 ± 11 10 ± 6

Seasonal timing (day of year) 191 ± 52 (Jul 10) 36 ± 42 (Feb 5) 121 ± 31 (May 1)

Prescribed fires

Number of fires 118 341 205

Area burned (ha) 15,269 69,681 41,129

Air temperature (°C) 23.9 ± 3.0 17.0 ± 4.4 23.4 ± 4.0

Relative humidity (%) 81 ± 5 75 ± 8 71 ± 6

Solar radiation (mW m-2) 0.21 ± 0.04 0.17 ± 0.04 0.28 ± 0.03

Soil moisture @ 30–60 cm depth (mm) 50 ± 35 23 ± 20 18 ± 9

Seasonal timing (day of year) 157 ± 81 (Jun 6) 40 ± 38 (Feb 9)

For fires, data are sums over the period of record. For weather conditions, data are means ± 1 standard

deviation. Data are grouped by the three seasons as produced by the representative 3-season model.

Values for dry season are adjusted to include days spanning across different years.

doi:10.1371/journal.pone.0116952.t003
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occurring during the wet (22%) and dry (5%) seasons. By far the most of the area burned oc-
curred in the fire season (90%), with 8% and 2% of the area burned occurring, respectively, in
the dry and wet seasons. Military fires occurred in both dry (39%) and fire (46%) seasons, but
the area burned during the fire season (61%) was about twice that burned in the dry season
(32%). Only 15% of military fires occurred in the wet season, and they only burned 6% of the
total area burned in military fires. Over half (51%) of the prescribed fires occurred during the
dry season; 31% and 18% occurred within the fire and wet seasons, respectively. These numbers
were reflected in the areas burned (55, 33, and 12%, respectively, in dry, fire, and wet seasons).

Fire weather variables tended to be more associated with seasons than ignition sources.
Large variation occurred in individual fire weather variables at the time of ignition, regardless
of source (Table 3), suggesting that combinations of variables were more important than single
variables in whether a fire occurred on a particular day. The most striking association of fire
weather variables with ignition sources was that lightning and military fires tended to burn
under lower soil moistures than prescribed fires in the same season (Table 3). These may have
reflected, in part, seasonal timing differences, as the lightning fires in all seasons occurred, on
average, later in the year than military or prescribed fires in these seasons.

We used the fire-weather plane to explore variation in climate conditions associated with
fires of a given ignition source. We plotted lightning, military and prescribed fires separately
on the fire-weather plane (Fig. 4). Noticeable patterns among seasons and fire types occurred
for the largest wildfires. During the period of study, the APAFR had five wildfires>1000 ha,
three military and two lightning fires; together these five fires accounted for 30% of the total
area burned by wildfires. On the fire-weather plane, all of these fires occurred in the same re-
gion of the fire season area of the fire-weather plane (Fig. 4A, B). Almost all other sizable light-
ning- and military-ignited fires also occurred in this same region of the fire weather plane,
suggesting that large fires occurred under restricted fire-weather conditions. This region was
characterized by high solar radiation and air temperatures, and by low relative humidities and
soil moistures. Prescribed fires, on the other hand, appeared to have been conducted to avoid
this “peak fire season” of the plane; there were few prescribed fires conducted under fire weath-
er conditions that resulted in large lightning and military fires (Fig. 4C). We further noticed
that this part of the fire-weather plane was also the area that tended to have additional clusters
when models with larger numbers of clusters were examined (compare Fig. 4 to Fig. 3D), sug-
gesting that large fires may be associated with specific conditions within the fire season.

We viewed this last point as not being coincidental—there was likely something about fire
weather in this region of the fire-weather plane that resulted in large wildfires. We therefore ex-
amined how wildfires varied among the different clusters of the 8-cluster model with the high-
est average R2 value. Half of the 10 largest lightning fires were concentrated within a single
cluster (cluster #7; Table 4A). This cluster, which accounted for 69% of the total area burned by
lightning fires (4,668 out of 6,766 ha total), is depicted in the lower region of the fire season in
Fig. 4A. These fires burned under favorable conditions: warm air temperatures, high levels of
solar radiation, low soil moisture, and moderate levels of humidity (Table 4A). The seasonal
timing of these fires was tightly clustered around from the end of May to the end of June. Based
on this analysis, it appeared that cluster #7 constituted the “peak mode” for lightning fires.

Military ignition of fires occurred under a wider range of conditions than lightning ignition
of fires. The ten largest fires burned under six of the eight clusters in the 8-cluster model (Table
4B); only the wet season had no large military fires. The most important cluster was #6, with
three of the top 10 largest military wildfires that altogether accounted for 30% of the total area
burned by military ignitions (5,490 ha out of 18,122 ha total). These three fires all occurred on
May 4th, 2006, which had almost ideal conditions for fire. The 3rd largest military fire occurred
during the “peak mode” cluster of the lightning fire regime (#7), and had similar seasonal
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Figure 4. Relationships between the size of fires and climate as described on the fire-weather plane.
Fire size is shown with bubble plots, with the size of bubbles being proportional to the size of fires. Shown are
(A) lightning fires (n = 59), (B) military fires (n = 112), and (C) prescribed burns (n = 664). The seasons of the
selected model are shown with different colored dots (wet season, gray dots; dry season, blue dots; peak fire
season, red dots). Bubbles detailing fire size are filled with colors related to the season in which they occur
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timing and weather conditions as those fires. On the fire-weather plane, cluster #7 was placed
to adjacent to cluster #6, so these clusters occurred under very similar fire-weather conditions,
resulting in large fires in the lower region of the fire season on the fire weather plane (Fig. 4B).
The 2nd largest military fire occurred in cluster #4. This fire occurred under fire-weather condi-
tions that differed from other large wildfires; it burned on March 7th, 2001 under cool air tem-
peratures, intense solar radiation, low soil moisture, and very low relative humidity (for
Florida). The unusual character of this fire is readily shown on the fire-weather plane (it was
placed to the left and below other large fires in Fig. 4B). Altogether, it appeared that, compared
to the lightning fire peak mode, the military fires were spread over a range of possible weather
conditions, but with a strong tendency to burn largest areas during the fire season under condi-
tions similar to those under which largest lightning-ignited fires occurred.

We examined prescribed burns that occurred within those clusters where the largest wild-
fires occurred. Little prescribed burning was conducted in clusters 4, 6 and 7. Less than 2% of
the total area burned by prescribed fires occurred on days within each of clusters 6 and 7. In
contrast, considerably more burning was conducted within cluster 4 (10% of the total).

(wet season fires, dark gray; dry season fires, light blue; peak fire season fires, orange). To make the
relationships for prescribed burns clearer, we reduced the bubble size in panel C by 50% relative to that
found in panels A and B.

doi:10.1371/journal.pone.0116952.g004

Table 4. Top 10 largest lightning and military fires, and the weather conditions under which they burned.

Rank Cluster Size
(ha)

Date Air temperature (°C) Relative humidity (%) Solar radiation
(mW m-2)

Soil moisture
@ 30–60 cm (mm)

Lightning Fires

1* 7 1,914 5/27/2006 25 77 0.26 4.9

2* 7 1,652 6/24/2000 25 82 0.25 3.7

3* 7 549 6/22/1998 28 75 0.30 7.1

4 1 297 6/12/2007 26 73 0.26 27.5

5 3 269 5/13/2009 23 80 0.21 4.5

6 3 252 3/2/1997 23 77 0.20 12.0

7 7 247 5/28/2006 27 69 0.29 4.8

8* 7 241 6/6/2000 28 71 0.30 3.2

9 1 226 6/17/2001 26 79 0.31 19.4

10 4 181 5/7/1997 22 70 0.28 18.6

Military fires

1* 6 2,128 5/4/2006 24 61 0.32 7.2

2* 4 1,405 3/7/2001 13 48 0.29 3.5

3* 7 1,038 6/15/2000 27 72 0.29 3.4

4* 6 748 5/4/2006 24 61 0.32 7.2

5 3 674 2/12/1999 21 86 0.12 19.7

6 1 651 6/8/1998 26 82 0.23 9.3

7 3 557 12/15/
2007

23 86 0.10 9.5

8 5 547 3/31/2006 20 70 0.28 13.3

9* 6 506 5/4/2006 24 61 0.32 7.2

10 3 452 1/7/1997 21 79 0.16 11.8

Rows with rank followed by * indicate clusters constituting peak mode of the fire season.

doi:10.1371/journal.pone.0116952.t004
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Step 6. Validation of selected models
Our tests on the validity of our analyses indicated that they were valid and should be stable
if more data were to be incorporated. First, we examined our representative cluster-analysis
(S1 Appendix, Section S1–5). This examination revealed that a random partitioning of the data
into four parts, and subsequent analysis, produced fire-weather planes very similar to those of
the full data set (compare Fig. 3A to the figure that follows Section S1–5 in S1 Appendix). Simi-
larly, we checked the results of the discriminant analysis of the representative model (S1 Ap-
pendix, Section S1–6). This examination revealed that the misclassification rate was low,
around 10% (tables in S1 Appendix). Moreover, the observations that were erroneously classi-
fied were only found along the borders of the seasons, a result that is to be expected given that
some days have to be transitional in nature (figures in S1 Appendix). Finally, a ‘leave-one-out’
cross-validation of this discriminant analysis produced a misclassification rate almost identical
to that of the original analysis (S1 Appendix, Section S1–6). Given the results of these checks
on the validity of our analyses, we concluded that, if we collected more data, it would be unlike-
ly that analysis would produce seasonal models different from those already described.

Discussion
Our concept of a fire season is rooted in prior studies of fire in southern Florida. Scientific no-
tions of fire have changed considerably since fire in the south Florida region was initially men-
tioned by naturalists a century ago [83, 84]. Clear demonstration of the importance of fire in
south Florida ecosystems dates to mid 20th century studies by Robertson [85–87]. Over subse-
quent decades, seasonal timing and characteristics of lightning- and human-ignited fires have
been described, and some of their effects on vegetation explored [32, 88–94]. Quantitative fire
weather data have been used to predict aspects of lightning- and human-ignited fires in south-
ern Florida, however, for only about a decade [2, 3, 20, 33, 44, 51, 65, 82]. These studies have
considered the greatest likelihoods of fire and areas burned naturally by fire as resulting from
lightning strikes during thunderstorms that end the dry season and initiate the ensuing wet sea-
son [33, 90, 95, 96]. Our current study builds on these prior studies, developing new concepts
regarding the importance of seasonal timing in fire regimes of southern Florida savanna-
grassland landscapes. We redefine seasons using fire weather, and the most useful seasonal
model contains both wet and dry seasons, as well as a distinct fire season.

A three-season model of fire weather for southern Florida
Seasonal components of fire regimes most often have been delineated based on single weather
variables, such as temperature or rainfall. In our study, we developed multivariate models to
demarcate seasons using combinations of weather variables that influence spread of fires across
landscapes. Based on evaluation of model parsimony, the occurrence of model-designated sea-
sons as a number of days each year, and unique seasonal timing, we selected a three-season
model that explained almost twice as much variation in fire-weather variables in southern Flor-
ida as the conventional wet/dry season model based on rainfall [2, 33, 55]. These three seasons
included wet and dry seasons resembling seasons delineated using conventional rainfall mod-
els, as well as a distinct fire season characterized by high solar radiation, warm ambient temper-
atures, moderate relative humidity, and low soil moisture. This combination of weather
conditions facilitates the likelihood and spread of fire in savanna-grassland habitats. This fire
season has unique seasonal timing and occurs as a continuous period each year that follows the
dry season and is followed by the wet season. The fire season averages a little less than three
months, and does not represent variable or transient weather associations (e.g., storm fronts).
Weather delineating the fire season is distinct from that during either conventional dry and
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wet seasons because fire-weather variables are strongly linked during the fire season, producing
unique weather not described by conventional rainfall models.

Our three-season model clarifies seasonal changes in fire-weather. Fire weather remains rel-
atively consistent over much of the wet and dry seasons in south Florida. As the dry season
transitions to the fire season, however, concurrent changes in solar radiation, air temperatures,
and relative humidity result in drying of fuels and soils. What has been perceived as the end of
the dry season [2, 61, 65], is now designated the onset of the fire season. The fire season, with
fire weather conducive for ignition and fire spread, thus is in place well before the first thunder-
storms. This shift from the dry season to the fire season is indicated in Fig. 2.

Concurrent changes in components of fire weather that define the fire season do not appear
to be tightly synchronized. As a result, variable weather conditions often occur during the fire
season. Some years, for instance, appear to have “false starts” to the wet season, when a rainy
period interrupts the fire season [2]. These often seem to be a harbinger of the beginning of the
wet season, but the wet season fails to develop, and the “false start” is followed by another peri-
od of drought [2, 56]. Such variation may be conducive to fires, with multiple thunderstorms
occurring under conditions favorable for fire spread before the wet season. Thus, conditions
previously designated as the onset of the wet season [2, 61, 65, 82], based on rainfall now con-
stitute the end of the fire season. The three-season model removes almost all natural lightning-
ignited fires, and especially those that burn large areas, from the wet season. As a result, only
small amounts of area are burned during the wet season, even though there are frequent light-
ning strikes that start fires during this season. Depending on how quickly soil catena become
saturated and moisture conditions become less suitable for fire spread, the fire season can ex-
tend into what has been perceived as the early wet season [61, 65, 82]. We further anticipate
that variation in assignment of days to fire and wet seasons is likely to result from global weath-
er patterns such as ENSO [2, 3, 33]. Further study should refine concepts regarding intra- and
inter-annual variability in weather conditions during the fire season and how such variation
contributes to pyrodiversity.

Models with more than three seasons provide additional insights into the fire season of the
selected three-season model. Additional clusters of fire-weather variables produced by rejected
models with>3 clusters tend to be grouped within the fire season of the three-season model.
These patterns suggest that the fire season in south Florida is characterized by more variable
fire weather conditions than either the dry or wet seasons. In addition, some of these subdivi-
sions of the fire season are strongly associated with large lightning and military fires, suggesting
that conditions conducive for fire spread across landscapes (peak fire season) occur under
highly specific fire-weather conditions that are somewhat repetitive across years.

Fires during peak fire season may be crucial for scientific-based restoration and manage-
ment of certain habitats. The peak fire season involves weather conditions sufficiently dry for
fires to cross wetlands that otherwise tend to serve as natural firebreaks (at the end of the fire
season, during the entire wet season, and into most of the dry season). Thus, prescribed fire in
south Florida often has been tantamount to fire suppression in low-lying or transition areas be-
tween wetlands and uplands. One result has been transformation of herbaceous-dominated
wetland transitions to shrub-encroached thickets (i.e., fire breaks that burn only in intense fires
during extreme droughts) at the expense of a diverse groundcover often rich with endemic
plants [82, 97–99]. These patterns suggest that scientifically-based fire management of longer-
hydroperiod wetlands could be enhanced by exploration of characteristics of peak fire seasons.
Understanding ecological effects resulting from human ignitions that vary from natural fire re-
gimes should provide a scientific basis for modifying ignitions in ways that benefit natural re-
source management priorities such as ecosystem management, conservation of biodiversity,
and maintaining endangered species habitat.
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We suggest that the most appropriate fire-weather models are likely to be local, or at most
regional in scale. Those fire-weather variables in our models are similar, but not the same as
weather variables that tend to be used in more general fire models. For example, fire-spread
models such as BEHAVE and its derivatives have been broadly applied across geographic re-
gions [100–103]; see (http://www.wfas.net/). These models may not incorporate the most ap-
propriate fire weather variables (and also may contain too many such variables) for accurate
description of a seasonal fire weather patterns at a given site. We propose that fire season mod-
els using variables known to affect fire directly at local scales should have a greater chance of
identifying weather-fire relationships with high precision. In central and southern Florida, for
example, our models using local weather variables that influence ignition and spread of fire
over relatively short time periods are more accurate than more general models based on de-
rived variables, such as fuel moisture or prolonged drought indices (e.g., Palmer or Keetch-
Byram drought indices) that indicate longer-term deviation from saturated soils [2].

Regional or local models of fire seasons may not include all weather variables known to in-
fluence fires. Inclusion of variables that influence fire-weather, but not in a distinct intra-
annual pattern, may not produce useful models of fire seasons. Therefore including such vari-
ables in the model will interfere with the ability of the model to detect seasonal clusters of days
that change similarly over time. In our case with wind speed, one possible explanation is that
windy days in southern Florida may tend to be days with stormy weather, and such weather oc-
curs across seasons. For example, storm fronts occur periodically during the dry season, with
the weather pushed before these fronts tending to be blustery, warm, and humid [104], result-
ing in transient weather are considerably different from fire weather patterns that more gener-
ally characterize the dry season. Thus, wind speed should not necessarily be considered
aseasonal at APAFR, but its seasonality appears to operate differently than other fire-weather
variables [51]. In other regions, however, wind (or maybe some subset of variables associated
with wind) may be critical for defining fire seasons (e.g., foehn-type wind seasons such as the
Santa Ana winds; [37]. Multivariate modeling of fire-weather seasons requires mechanisms for
identifying the most suitable set for a site and removing other variables from consideration.

Given that our fire-weather analysis reveals a fire season between the dry season and subse-
quent wet season, a similar season might be expected between wet and dry seasons. The ab-
sence of a fourth season in southern Florida could result from lag effects of wet season
precipitation that sustain water tables at or even above the ground surface for extended periods
in low-lying areas [20, 82]. High soil moisture content (i.e. saturated, water-logged or inundat-
ed soils) thus would influence aspects of the fire weather conditions (e.g., drought conditions,
relative humidity) after the wet season ends. Such a pattern is well-documented for the Ever-
glades, where slow drainage of low-lying landscapes commonly extends into the dry season
[33, 105], buffering the early dry season against favorable fire conditions [2, 106]. We note that
in southeastern regions not low-lying and slow to drain, weather patterns could result in a
four-season model that potentially includes two peak fire seasons, as suggested by relationships
between rainfall and fire regimes further north along the Florida peninsula and Gulf coast
[70, 107–109]. Even more different relationships might be discovered around the world.

Relationships between fire weather, ignition sources, and fire regimes
Fire regimes in south Florida are dominated by landscape-level wildfires. Such fires over-
whelmingly determine the frequency with which a given location burns [44, 51]. Although ig-
nitions potentially can occur during the entire year, fires burn the vast majority of area only in
the fire season. Our analyses further suggest that lightning and military fire regimes at the
APAFR differ to the extent that variation in seasonal timing of ignition results from differences
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in fire weather at highly specific times—peak fire mode—during the fire season. Both lightning
and military fire regimes, as well as area burned by each ignition type, are constrained by sea-
sonal timing of ignition relative to fire weather during the fire season.

Relationships between fire weather and fire spread are complex. Wildfires have been postu-
lated to spread via a process of stepwise increases (stages) in size [110]. Our prior analyses [51]
indicate that increases in size at smaller stages at the APAFR are “promoted” by low relative
humidity and higher wind speeds. Only as fire size increases to larger stages do the full effects
of drought become realized, because lower elevations become suitable fire-connections between
upland areas at these larger sizes [51]. Although the stepwise process allows fires to become
large (> 1000 ha for the APAFR), it does not mandate that they will become large fires. Our
current analysis reveals that this stepwise process results in large fire size in southern Florida
only under critical peak fire weather conditions during the fire season.

Our analyses indicate critical combinations of seasonal fire weather conditions govern fire
spread. More conventional models, especially those based on indices of long-term drought con-
ditions, e.g., [111, 112] and short-term fire danger ratings (e.g., [113, 114]; Wildland Fire As-
sessment System at http://www.wfas.net/) also indicate current and short-term future
likelihoods of spread of wildfires. These models do little, however, to describe how important
weather variables (and associated effects on fuels) come together to produce fire seasons, as
well as identify peak fire modes within fire seasons. Our approach should be useful in predict-
ing seasonality of large fires, an important management question in landscapes where “blow-
ups” are possible because there are few effective natural barriers to the spread of fires. Eventual-
ly, our multivariate analytical approach should be combined with predictive models that incor-
porate intra- and inter-annual variation in multiple important fire weather variables [20].

Our three-season model reveals variation in fire regimes produced by different ignition
sources at the APAFR in south-central Florida. The vast majority of area burned during natural
lightning-ignited fires occurs during the peak fire mode of the fire season. Hence, the natural
fire season is highly predictable, with important ecological consequences [82]. Fires are ex-
pected to be frequent and predictable in occurrence because peak fire mode occurs annually.
Human ignitions, however, often pre-empt lightning ignitions [22]. Most area burned as a re-
sult of military missions occurs during peak fire mode or slightly earlier under similar fire con-
ditions. Military missions tend to alter natural fire regimes only slightly, although, as we have
noted, there are some exceptions. Prescribed fires result in the most noticeable shifts in fire re-
gimes. In contrast to lightning and military fires, prescribed fires at the APAFR burn the most
area and have the largest fires outside peak fire mode and even outside the fire season. Pre-
scribed fires often are banned or not conducted during peak mode because they are considered
more likely to escape, becoming hard-to-control wildfires. Thus, prescribed fires commonly
are shifted earlier, into the end of the dry season, or later, into the end of the fire season or into
the wet season. Other studies in Florida also have found that prescribed fires are rarely con-
ducted during peak mode [44, 61]. Even planned experimental fires may be re-scheduled be-
cause of burn bans associated with peak mode [45]. Because prescribed fires often occur weeks-
months prior to, or after lightning-ignited fires, under ecological conditions outside those in
the natural fire season, considerable confusion exists concerning similarities and differences in
ecological effects of fires during peak and non-peak modes, as well as inside and outside the
fire season.

Fire regimes concentrated inside the fire season are likely to maintain savanna-grassland
landscapes. Thus, fires that mimic natural fires (e.g., military missions) historically important
in the evolution and ecology of frequently burned habitats like savannas and grasslands should
not be detrimental and may facilitate fire management of fragmented landscapes. Decades of
lightning and military fire regimes might have maintained savanna-grasslands within APAFR
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mission impact ranges especially at the low end of the moisture gradient, despite landscape
fragmentation, see also [82]. Similar effects of human ignitions have been postulated elsewhere
in the North American Coastal Plain [115].

How important is mimicry of natural lightning-ignited fires? Are there ecological effects of
igniting fires during peak mode that do not occur otherwise? Does seasonal timing that fails to
mimic the seasonality inherent in lightning-ignited fire regimes result in fires that might more
appropriately be considered disturbances of natural fire regimes? It is common for decisions to
be made that prescribed fires inside and outside the fire season produce similar effects based
on lack of pronounced changes in upland habitat, despite phenological and demographic data
from savannas and grasslands suggesting subtle effects [62, 99, 116–119]. We note, moreover,
that in flatland landscapes of the southeastern coastal plain, prescribed fires during the mid to
late wet season, when rises in water tables often can be measured in days and flooding follows
soon afterwards, can be detrimental to groundcover vegetation. Large, often conspicuous nega-
tive effects occur when plants are top-killed, then flooded before resprouting can occur [33, 82,
93, 99, 120]. Such combined fire-flood effects occur frequently along lower ends of elevation
gradients commonly measured in centimeters in south Florida [120–123]. Conversely a trend
in southern Florida to shift prescribed fires into the late wet season or early dry season (Sep-
tember—December) fails to mimic fire season effects. Instead, fires are patchy and have re-
duced shrub top-kill, favoring re-sprouting woody species while failing to induce flowering of
C4 grasses and reproduction of many groundcover forbs. We urge further study comparing ef-
fects of prescribed fires that mimic and do not mimic peak fire season timing on vegetation
along moisture gradients in southern Florida.

Coda: Implications for ecological fire management on a global scale
Our study provides a scientific basis for understanding differences between natural and human
fire management of savannas and grasslands. Worldwide, humans have supplanted fire weath-
er, suppressing or replacing fires during the peak mode of the fire season with fires of human
design. Currently, production of fine fuels that ignite readily during droughts is at the periph-
ery of planned restoration and management, and so human prescribed fires rarely simulate
lightning fires in their seasonal timing across savanna-grassland landscapes. For many decades
[6, 95, 115], prescribed fires in south Florida and similar habitats in other regions have been
conducted over a wide range of seasonal times, almost the entire year [108]. Timing of ignition
has been described using vague seasons defined using single weather variables (e.g., dormant
(winter) versus growing (summer) seasons, or lightning versus non-lightning seasons). Hence,
prescribed fires conducted during a wide range of times have been considered as having a “nat-
ural” seasonal timing; such fires often have been presumed (frequently without supporting
data) to produce fire effects similar to those that would have occurred naturally under natural
lightning fire regimes [124]. Consequently, confusion has resulted regarding similarities and
differences in effects of fires at different times of the year.

Our study provides a compelling rationale for basing ecological fire management in analyses
of relationships between fire weather and fires. The fire-weather variables we used are closely
connected to local fuel conditions at the APAFR [2, 82, 99]. Perennial C4 grasses are dominant
or co-dominant in savanna grasslands throughout peninsular Florida; at APAFR these grasses
produce annual accumulations of fine fuel biomass across often subtle elevation gradients dur-
ing the wet season [52]. Savanna pines (Pinus palustris, Pinus elliottii var. densa) and cypress
(Taxodium ascendens) augment flammable fine fuels via leaf shedding [118]. Moreover, pyro-
genic shrubs, especially palmetto (Serenoa repens) further modify fire characteristics [8]. Short-
term, intra-annual droughts cure and connect these fine fuels across landscapes containing
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low, moisture-laden areas [34, 82]. Thus, lightning ignitions during peak fire mode of the fire
season, when ground water levels are at their seasonal lows following rain-free intervals [2, 61,
82], have the potential to generate fires that readily burn these fine fuels, spreading over large
areas annually, especially during La Nina induced droughts [2, 20, 33]. Such relatively specific
seasonal timing, during peak mode of the fire season, sets the stage for evolutionarily-derived
responses of dominant vegetation that affects likelihoods and characteristics of future fires [6].
Conservation of these habitats necessitates reconstitution of evolutionarily derived fire
regimes.

Our conceptual fire model for south Florida provides the basis for a general evolutionary
fire model for savannas and grasslands. In many landscapes worldwide, seasonal fire weather
dries fine fuels, then provide the ignition source that results in fires that spread across land-
scapes, carried by highly flammable fuels that strongly influence fire characteristics. Our three-
season fire weather model thus has conceptual implications for fire-vegetation relationships in
humid seasonal savanna grasslands worldwide. Although seasonal weather patterns such as
those in south Florida may appear specific, they also characterize humid warm temperate and
subtropical habitats in many regions of the world. We anticipate fire weather models similar to
that we develop for south Florida will have value in savannas and grasslands along the North
American Coastal Plain [6, 121, 125–127], in the Caribbean basin, and in regions of Central
and South America [95, 128–131]. Moreover, implications of a three-season model are likely to
be important worldwide in temperate and tropical regions with savanna and grassland biomes
[22, 132, 133]. These regions, especially those with a long evolutionary history, are likely to be
overlooked, mismanaged, and under-appreciated as climate refugia of biodiversity and ende-
mism important for conservation in a time of rapid climate change [134]. Hopefully, our analy-
ses of fire weather, ignition patterns and fire regimes in south Florida will stimulate scientific
evaluation of concepts underlying prescribed fire management worldwide.
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